
z/OS
2.5

MVS Programming: Assembler Services
Guide

IBM

SA23-1368-50

Note

Before using this information and the product it supports, read the information in “Notices” on page
487.

This edition applies to Version 2 Release 5 of z/OS® (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2023-04-24
© Copyright International Business Machines Corporation 1988, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xv

Tables...xxi

About this information.. xxiii
Who should use this information...xxiii
How to use this information.. xxiii
z/OS information.. xxiii

How to send your comments to IBM.. xxv
If you have a technical problem... xxv

Summary of changes.. xxvii
Summary of changes for z/OS MVS Programming: Assembler Services Guide for Version 2 Release

5 (V2R5)... xxvii
Summary of changes for z/OS MVS Programming: Assembler Services Guide for z/OS Version 2

Release 4..xxvii
Summary of changes for z/OS MVS Programming: Assembler Services Guide for z/OS Version 2

Release 3...xxviii

Chapter 1. Introduction... 1

Chapter 2. Linkage conventions... 5
Saving the calling program's registers...5

Caller-provided save area.. 6
Linkage convention for floating point registers... 6
Linkage convention for the floating point control register.. 6
System-provided linkage stack.. 7

Using the linkage stack.. 7
Example of using the linkage stack..7

Using a caller-provided save area... 8
If not changing ARs or bits 0–31 of the 64–bit GPRs..8
If changing the contents of bits 0-31 of the 64-bit GPRs but not changing ARs............................... 10
If starting in AMODE 64 ...13
If changing ARs without using the linkage stack...15

Establishing a base register...18
Linkage procedures for primary mode programs..18

Primary mode programs receiving control.. 18
Primary mode programs returning control.. 19
Primary mode programs calling another program.. 20

Linkage procedures for AR mode programs..20
AR mode programs receiving control and using the linkage stack... 20
AR mode programs returning control and using the linkage stack...21
AR mode programs receiving control and not using the linkage stack...21
AR mode programs returning control and not using the linkage stack...21
AR mode programs calling another program...22

Conventions for passing information through a parameter list..22
Program in primary ASC mode...22
Programs in AR mode...23

 iii

Chapter 3. Subtask creation and control...25
Creating the task..25
Priorities... 25

Address space priority... 25
Task priority.. 26
Subtask priority.. 26
Assigning and changing priority... 26

Stopping and restarting a subtask (STATUS macro)... 26
Task and subtask communications... 27

Chapter 4. Program management...29
Residency and addressing mode of programs..29

Residency mode definitions...29
Addressing mode definitions... 30

Linkage considerations.. 30
Floating point considerations...31
Passing control between programs with the same AMODE..31
Passing control between programs with different AMODEs... 31
Passing control between programs with all registers intact...32

Load module structure types...34
Simple structure... 34
Dynamic structure.. 34

Load module execution..34
Passing control in a simple structure.. 34

Passing control without return...35
Passing control with return.. 36

Passing control in a dynamic structure... 41
Bringing the load module into virtual storage... 41
Passing control with return.. 47
Passing control without return...50

APF-authorized programs and libraries.. 52
Additional Entry Points.. 53
Entry Point and Calling Sequence Identifiers as Debugging Aids.. 53
Retrieving Information About Loaded Modules.. 53

Using the CSVINFO macro... 54
Coding a MIPR for the CSVINFO macro... 56

Chapter 5. Understanding 31-bit addressing...59
Virtual storage..59

Addressing mode and residency mode... 59
Requirements for execution in 31-bit addressing mode.. 61
Rules and conventions for 31-bit addressing..61
Mode sensitive instructions... 62
Branching instructions... 63
Use of 31-bit addressing..63

Planning for 31-bit addressing.. 63
Converting existing programs.. 64
Writing new programs that use 31-bit addressing..66
Writing programs for MVS/370 and MVS systems with 31-bit addressing...67

Addressing mode and residency mode...68
Addressing mode - AMODE..68
Residency mode - RMODE... 68
AMODE and RMODE combinations.. 69
AMODE and RMODE combinations at execution time...69
Determining the AMODE and RMODE of a load module..69
Assembler support of AMODE and RMODE... 70

iv

Linkage editor and binder support of AMODE and RMODE...71
Loader support for AMODE and RMODE..73
System support of AMODE and RMODE.. 74
How to change addressing mode...76

Establishing linkage... 77
Using the BASSM and BSM instructions.. 78
Using pointer-defined linkage..80
Using supervisor-assisted linkage... 82
Linkage assist routines...83
Using capping - linkage using a prologue and epilogue.. 87

Performing I/O in 31-bit addressing mode... 88
Using the EXCP macro..88
Using EXCPVR...89

Understanding the use of central storage...97
Central storage considerations for user programs..97

Chapter 6. Resource control... 101
Synchronizing tasks (WAIT, POST, and EVENTS macros)...102
Synchronizing tasks (Pause, Release, and Transfer).. 103

Pause elements and pause element tokens... 104
Using the services.. 105

Serializing access to resources (ISGENQ macro)... 108
Naming the resource..109
Defining the scope of a resource... 109
Requesting exclusive or shared control.. 111
Limiting concurrent requests for resources.. 111
Processing the requests...112
Serializing access to resources through the ISGENQ macro.. 116

Collecting information about resources and their requestors (ISGQUERY and GQSCAN macros).......116
How ISGQUERY returns resource information..116
How GQSCAN returns resource information... 117
How GRS determines the scope of an ENQ or RESERVE request...119

Chapter 7. Program interruption services... 121
Specifying user exit routines... 121

Using the SPIE macro.. 121
Using the ESPIE macro.. 123
Environment upon entry to user's exit routine..123
Functions performed in user exit routines.. 124

Chapter 8. Providing recovery.. 125
Understanding general recovery concepts... 126

Deciding whether to provide recovery...126
Understanding errors in MVS... 127
Understanding recovery routine states... 128
Understanding the various routines in a recovery environment...129
Choosing the appropriate recovery routine...130
Understanding recovery routine options...131
Understanding how routines in a recovery environment interact.. 132

Writing recovery routines.. 133
Understanding what recovery routines do.. 134
Understanding the means of communication... 139
Special considerations for ESTAE-type recovery routines..147

Understanding the recovery environment.. 150
Register contents... 151
Other environmental factors in recovery...157

Understanding recovery through a coded example..162

 v

Understanding advanced recovery topics...164
Invoking RTM (ABEND macro)... 164
Providing multiple recovery routines...165
Providing recovery for recovery routines...165
Providing recovery for multitasking programs.. 166

Using STAE/STAI routines... 166

Chapter 9. Dumping virtual storage (ABEND, SNAPX, SNAP, and IEATDUMP
macros)... 171
ABEND dumps... 172

Obtaining a symptom dump...172
Suppressing dumps that duplicate previous dumps...172

SNAP dumps.. 177
Finding information in a SNAP dump...177
Obtaining a summary dump for an ABEND or SNAP dump.. 177

Transaction dumps.. 178

Chapter 10. Reporting symptom records (SYMRBLD and SYMREC macros)...........179
Writing symptom records to Logrec data set.. 179
The format of the symptom record... 180

Symptom strings — SDB format...180
Building a symptom record using the SYMRBLD macro... 181
Building a symptom record using the ADSR and SYMREC macros.. 181

Programming notes for section 1.. 181
Programming notes for section 2.. 182
Programming notes for section 2.1... 183
Programming notes for section 3.. 184
Programming notes for section 4.. 184
Programming notes for section 5.. 184

Chapter 11. Virtual storage management..187
Explicit requests for virtual storage.. 187

Obtaining storage through the GETMAIN macro...188
Obtaining storage through the STORAGE macro...189
Using the CPOOL macro...191
Subpool handling... 191

Implicit requests for virtual storage..194
Reenterable load modules...194
Reenterable macros...195
Non-reenterable load modules..196
Freeing of virtual storage... 196

Chapter 12. Using the 64-bit address space..199
What is the 64-bit address space?..199
Why would you use virtual storage above the bar?.. 200
Memory objects... 201

Using large pages... 201
Using assembler instructions in the 64-bit address space.. 202

64-bit binary operations.. 202
64-bit addressing mode (AMODE)...203

Issuing MVS macros in AMODE 64..206
Example of using SYSSTATE AMODE64=.. 206

IARV64 services.. 206
Protecting storage above the bar...207
Preventing execution of code from the memory object..207
Relationship between the memory object and its owner... 207
Tagging 64-bit memory objects for data privacy...207

vi

Creating memory objects...208
Using a memory object.. 208

Discarding data in a memory object..210
Releasing the physical resources that back pages of memory objects... 211
Freeing a memory object...211

Example of freeing a memory object...211
Creating a guard area and changing its size..211

Example of creating a memory object with a guard area..212
An example of creating, using, and freeing a memory object.. 213

Chapter 13. Callable cell pool services... 215
Comparison of callable cell pool services and the CPOOL macro..216
Storage considerations..216
Link-editing callable cell pool services... 217
Using callable cell pool services... 218
Handling return codes... 219
Callable cell pool services coding examples.. 220

Chapter 14. Data-in-virtual.. 225
When to use data-in-virtual...225

Factors affecting performance...226
Creating a linear data set... 226

Using the services of data-in-virtual... 227
Identify... 227
Access...227
Map... 228
Save, savelist, and reset...228
Unmap.. 229
Unaccess.. 229
Unidentify... 229

The IDENTIFY service... 229
The ACCESS service...230
The MAP service.. 232
The SAVE service... 236
The SAVELIST service..237
The RESET service... 238

Effect of RETAIN mode on RESET..238
The UNMAP service... 239
The UNACCESS and UNIDENTIFY services.. 240
Sharing data in an object... 240
Miscellaneous restrictions for using data-in-virtual...240
DIV macro programming examples.. 241

General program description...241
Data-in-virtual sample program code... 241
Executing the program...246

Chapter 15. Using access registers... 249
Access lists.. 250

Types of access lists...250
Writing programs in AR mode..252
Coding instructions in AR mode.. 253
Manipulating the contents of ARs... 253

Loading an ALET into an AR... 254
Loading the value of zero into an AR... 254

The ALESERV macro.. 255
Adding an entry to an access list... 255
Deleting an entry from an access list.. 255

 vii

Issuing MVS macros in AR mode...256
Example of using SYSSTATE...256
Using X-macros.. 256

Formatting and displaying AR information... 257

Chapter 16. Data spaces and hiperspaces.. 259
What are data spaces and hiperspaces?...259
What can a program do with a data space or a hiperspace?..259

How does a program obtain a data space and a hiperspace?.. 260
How does a program move data into a data space or hiperspace?.. 260
Who owns a data space or hiperspace?.. 260
Can an installation limit the use of data spaces and hiperspaces?.. 260
How does a program manage the storage in a data space or hiperspace?...................................... 261

Differences between data spaces and hiperspaces... 261
Comparing data space and hiperspace use of physical storage...263

Which one should your program use?...263
An example of using a data space... 263
An example of using a hiperspace...263

Creating and using data spaces.. 264
Manipulating data in a data space... 264
Rules for creating, deleting, and managing data spaces.. 264
Creating a data space...265
Establishing addressability to a data space.. 268
Examples of moving data into and out of a data space...268
Extending the current size of a data space... 270
Releasing data space storage.. 271
Paging data space storage areas into and out of central storage...271
Deleting a data space...272
Using callable cell pool services to manage data space areas...272
Sharing data spaces among problem-state programs with PSW key 8-F.. 273
Sharing data spaces through the PASN-AL... 275
Example of mapping a data-in-virtual object to a data space.. 275
Using data spaces efficiently... 276
Example of creating, using, and deleting a data space...276
Dumping storage in a data space...277
Using checkpoint/restart... 277

Creating and using hiperspaces.. 278
Standard hiperspaces.. 279
Creating a hiperspace.. 281
Transferring data to and from hiperspaces... 281
Extending the current size of a hiperspace... 285
Releasing hiperspace storage..285
Deleting a hiperspace.. 285
Example of creating a standard hiperspace and using it.. 286
Using data-in-virtual with hiperspaces... 287
Using checkpoint/restart... 291

Chapter 17. Window services...293
Data objects... 293

Permanent.. 293
Temporary data objects... 293
Structure of a data object.. 293
What does window services provide?..294
The ways that window services can map an object.. 294
Access to permanent data objects.. 297
Access to temporary data objects... 298

Using window services.. 298

viii

Obtaining access to a data object..299
Defining a view of a data object... 300
Defining the expected reference pattern.. 302
Defining multiple views of an object..303
Saving interim changes to a permanent data object...304
Updating a temporary data object...304
Refreshing changed data... 305
Updating a permanent object on DASD...305
Changing a view in a window... 306
Terminating access to a data object.. 307
Link-editing callable window services...307

Window services coding example... 307

Chapter 18. Sharing application data (name/token callable services).................. 311
Understanding name/token pairs and levels.. 311

Name/token pairs...311
Levels for name/token pairs.. 312
Determining what your program can do with name/token pairs.. 312

Deciding what name/token level you need...313
Task-level name/token pair... 313
Home-level name/token pair...314

Owning and deleting name/token pairs.. 315
Using checkpoint/restart with name/token pairs... 315
Link-editing name/token services...315

Chapter 19. Processor storage management...317
Freeing virtual storage...318
Releasing storage.. 318
Protecting a range of virtual storage pages.. 319
Loading/paging out virtual storage areas..319
Virtual subarea list...320
Page service list (PSL)..321
Defining the reference pattern (REFPAT)..321

How does the system handle the data in an array?.. 322
Using the REFPAT macro..324
Examples of using REFPAT to define a reference pattern...328
Removing the definition of the reference pattern... 329

Chapter 20. Sharing data in virtual storage (IARVSERV macro)............................331
Understanding the concepts of sharing data with IARVSERV.. 331
Storage you can use with IARVSERV...332
Obtaining storage for the source and target... 332
Defining storage for sharing data and access... 333
Changing storage access... 334
How to share and unshare data.. 335
Accessing data in a sharing group...336
Example of sharing storage with IARVSERV... 336
Use with data-in-virtual (DIV macro).. 337
Diagnosing problems with shared data...337
Converting a central to virtual storage address (IARR2V macro).. 338

Chapter 21. Timing and communication..339
Checking for timer synchronization...339
Obtaining time of day and date... 339
Converting between time of day and date and TOD clock formats..339
Interval timing... 340
Obtaining accumulated processor time..341

 ix

Writing and deleting messages (WTO, WTOR, DOM, and WTL)..342
Routing the message..343
Writing a multiple-line message.. 346
Embedding label lines in a multiple-line message... 346

Communicating in a sysplex environment.. 346
Writing to the programmer.. 346
Writing to the system log...346

Deleting messages already written... 347
Retrieving console information (CONVCON and CnzConv macros)..347

Using console names instead of console IDs..348
Determining the name or ID of a console..348
Validating a console name or ID and obtaining the active system name...349

Chapter 22. Translating messages..351
Allocating data sets for an application..353
Creating install message files..353

Creating a version record... 353
Creating message skeletons.. 353
Message skeleton format...354
Message text in a skeleton...355

Validating message skeletons... 356
Allocating storage for validation run-time message files... 357
Compiling message files.. 357
Checking the message compiler return codes.. 360

Updating the system run-time message files... 360
Using MMS translation services in an application.. 360

Determining which languages are available (QRYLANG macro)...360
Retrieving translated messages (TRANMSG macro)...361
Example of displaying messages...362

Using message parameter blocks for new messages (BLDMPB and UPDTMPB macros)..................... 363
Support for additional languages.. 364
Example of an application that uses MMS translation services... 365

Chapter 23. Data compression and expansion services....................................... 367
Services provided by CSRCESRV...367

Using these services.. 368
Services provided by CSRCMPSC.. 368

Compression and expansion dictionaries... 368
Building the CSRYCMPS area... 369
Determining if the CSRCMPSC macro can be issued on a system..371
Compression processing..371
Expansion processing.. 372
Dictionary entries... 372

Chapter 24. Accessing unit control blocks (UCBs)... 383
Detecting I/O configuration changes.. 383
Scanning UCBs...384
Obtaining UCB information for a specified device.. 385
Obtaining eligible device table information.. 385

Using the EDTINFO macro... 385

Chapter 25. Setting up and using an internal reader..387
Allocating the internal reader data set... 387
Opening the internal reader data set.. 388
Sending job output to the internal reader...388

Obtaining a job identifier..388
Closing the internal reader data set..389

x

Chapter 26. Using the symbol substitution service.. 391
What are symbols?.. 391

Types of symbols..391
Examples of user symbols... 392

Calling the ASASYMBM or ASASYMBF service... 393
Setting up the ASASYMBP mapping macro... 393
Providing a symbol table to ASASYMBM / ASASYMBF..394
Using symbols in programs..399

Chapter 27. Using system logger services... 403
What is system logger?..403

The log stream..404
The system logger configuration... 406

The system logger component.. 408
Overview of system logger services..409

Summary of system logger services..409
Define authorization to system logger resources..410
64 bit virtual addressing support for system logger services...411
Synchronous and asynchronous processing... 413
How system logger handles gaps in the log stream..415
Dumping on data loss (804–type) conditions... 415
Using the system logger answer area (ANSAREA parameter).. 417
Using ENF event code 48 in system logger applications.. 419

IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies.. 419
Defining a model log stream in the LOGR couple data set..420
Defining a log stream as DASD-only.. 421
Upgrading an existing log stream configuration..421
Renaming a log stream dynamically ... 423
Updating a log stream's attributes.. 423

IXGCONN: Connecting to and disconnecting from a log stream..424
Examples of ways to connect to the log stream..425
How system logger allocates structure space for a new log stream at connection time.................426
Connect process and staging data sets...426
Requesting authorization to the log stream for an application...426
Requesting a write or import connection - IMPORTCONNECT parameter.......................................429
Specifying user data for a log stream.. 429
System logger processing at disconnection and expired stream token... 430

IXGWRITE: Writing to a log stream... 431
The log block buffer... 431
Ensuring chronological sequence of log blocks.. 432
Write triggers..432
When is data committed to the log stream?..433
When the log stream coupling facility storage limit is reached.. 433
When the staging data set storage limit is reached.. 433
When the staging data set is formatting..434
Limiting asynchronous IXGWRITE requests... 434

IXGBRWSE: Browsing/reading a log stream...435
IXGBRWSE terminology... 435
IXGBRWSE requests.. 435
Browsing both active and inactive data...436
Browsing for a log block by time stamp.. 436
Browsing multiple log blocks...437
Return and reason code considerations..437
Using IXGBRWSE and IXGWRITE.. 438
Using IXGBRWSE and IXGDELET requests together.. 438

IXGDELET: Deleting log blocks from a log stream..438

 xi

Using the BLOCKS parameter.. 438
IXGIMPRT: Import log blocks..439

Making sure log blocks are imported in sequence - Understanding log block identifiers............... 439
Making sure log data is safe to import...440

IXGQUERY: Get information about a log stream or system logger.. 440
The safe import point: Using IXGQUERY and IXGIMPRT together...441
The coupling facility list structure version number...443

IXGOFFLD: Initiate offload to DASD log data sets..444
Managing a target log stream: Using IXGIMPRT, IXGOFFLD, and IXGQUERY together...................444

IXGUPDAT: Modify log stream control information.. 445
Rebuilds and IXGUPDAT processing... 445

Setting up the system logger configuration.. 445
Reading data from log streams in data set format... 445

Is my application eligible for the LOGR subsystem?...446
Using the LOGR subsystem..447
JCL for the LOGR Subsystem... 447
LOGR SUBSYS dynamic allocation considerations..449

When things go wrong — Recovery scenarios for system logger... 451
When a system logger application fails... 451
When an MVS system or sysplex fails..451
Recovery performed for DASD-only log streams.. 451
When the system logger address space fails.. 452
When the coupling facility structure fails.. 452
When the coupling facility space for a log stream becomes full.. 454
When a staging data set becomes full...454
When a log stream is damaged..454
When DASD log data set space fills... 454
When unrecoverable DASD I/O errors occur...455

Chapter 28. Unicode instruction services: CSRUNIC..457

Chapter 29. Transactional execution.. 459
Nonconstrained transactions.. 459
Constrained transactions.. 460
Planning to use transactional execution...460
Transactional execution debugging.. 461
Transactional execution diagnostics...461

Chapter 30. The hardware runtime environment...465
Hardware environments that z/OS supports.. 465
How to determine the hardware environment..465

Appendix A. Using the unit verification service... 469
Functions of unit verification... 469

Check groups - Function code 0.. 469
Check units - Function code 1... 469
Return unit name - Function code 2.. 469
Return unit control block (UCB) addresses - Function code 3..470
Return group ID - Function code 4.. 470
Indicate unit name is a look-up value - Function code 5..470
Return look-up value - Function code 6.. 470
Convert device type to look up value - Function code 7... 470
Return attributes - Function code 8...470
Specify subpool for returned storage - Function code 10.. 470
Return unit names for a device class - Function code 11... 470

Appendix B. Accessibility...485

xii

Notices..487
Terms and conditions for product documentation... 488
IBM Online Privacy Statement.. 489
Policy for unsupported hardware..489
Minimum supported hardware..489
Programming interface information..490
Trademarks.. 490

Index.. 491

 xiii

xiv

Figures

1. Format of the Save Area.. 8

2. Format of the Format 5 save area (F5SA)...10

3. Format of the Format 8 save area (F8SA)...10

4. Format of the Format 4 Save Area (F4SA)..13

5. Format of the Format 7 save area (F7SA)...16

6. Primary Mode Parameter List EXEC PGM=... 22

7. AR Mode Parameter List when Not AMODE 64.. 23

8. Levels of Tasks in a Job Step...27

9. Assembler Definition of AMODE/RMODE... 29

10. Example of Addressing Mode Switch... 32

11. Passing Control in a Simple Structure.. 36

12. Passing Control With a Parameter List... 36

13. Passing Control With Return... 37

14. Passing Control With CALL..38

15. Test for Normal Return..39

16. Return Code Test Using Branching Table... 39

17. Establishing a Return Code...39

18. Using the RETURN Macro..40

19. RETURN Macro with Flag.. 40

20. Search for Module, EP or EPLOC Parameter With DCB=0 or DCB Parameter Omitted........................... 43

21. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private Library..............44

22. Search for Module Using DE Parameter... 45

23. Use of the LINK Macro with the Job or Link Library...48

 xv

24. Use of the LINK Macro with a Private Library...48

25. Use of the BLDL Macro.. 48

26. The LINK Macro with a DE Parameter.. 49

27. Misusing Control Program Facilities Causes Unpredictable Results... 52

28. Processing flow for the CSVINFO macro and the caller's MIPR.. 55

29. Virtual storage map (not drawn to scale)... 60

30. Maintaining Correct Interfaces to Modules that Change to AMODE 31.. 64

31. AMODE and RMODE Combinations.. 69

32. AMODE and RMODE Processing by the Linkage Editor..72

33. AMODE and RMODE Processing by the Loader.. 74

34. Mode Switching to Retrieve Data from Above 16 Megabytes..77

35. Linkage Between Modules with Different AMODEs and RMODEs... 78

36. BRANCH and SAVE and Set Mode Description...79

37. Branch and Set Mode Description.. 79

38. Using BASSM and BSM..80

39. Example of Pointer-Defined Linkage.. 81

40. Example of Supervisor-Assisted Linkage... 83

41. Example of a Linkage Assist Routine..85

42. Cap for an AMODE 24 Module.. 88

43. Performing I/O while residing above 16 megabytes..90

44. Event Control Block (ECB).. 102

45. Using LINKAGE=SYSTEM on the WAIT and POST Macros...103

46. Pause and Release Example...106

47. Release and Pause Example...107

48. Transfer without Pause Example..108

xvi

49. ISGENQ Macro Processing..112

50. Interlock Condition... 115

51. Two Requests For Two Resources..115

52. One Request For Two Resources..115

53. Work Area Contents for GQSCAN with a Scope of STEP, SYSTEM, SYSTEMS, or ALL........................... 119

54. Using the SPIE Macro... 122

55. Mainline Routine with One Recovery Routine.. 132

56. Mainline Routine with Several Recovery Routines...133

57. Example of Using the GETMAIN Macro.. 189

58. Virtual Storage Control... 192

59. Using the List and the Execute Forms of the DEQ Macro...196

60. The 64-bit address space... 200

61. Cell pool storage... 217

62. Mapping from an address space...232

63. Mapping from a data space or hiperspace... 233

64. Multiple mapping.. 234

65. Using an ALET to Identify an Address Space or a Data Space...250

66. An Illustration of a DU-AL... 251

67. Using Instructions in AR Mode... 252

68. Accessing Data in a Data Space..262

69. Accessing Data in a Hiperspace... 262

70. Example of Specifying the Size of a Data Space.. 267

71. Example of Extending the Current Size of a Data Space... 271

72. Example of Using Callable Cell Pool Services for Data Spaces... 273

73. Two Problem Programs Sharing a SCOPE=SINGLE Data Space..274

 xvii

74. Example of Scrolling through a Standard Hiperspace... 280

75. Illustration of the HSPSERV Write and Read Operations...282

76. Example of Creating a Standard Hiperspace and Transferring Data... 286

77. Example of Mapping a Data-in-Virtual Object to a Hiperspace... 288

78. A Standard Hiperspace as a Data-in-Virtual Object...290

79. Structure of a Data Object.. 294

80. Mapping a Permanent Object That Has No Scroll Area... 295

81. Mapping a Permanent Object That Has A Scroll Area..295

82. Mapping a Temporary Object..296

83. Mapping an Object To Multiple Windows... 296

84. Mapping Multiple Objects... 297

85. Using the Name and the Token...311

86. Using the Task Level in a Single Address Space.. 313

87. Using Home-Level and Task-Level Name/Token Pairs.. 314

88. Releasing Virtual Storage..318

89. Example of using REFPAT with a Large Array...322

90. Illustration of a Reference Pattern with a Gap...324

91. Illustration of Forward Direction in a Reference Pattern...325

92. Illustration of Backward Direction in a Reference Pattern.. 325

93. Two Typical Reference Patterns... 326

94. Data Sharing with IARVSERV..332

95. Sharing Storage with IARVSERV...337

96. Interval Processing... 341

97. Writing to the Operator... 345

98. Writing to the Operator With a Reply..345

xviii

99. Preparing Messages for Translation... 352

100. Sample job to invoke IDCAMS to obtain a data set for the run-time message files........................... 357

101. Using JCL to Invoke the Compiler with a single PDS as input... 357

102. Using JCL to Invoke the Compiler with a concatenation of partitioned Data Sets as input............... 358

103. Using a TSO/E CLIST to Invoke the Compiler with a single PDS input..358

104. Using a TSO/E CLIST to Invoke the Compiler with a concatenation of partitioned Data Set as
input... 358

105. Using a REXX exec to Invoke the Compiler with a single PDS as input...358

106. Using a REXX exec to Invoke the Compiler with a concatenation of partitioned Data Sets as input.359

107. Using the TRANMSG Macro.. 362

108. Contiguous Symbol Table... 397

109. Non-contiguous Symbol Table... 398

110. System Logger Log Stream... 403

111. Log Stream Data on the Coupling Facility and DASD... 405

112. Log Stream Data in Local Storage Buffers and DASD Log Data Sets... 406

113. A Complete Coupling Facility Log Stream Configuration... 407

114. A DASD-Only Configuration.. 408

115. Define a Log Stream as a Model and then Model a Log Stream After It..420

116. Searching for a Log Block by Time... 437

117. Deleting a Range of Log Blocks.. 439

118. How Source and Target Log Streams Can Get Out of Sync..442

119. Input Parameter List...471

120. Requesting function code 0 (check groups).. 473

121. Requesting function code 1 (check units)..473

122. Requesting function code 2 (return unit name)...474

123. Output from Function Code 2 (Return Unit Name).. 474

 xix

124. Requesting function code 3 (return UCB addresses).. 475

125. Output from Function Code 3 (Return UCB Addresses).. 475

126. Requesting function code 4 (return group ID)... 476

127. Output from Function Code 4 (Return Group ID)...476

128. Requesting function code 5 (indicate unit name is a look-up value).. 477

129. Requesting function code 6 (return look-up value)... 477

130. Output from Function Code 6 (Return Look-up Value).. 478

131. Requesting function code 7 (convert device type to look-up value)...478

132. Output from Function Code 7 (Convert Device Type to Look-up Value)... 479

133. Requesting function code 8 (return attributes)... 479

134. Requesting function code 10 (specify subpool for returned storage).. 480

135. Requesting Function Code 11 (Return Unit Names for a Device Class)..481

136. Output from Function Code 11 (Return Unit Names for a Device Class).. 481

137. Input for Function Codes 0 and 1...482

138. Output from Function Codes 0 and 1... 482

139. Input for Function Codes 3 and 10.. 483

140. Output from Function Codes 3 and 10...483

141. Input for Function Codes 1 and 5...483

142. Output from Function Codes 1 and 5... 484

xx

Tables

1. Characteristics of Load Modules...34

2. CSVINFO Recovery..56

3. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes..65

4. Task Synchronization Techniques...101

5. Pause, Release, and Transfer callable services... 103

6. Pause Element (PE) and Event Control Block (ECB).. 104

7. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or ALL... 118

8. Summary of Recovery Routine States.. 131

9. Contents of GPR 0 on Entry to a Retry Routine.. 138

10. Key fields in the SDWA..144

11. Restoring quiesced restorable I/O operations...149

12. Where to Find Register Content Information...151

13. Register Contents—ESTAE-Type Recovery Routine With an SDWA...152

14. Register Contents—ESTAE-Type Recovery Routine Without an SDWA... 153

15. Register Contents—Retry from an ESTAE-Type Recovery Routine Without an SDWA.......................... 154

16. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA, RETREGS=NO,
and FRESDWA=NO...155

17. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA, RETREGS=NO,
and FRESDWA=YES..156

18. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA and
RETREGS=YES..156

19. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA and RETREGS=64
in z/Architecture mode.. 157

20. Environments of ESTAE-type Recovery Routines and their Retry Routines..160

21. Reasons for Selecting the Type of Dump... 171

 xxi

22. Register 15 contents on entry in AMODE=64.. 205

23. Comparing Tasks and Concepts: Below the Bar and Above the Bar... 209

24. Cell pool services versus the CPOOL macro, based on program requirements....................................216

25. Characteristics of DU-ALs and PASN-ALs.. 251

26. Base and Index Register Addressing in AR Mode..253

27. Rules for How Problem State Programs with Key 8-F Can Use Data Spaces..264

28. Facts about a Non-shared Standard Hiperspace...280

29. Summary of What Programs Do with Name/Token Pairs.. 312

30. Format of a virtual subarea list (VSL) entry..320

31. Allowed Source/Target View Combinations for Share... 334

32. Characters Printed or Displayed on an MCS Console.. 342

33. Descriptor Code Indicators...344

34. Format of Version Record Fields.. 353

35. Version Record Example...353

36. Message Skeleton Fields.. 354

37. Languages Available to MVS Message Service...364

38. Required SAF authorization for system logger resources... 411

39. How IXGBRWSE Requests Handle Gaps in a Log Stream..415

40. How IXGDELET Requests Handle Gaps in a Log Stream... 415

41. Results for the different SAF profile authorization access checking performed by system logger......427

42. Logger log stream access services (API) behavior.. 428

43. Summary of supported hardware runtime environments and CVT bit settings................................... 466

xxii

About this information

This information describes the operating system services that an unauthorized program can use. An
unauthorized program is one that does not run in supervisor state, or have PSW key 0-7, or run with
APF authorization. To use a service, the program issues a macro. A companion document, z/OS MVS
Programming: Assembler Services Reference ABE-HSP, provides the detailed information for coding the
macros.

Some of the topics discussed in this document are also discussed in z/OS MVS Programming: Authorized
Assembler Services Guide and in the following other documents:

• z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
• z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
• z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
• z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

However, the services and macros in those documents are for authorized programs.

Who should use this information
This information is for the programmer who is coding in assembler language, and who needs to become
familiar with the operating system and the services that programs running under it can invoke.

The information assumes that the reader understands system concepts and writes programs in assembler
language.

System macros require High Level Assembler. For more information about assembler language
programming, see High Level Assembler and Toolkit Feature in IBM Documentation (www.ibm.com/
docs/en/hla-and-tf/1.6).

Using this information also requires you to be familiar with the operating system and the services that
programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS™. This set describes how to write
programs in assembler language or high-level languages, such as C, FORTRAN, and COBOL. For more
information about the content of this set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross-document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

© Copyright IBM Corp. 1988, 2022 xxiii

https://www.ibm.com/docs/en/hla-and-tf/1.6
https://www.ibm.com/docs/en/hla-and-tf/1.6
https://www.ibm.com/docs/en/zos

xxiv z/OS: z/OS MVS Assembler Services Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xxv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS MVS Assembler Services Guide,

SA23-1368-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1988, 2022 xxv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xxvi z/OS: z/OS MVS Assembler Services Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

Note: IBM z/OS policy for the integration of service information into the z/OS product documentation
library is documented on the z/OS Internet Library under IBM z/OS Product Documentation
Update Policy (www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?
OpenDocument).

Summary of changes for z/OS MVS Programming: Assembler
Services Guide for Version 2 Release 5 (V2R5)

The following content is new, changed, or no longer included in V2R5.

New
The following content is new.
June 2022 refresh

• Chapter 30, “The hardware runtime environment,” on page 465 is added. (APAR OA62744, which
also applies to z/OS 2.4)

Prior to June 2022 refresh

• None

Changed
The following content is changed.
June 2022 refresh

• The SDWACIDB table entry in “Symptoms provided by a recovery routine” on page 175 is updated.

September 2021

• The topic, “Functions performed in user exit routines” on page 124, has been updated.

Deleted
The following content was deleted.

• None

Summary of changes for z/OS MVS Programming: Assembler
Services Guide for z/OS Version 2 Release 4

The following information is new, changed, or no longer appears in z/OS MVS Programming: Assembler
Services Guide in z/OS Version 2 Release 4 (V2R4).

New
The following new information is added in this publication:

© Copyright IBM Corp. 1988, 2022 xxvii

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/ibm-zos-doc-update-policy?OpenDocument

Prior to September 2020 refresh

• Information about the SENSITIVE parameter on the IARV64 service is added in “Tagging 64-bit
memory objects for data privacy” on page 207 and “Creating memory objects” on page 208 (APAR
OA57633).

Changed
The following information is changed in this publication:

June 2021 refresh

• Table 4 on page 101 in Chapter 6, “Resource control,” on page 101 is updated to state that a task
can pause on multiple PEs at a time.

• “Using the services” on page 105 is updated to change "binary(24)" to "char(3)" and to change
"char(4)" to "fixed(32)" in the examples.

September 2020 refresh

• Table 23 on page 209 in “Using a memory object” on page 208 is updated to include BSAM with an
extended format data set for the entry on performing I/O.

Prior to September 2020 refresh

• The virtual storage map figure is updated in Chapter 5, “Understanding 31-bit addressing,” on page
59 and Chapter 12, “Using the 64-bit address space,” on page 199.

• Chapter 27, “Using system logger services,” on page 403, “IXGINVNT: Managing the LOGR, LOGRY
and LOGRZ policies” on page 419, “IXGCONN: Connecting to and disconnecting from a log stream”
on page 424, “IXGWRITE: Writing to a log stream” on page 431, “IXGBRWSE: Browsing/reading
a log stream” on page 435, “IXGDELET: Deleting log blocks from a log stream” on page 438 and
“IXGQUERY: Get information about a log stream or system logger” on page 440 are updated for
system logger enhancement to support single-system scope Couple Data Set types (LOGRY and
LOGRZ) for GDPS K-system environments.

• “Authorization for system logger application programs” on page 410, “IXGCONN: Connecting to
and disconnecting from a log stream” on page 424, “Requesting authorization to the log stream
for an application” on page 426 and “Requesting a write or import connection - IMPORTCONNECT
parameter” on page 429 are updated for system logger enhancement to support security options for
log stream unique access.

Summary of changes for z/OS MVS Programming: Assembler
Services Guide for z/OS Version 2 Release 3

The following information is new, changed, or no longer appears in z/OS MVS Programming: Assembler
Services Guide in z/OS Version 2 Release 3 (V2R3).

New
The following information is new:

• Added section “Issuing MVS macros in AMODE 64” on page 206
• Added sub-section “Example of using SYSSTATE AMODE64=” on page 206
• Added section “Preventing execution of code from the memory object” on page 207

Changed
• The virtual storage map figure has been updated in Chapter 5, “Understanding 31-bit addressing,” on

page 59 and Chapter 12, “Using the 64-bit address space,” on page 199.
• Information was added on when to use GRS RNL=NO. For more information see “Local and global

resources” on page 109 and “Determining the resulting scope” on page 110.

xxviii z/OS: z/OS MVS Assembler Services Guide

• Changed dispatcher selection for priority order from searching to selecting from top in the “Task
priority” on page 26 section.

• Changed the description for the “Program mask” on page 160 section.
• The DDNAME parameter of the data-in-virtual (DIV) IDENTIFY service now supports encrypted data

sets. See “The IDENTIFY service” on page 229.

Summary of changes xxix

xxx z/OS: z/OS MVS Assembler Services Guide

Chapter 1. Introduction

The system controls the flow of work through the computer so that all programs obtain a fair share of
the processing. To make efficient use of the system, you must understand the services that the system
provides and observe the programming conventions for their use.

Linkage Conventions — A program must follow register and save area conventions when it is called by
another program or when it calls another program. These conventions ensure that the programs can
successfully pass control to each other while preserving the register contents and the parameter data
required for successful execution.

Subtask Creation and Control — Because the system can handle small programs easier than large ones,
a large program might execute faster if you divide it into parts, called tasks. By following the appropriate
conventions, you can break your programs into tasks that compete more efficiently for the resources of
the system.

Program Management — Program residence and addressing modes are discussed in this chapter, as well
as the linkage between programs. Save areas, addressability, and conventions for passing control from
one program to another are also discussed.

Understanding 31-Bit Addressing — 31-bit addressing terms are defined in this chapter. Read this
chapter before modifying existing programs to use 31-bit addresses.

Resource Control — Anything necessary for program execution, such as a table, a storage device, or
another program, can be considered a resource. If a program depends on an event that occurs in another
program, it might need to defer part of its execution until the event, which is considered a resource, is
completed. Because many programs might need the same resource, and because some resources can
only be used by one program at a time, synchronization is often necessary. Resource control helps to
regulate access to the resources that your programs depend on for successful execution. By using the
GQSCAN macro, you can obtain information about resources and their requestors.

Program Interruption Services — The system offers many services to detect and process abnormal
conditions during system processing. Some conditions encountered in a program cause program
interruptions or program exceptions. This topic includes how to specify user exit routines, using the SPIE
or ESPIE macros, and function performed in user exit routines.

Providing Recovery — When your program encounters an error, the program might end abnormally unless
you provide recovery. To recover from errors, you can write recovery routines that get control when the
error occurs. These routines can attempt to correct the error and allow your program to resume normal
processing. This topic explains recovery concepts and how to write recovery routines.

Dumping Virtual Storage (ABEND, SNAPX, and SNAP Macros) — If your program makes serious errors,
the system terminates it. If you request it, the system generates a dump to accompany the termination,
and the resulting dump is called an abend dump. You can also request another type of dump, called a
SNAP dump. Programs can request a SNAP dump at any time, and they can specify the source, the format,
and the destination of the information in the dump.

Reporting Symptom Records (SYMRBLD and SYMREC Macros) — An application can write a symptom
record for each error to the logrec data set, the online repository where MVS collects error information.
The unit of information stored in the logrec data set is called a symptom record. The data in the symptom
record is a description of some programming failure combined with a description of the environment
where the failure occurred. An application can build and write symptom records in the logrec data set by
invoking either the SYMRBLD or SYMREC macro.

Virtual Storage Management — The system combines central storage and auxiliary storage to make
the addressable memory appear larger than it really is. The apparent memory capacity is called virtual
storage. By managing storage in this way, the system relaxes the size limit on programs and data. The
storage that the system gives to each related group of programs is called an address space. As a program
executes, its storage requirements might vary. Conventions described in this chapter allow a program to
obtain any extra storage it might require, and to return storage that is no longer required.

© Copyright IBM Corp. 1988, 2022 1

Using the 64–bit Address Space — As of z/OS Release 2, virtual storage addressing is extended to allow
access to “chunks” of virtual storage called memory objects above 2 gigabytes. This chapter describes
how to use the virtual storage addressing above 2 gigabytes and to control the physical frames that back
this storage.

Callable Cell Pool Services — Callable cell pool services manage user-obtained areas of virtual storage
efficiently, provide high performance service, and allow you to use storage in both address spaces and
data spaces. This chapter describes callable cell pool services and helps you make the decision between
using the CPOOL macro or callable cell pool services.

Data-In-Virtual — By using a simple technique that lets you create, read, or update external storage data
without the traditional GET and PUT macros, you can write programs that use very large amounts of this
type of data. The data, which is not broken up into individual records, appears in your virtual storage all
at once. This technique also provides better performance than the traditional access methods for many
applications.

Using Access Registers — If you need to access data in a data space, you need to use the set of registers
called “access registers” and be in the address space control (ASC) mode called “AR mode”. This chapter
helps you access data in data spaces and use the system services while you are in AR mode.

Data Spaces and Hiperspaces — If you need more virtual storage than a single address space allows, and
if you want to prevent other users from accessing this storage, you can use data spaces and hiperspaces.

Window Services — Window services enable assembler language programs to access or create
permanent or temporary data objects. By invoking the service programs provided by window services,
a program can:

• Read or update an existing data-in-virtual object
• Create and save a new permanent data-in-virtual object
• Create and use a temporary data-in-virtual object

Sharing Application Data (Name/Token Callable Services) — Name/token callable services allow a user
to share data between two programs running under the same task, or between two or more tasks or
address spaces. This topic includes understanding what a name/token pair is, descriptions of the levels
of name/token pairs, ownership and deletion of the pairs, using checkpoint/restart with name/token pairs,
and an example of JCL that can link-edit a reentrant program with linkage-assist routines.

Processor Storage Management — The system administers the use of processor storage (that is, central
and expanded storage) and directs the movement of virtual pages between auxiliary storage and central
storage in page-size blocks. You can release virtual storage contents, load virtual storage areas into
central storage, make virtual storage pages read-only or modifiable, and page out virtual storage areas
from central storage. Reference pattern services allow programs to define a reference pattern for a
specified area that the program is about to reference.

Sharing Data in Virtual Storage (IARVSERV Macro) — This topic describes the IARVSERV macro, which
provides services that allow programs to share virtual storage in address spaces or data spaces. The topic
also includes information for the IARR2V macro, which converts a central storage address to a virtual
storage address.

Timing and Communication — The system has an internal clock. Your program can use it to obtain the
date and time, or use it as an interval timer. You can set a time interval, test how much time is left in an
interval, or cancel it. Communication services let you send a message to the system operator, to a TSO/E
terminal, or to the system log.

Translating Messages — The MVS message service (MMS) enables you to display MVS or MVS-based
application messages that have been translated from U.S. English into a foreign language. The service also
allows application programs to store messages in and retrieve them from the MMS run-time message file.

Using Data Compression and Expansion Services — Data compression and expansion services allow you
to compress certain types of data so that the data occupies less space while you are not using it. You can
then restore the data to its original state when you need it.

2 z/OS: z/OS MVS Assembler Services Guide

Accessing Unit Control Blocks (UCBs) — Each device in a configuration is represented by a unit control
block (UCB). This chapter contains information about scanning UCBs and detecting I/O configuration
changes.

The Internal Reader — The internal reader facility is a logical device similar to a card reader, a tape drive,
or a TSO/E terminal that allows you to submit jobs to JES. This chapter describes how to set up and use
an internal reader, allocating the internal reader data set, opening and closing the internal reader data set,
and sending job output to the internal reader.

Using the Symbol Substitution Service — This topic describes types of symbols you can use in
application and vendor programs, and describes how to call the ASASYMBM service, which substitutes
text for those symbols.

Using System Logger Services — System logger services allow an application to manage log data in a
sysplex environment. This topic describes how to plan the system logger configuration, plan and set up a
system logger application, and plan for recovery for system logger applications.

Appendixes — The appendix includes the following topics:

• Using the Unit Verification Service
• Using the Virtual Fetch Service.

Note to reader

The information uses the following terms:

• The term registers means general purpose registers. In some context where general purpose registers
might be confused with other kinds of registers (such as access registers), the information uses the
longer term general purpose registers.

• Unless otherwise specified, the address space control (ASC) mode of a program is primary mode.

End of Note to reader

Chapter 1. Introduction 3

4 z/OS: z/OS MVS Assembler Services Guide

Chapter 2. Linkage conventions

Linkage conventions are the register and save area conventions a program must follow when it receives
control from another program or when it calls another program. It is important that all programs follow
the linkage conventions described here to ensure that the programs can successfully pass control from
one to the other while preserving register contents and parameter data that they need to run successfully.

One program can call another program through any one of the following branch instructions or macros:

• BALR, BASR, or BASSM instructions
• LINK, LINKX, XCTL, XCTLX, and CALL macros

The program that issues the branch instruction or the macro is the calling program. The program that
receives control is the target program. A program should follow these conventions when it:

• Receives control from a calling program
• Returns control to the calling program
• Calls another program

The PC instruction provides another means of program linkage. Linkage conventions for the PC instruction
are described in z/OS MVS Programming: Extended Addressability Guide.

In this chapter, programs are classified by their address space control (ASC) mode as follows:

• A primary mode program is one that executes all its instructions in primary ASC mode and does not
change the contents of ARs 2 through 13.

• An AR mode program is one that executes one or more instructions in AR mode or it changes the
contents of ARs 2 through 13. A program that switches from one mode to another is considered to be an
AR mode program. A program that runs in AR mode can access data that is outside its primary address
space.

The ASC mode at the time a program issues the call determines whether addresses passed by the
program must be qualified by access list entry tokens (ALETs). An ALET identifies the address space or
data space that contains the passed addresses. An ALET-qualified address is an address for which the
calling program has provided an ALET. The ASC mode at the time of the call also determines whether the
program can call a primary mode program or an AR mode program.

• A calling program that is in primary ASC mode at the time of the call can call either another
primary mode program or an AR mode program. Addresses passed by the calling program are not
ALET-qualified.

• A calling program that is in AR mode at the time of the call can call only another AR mode program.
Addresses passed by the calling program are ALET-qualified.

An AR mode program can call a primary mode program, but the calling program must first switch to
primary ASC mode and then follow the linkage conventions for a primary mode caller. Addresses passed
by the calling program cannot be ALET-qualified.

When one program calls another, the target program receives control in the caller's ASC mode at the time
the call was made. If the calling program is in AR mode at the time of the call, the target program receives
control in AR mode. If the calling program is in primary ASC mode at the time of the call, the target
program receives control in primary ASC mode. After a target program receives control, it can switch its
ASC mode by issuing the Set Address Control (SAC) instruction. For more information about ASC mode,
see Chapter 15, “Using access registers,” on page 249.

Saving the calling program's registers
Unless otherwise defined by the individual interface, the calling program expects upon return:

© Copyright IBM Corp. 1988, 2022 5

• The low halves (Bits 32-63) of GPRs 2 - 13 are unchanged
• The high halves (Bits 0-31) of GPRs 2 - 14 are unchanged
• ARs 2 - 13 are unchanged
• FPRs 8 - 15 are unchanged; The Floating Point Control (FPC) Register is unchanged except for two
fields: the IEEE exception flags and the data exception code (DXC).

• Vector registers (VRs) 8 - 15, bytes 0 - 7, and the entirety of VRs 16 - 23 are unchanged.
• When return information is provided in GPR 0, 1, or 15 (for example return and reason codes), only bits

32-63 of the register contain the returned value.

Individual interfaces can define that extra registers are unchanged, or that extra registers are not
unchanged, or that returned information in registers uses more than bits 32-63.

At entry, all target programs save the caller's registers; at exit, they restore those registers. The two
places where a program can save registers are in a caller-provided save area or in a system-provided
linkage stack. The ASC mode of the target program determines how the target program saves the
registers. A primary mode program can use the linkage stack or the save area its calling program provides.
An AR mode program must use the linkage stack, unless the caller provides a save area large enough to
save both the access registers (ARs) and the 64-bit general-purpose registers (GPR).

Caller-provided save area
A calling program provides its target program with a 72-byte register save area unless the target
program's interface requirements are otherwise specified.. It is the caller's responsibility to provide a
save area that meets the specifications provided by the target program. The calling program obtains
storage for the save area from its primary address space. The save area must begin on a word boundary.
Before invoking the target program, the calling program loads the address of the save area into general-
purpose register 13. An AR mode program that is obtaining a save area would put 0 into access register
13. When the target program requires a save area of at least 144 bytes, the save area begins on a
doubleword boundary. An AMODE 64 target program is an example of a program that might require the
calling program to provide a save area of at least 144 bytes.

When a program receives control as the target of the EXEC statement, general-purpose register 13
contains the address of a 144 bytes save area, which is provided by the system.

Linkage convention for floating point registers
With 16 Floating Point Registers (FPRs), registers 0 - 7 are volatile, and registers 8 - 15 are non-volatile.
That is, if a called routine uses any of FPRs 8 - 15, it must save those FPRs before use and restore them
before returning to the caller. The called routine can use any of FPRs 0 - 7 without saving and restoring
them. If the caller wants to keep data in FPRs 0 - 7, it must save those FPRs before a call and restore
them afterward.

Linkage convention for the floating point control register
The Floating Point Control (FPC) Register is non-volatile across calls except for two fields: the IEEE
exception flags and the DXC, which are volatile. That is, if a called routine changes any fields in the FPC
register other than the IEEE exception flags and the DXC, it must save the caller's values before the
change and restore them before returning to the caller. The called routine can change the IEEE exception
flags and DXC, explicitly or by triggering exception conditions, without saving and restoring the caller's
values.

Note: A program can rely on the FPC register of zero (IEEE default) ONLY when it has reason to know that
the MVS task under which it is running is not enabled to use the AFP and FPC registers.

6 z/OS: z/OS MVS Assembler Services Guide

System-provided linkage stack
The system provides the linkage stack where a target program can save the calling program's access
registers (ARs) and general-purpose registers (GPRs). Use of the linkage stack has the following
advantages:

• The linkage stack saves both ARs and 64-bit GPRs, whereas many forms of the caller-provided save
area save only GPRs.

• The system provides the linkage stack for use by all programs. The stack eliminates the need for the AR
mode call program to obtain storage for a save area and then pass the address to its target program.

• The save areas are located in one place, rather than chained throughout the user's address space.
• User programs cannot accidentally change the linkage stack.

Using the linkage stack
To add an entry to the linkage stack, the target program issues the BAKR instruction. The BAKR
instruction stores all ARs and 64-bit GPRs and the ASC mode on the linkage stack. The target program
must then indicate that it used the linkage stack, which is useful information for anyone who later needs
to trace the program linkages. The procedure for indicating use of the linkage stack is described in:

• “Primary mode programs receiving control” on page 18
• “AR mode programs receiving control and using the linkage stack” on page 20

When the target program is ready to return to the calling program, it issues the PR instruction. The PR
instruction restores the calling program's ARs 2-14 and 64-bit GPRs 2-14 and ASC mode from the linkage
stack, removes the entry from the linkage stack, and returns control to the calling program.

Example of using the linkage stack
In this example, an AR mode target program receives control from another program, either in primary ASC
mode or AR mode. The calling program can call through the following two instructions:

L 15,=V(PGM)
BASR 14,15

The target program uses the linkage stack to save the calling program's registers. It uses the STORAGE
macro to obtain storage for its own save area. The code is in 31-bit addressing mode and is reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE ANY
 BAKR 14,0 SAVE CALLER'S ARS AND GPRS
* AND ASC MODE ON LINKAGE STACK
 SAC 512 SWITCH TO AR ADDRESSING MODE
 LAE 12,0(15,0) SET UP PROGRAM BASE REGISTER
* AND ADDRESSING REGISTER
 USING PGM,12
 STORAGE OBTAIN,LENGTH=72 GET MY REENTRANT SAVEAREA
 LAE 13,0(0,1) PUT MY SAVEAREA ADDRESS IN AR/GPR13
 MVC 4(4,13),=C'F1SA' PUT ACRONYM INTO MY SAVEAREA BACKWARD
* POINTER INDICATING REGS SAVED ON STACK
* END OF ENTRY CODE, BEGIN PROGRAM CODE HERE
⋮
* BEGIN EXIT CODE
 LR 1,13 COPY MY SAVEAREA ADDRESS
 STORAGE RELEASE,ADDR=(1),LENGTH=72 FREE MY REENTRANT SAVEAREA
 SLR 15,15 SET RETURN CODE OF ZERO
 PR RESTORE CALLER'S ARs AND GPRS 2-14
* AND ASC MODE AND RETURN TO CALLER
 END

Chapter 2. Linkage conventions 7

Using a caller-provided save area
The contents of the caller-provided save area and the rules for using it differ whether the program is or is
not changing bits 0–31 of the 64–bit GPRs or ARs. The differences can be summarized as affecting: how
you save and restore register information for a program interface, how you pass information to the target
program, and where the target program can place output information.

• For programs that do not change bits 0–31 of the 64–bit GPRs and do not change ARs, see “If not
changing ARs or bits 0–31 of the 64–bit GPRs” on page 8

• For programs that change the contents of bits 0–31 of the 64–bit GPRs and do not change ARs:

– For AMODE 24 or AMODE 31 programs, see “If changing the contents of bits 0-31 of the 64-bit GPRs
but not changing ARs” on page 10

– For programs that start running in AMODE 64 see “If starting in AMODE 64 ” on page 13
• For programs that change the contents of the ARs and do not want to use the linkage stack, see “If

changing ARs without using the linkage stack” on page 15.
• For programs that change the contents of the ARs and want to use the linkage stack, see “AR mode

programs receiving control and using the linkage stack” on page 20.

In all save areas, the second word (the word at offset 4) of each save area provides an indication of how
the program that created the save area saved the caller's registers. It does not describe the contents
of this save area. In the case where the program saves its registers in a 72-byte save area (mapped by
the SAVER DSECT in macro IHASAVER), the second word contains the address of the previous save area.
Because that previous save area was on a word or doubleword boundary, bit 31 of the address (and thus
bit 31 of the second word) is 0. In the case where another save area format was used, bit 31 of the
second word contains 1 due to the four character string that is to be placed there.

If not changing ARs or bits 0–31 of the 64–bit GPRs
When the target program receives control, it saves the 32-bit GPRs (bits 32-63 of the 64-bit GPRs) into
the 72-byte caller-provided save area pointed to by GPR 13. The format of this area is shown in Figure 1
on page 8. As indicated by this figure, the contents of each 32-bit GPR, except GPR 13, must be saved
in a specific location within the save area. GPR 13 is not saved into the save area; it holds the address of
the save area.

 Word Contents

 0 Used by language products

 1 Address of previous save area (stored by calling program)

 2 Address of next save area (stored by target program)

 3 GPR 14 (return address)

 4 GPR 15 (entry address)

 5-17 GPRs 0 - 12

Figure 1. Format of the Save Area

You can save 32-bit GPRs either with a store-multiple (STM) instruction or with the SAVE macro. Use the
following STM instruction to place the contents of all 32-bit GPRs except GPR 13 into the proper words of
the caller's 72-byte save area:

STM 14,12,12(13)

8 z/OS: z/OS MVS Assembler Services Guide

When SYSSTATE AMODE64=NO is in effect, the SAVE macro stores 32-bit GPRs into the save area. Code
the GPRs to be saved in the same order as in an STM instruction. The following example of the SAVE
macro places the contents of all GPRs except GPR 13 in the proper words of the save area.

PROGNAME SAVE (14,12)

Later, the program can use the RETURN macro to restore 32-bit GPRs and return to the caller.

Whether the target program creates a save area, it must save the address of the calling program's save
area. If the target program creates a save area, it:

1. Stores the address of the calling program's save area (the address that is passed in GPR 13) into the
second word of its own save area.

2. Stores the address of its own save area (the address the target program places in GPR 13) into the
third word of the calling program's save area.

These steps enable the target program to find the calling program's save area when the target program
needs the calling program to restore the caller's registers, and they enable a trace from save area to save
area should one be necessary while examining a dump.

If the target program does not create a save area, it can keep the address of the calling program's save
area in GPR 13 or store it in a location in virtual storage.

If you choose not to use the SAVE and RETURN macros, you can use the IHASAVER macro to map the
fields in the save area.

Example
In this example, a primary mode target program receives control from a calling program that provided a
72-byte save area pointed to by 32-bit GPR 13. The calling program can call through the following two
instructions:

L 15,=V(PGM)
BASR 14,15

The target program saves its calling program's registers into the save area that the calling program
provides. It uses the GETMAIN macro to obtain storage for its own save area. The code is in 31-bit
addressing mode and is reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE ANY
 STM 14,12,12(13) SAVE CALLER'S REGISTERS IN CALLER-
* PROVIDED R13 SAVE AREA
 LR 12,15 SET UP PROGRAM BASE REGISTER
 USING PGM,12
 GETMAIN RU,LV=72 GET MY REENTRANT SAVEAREA
 ST 13,4(,1) SAVE CALLER'S SAVEAREA ADDRESS IN MY
* SAVEAREA (BACKWARD CHAIN)
 ST 1,8(,13) SAVE MY SAVEAREA ADDRESS IN CALLER'S
* SAVEAREA (FORWARD CHAIN)
 LR 13,1 PUT MY SAVEAREA ADDRESS IN R13
* END OF ENTRY CODE, BEGIN PROGRAM CODE HERE
⋮
* BEGIN EXIT CODE
 LR 1,13 COPY MY SAVEAREA ADDRESS
 L 13,4(,13) RESTORE CALLER'S SAVEAREA ADDRESS
 FREEMAIN RU,A=(1),LV=72 FREE MY REENTRANT SAVEAREA
 SLR 15,15 SET RETURN CODE OF ZERO
 L 14,12(,13) RESTORE CALLER'S R14
 LM 2,12,28(13) RESTORE CALLER'S R2-R12
 BR 14 RETURN TO CALLER
 END

Chapter 2. Linkage conventions 9

If changing the contents of bits 0-31 of the 64-bit GPRs but not changing
ARs

If the caller provides a 144-byte (or larger) save area, then the protocol that is described for AMODE 64
programs can be used.

If the caller provides a 72-byte save area, then the target program must save the low halves of the
64-bit GPRs in that 72-byte area, and then must save the high halves in its own save area, which might
be a Format 5 or Format 8 save area if the programs are not run under the control of z/OS Language
Environment®. The format of the Format 5 area is shown in Figure 2 on page 10 and the format of the
Format 8 area is shown in Figure 3 on page 10. As indicated by the figures, the contents of each GPR,
except GPR 13, must be saved in a specific location within the save area. GPR 13 is not saved into the
save area; it holds the address of the save area.

Figure 2. Format of the Format 5 save area (F5SA)

 Word Contents

 0 Used by language products.

 1 Value of "F5SA". "F5SA" stored by a program in its save area indicates
how the program saves the calling program's registers—in this case,
partly in the caller-provided save area and partly in this save area. Bits
32-63 of the 64-bit GPRs were saved in the caller-provided save area
whose address is in words 32-33 of this save area, and bits 0-31 of the
64-bit GPRs were saved in words 36-51 of this save area.

Note: This field must contain a valid address if the programs are run
under Language Environment or are Language Environment-conforming
assembly language programs.

 2 - 3 64-bit GPR 14 (return address).

 4 - 5 64-bit GPR 15.

 6 - 31 64-bit GPRs 0 - 12.

 32 - 33 Address of previous save area (stored by a program in its save area).

 34 - 35 Address of next save area (stored by target program within caller's save
area).

 36 - 51 High halves of the caller's GPRs 0 - 15.

 52 - 53 Undefined.

Figure 3. Format of the Format 8 save area (F8SA)

 Word Contents

 0 Used by language products.

 1 Value of "F8SA". "F8SA" stored by a program in its save area indicates
how the program saves the calling program's registers, in this case partly
in the caller-provided save area and partly in this save area Bits 32-63
of the 64-bit GPRs were saved in the caller-provided save area whose
address is in words 32-33 of this save area, and bits 0-31 of the 64-bit
GPRs were saved in words 54-69 of this save area.

Note: This field must contain a valid address if the programs are run
under Language Environment or are Language Environment-conforming
assembly language programs.

 2 - 3 64-bit GPR 14 (return address).

10 z/OS: z/OS MVS Assembler Services Guide

 Word Contents

 4 - 5 64-bit GPR 15.

 6 - 31 64-bit GPRs 0 - 12.

 32 - 33 Address of previous save area (stored by a program in its save area).

 34 - 35 Address of next save area (stored by target program within caller's save
area).

 36 - 51 ARs 14, 15, 0-13.

 52 - 53 Undefined.

 54 - 69 High halves of the caller's GPRs 0 - 15.

 70 - 71 Undefined.

The target program creates its own save area, as follows:

1. Stores the low halves of the calling program's GPRs into the calling program's save area (the address
passed in GPR 13).

2. Creates its own 216-byte save area (if using F5SA) or 288-byte save area (if using F8SA), taking care to
preserve the values of the high halves of any of the calling program's GPRs

3. Stores the address of the calling program's save area (the address passed in GPR 13) into words 32
and 33 of its own save area.

4. Stores the address of its own save area into the 3rd word of the calling program's save area if the
target program's own save area is below 2G.

5. Saves the string "F5SA" (if using F5SA) or the string "F8SA" (if using F8SA) into the 2nd word of its
own save area.. "F5SA" or "F8SA" indicates how the target program has saved the calling program's
registers, in this case saving bits 32-63 of the 64-bit GPRs in the caller-provided save area whose
address is in words 32-33 of this save area, and bits 0-31 of the 64-bit GPRs in words 36-51 (for
"F5SA") or 54-69 (for "F8SA") of this save area.

Note: The F8SA area is exactly like the F5SA area except for the identification string saved into the
second word and the fact that the F8SA area provides space into which a program called by the creator
of the save area can save both ARs and 64-bit GPRs whereas the F5SA area provides space only for the
64-bit GPRs.

These steps enable the target program to find the calling program's save area when it needs it to restore
the caller's registers, and they enable a trace backward from the most recent save area to previous save
areas should one be necessary while examining a dump.

Example of F5SA
In this example, a primary mode target program receives control from calling program that provided a
72-byte word-aligned save area pointed to by GPR 13 . The calling program can call through the following
two instructions:

L 15,=V(PGM)
BASR 14,15

The target program saves the calling program's registers into the save area that the calling program
provides. It uses the GETMAIN macro to obtain storage for its own save area. The code is in 31-bit
addressing mode and is reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE 31
 SYSSTATE ARCHLVL=2
 STM 14,12,SAVGRS14-SAVER(13)

Chapter 2. Linkage conventions 11

* Save caller's registers in caller-
* provided R13 savearea
 CNOP 0,4
 BRAS 12,*+8
 DC A(STATIC_DATA)
 L 12,0(12,0) Set up to address of static data
 USING STATIC_DATA,12
 SRLG 0,0,32 Move high half of GPR 0 into low half of GPR 0
 LR 2,0 Save high half of GPR 0 in low half of GPR 2
 SRLG 1,1,32 Move high half of GPR 1 into low half of GPR 1
 LR 3,1 Save high half of GPR 1 in low half of GPR 3
 SRLG 15,15,32 Move high half of GPR 15 into low half of GPR 15
 LR 4,15 Save high half of GPR 15 in low half of GPR 4
 GETMAIN RU,LV=SAVF5SA_LEN Get my reentrant savearea
 STG 13,SAVF5SAPREV-SAVF5SA(,1)
* Save caller's savearea address in my
* savearea (backward chain)
 STMH 2,14,SAVF5SAG64HS2-SAVF5SA(1)
 ST 2,SAVF5SAG64HS0-SAVF5SA(1)
 ST 3,SAVF5SAG64HS1-SAVF5SA(1)
 ST 4,SAVF5SAG64HS15-SAVF5SA(1)
 MVC SAVF5SAID-SAVF5SA(4,1),=A(SAVF5SAID_VALUE)
* Set ID into savearea to indicate how
* caller's regs are saved
 LGR 13,1 Put my savearea address in R13
* End of entry code. Begin program code here . . .
*
*
*
*
* Begin exit code
 LGR 1,13 Copy my savearea address
 LMH 2,14,SAVF5SAG64HS2-SAVF5SA(13)
* Restore high halves
 LG 13,SAVF5SAPREV-SAVF5SA(,13)
* Restore caller's savearea address
 FREEMAIN RU,A=(1),LV=SAVF5SA_LEN Free my reentrant savearea
 SLR 15,15 Set return code of zero
 L 14,SAVGRS14-SAVER(,13) Restore caller's R14
 LM 2,12,SAVGRS2-SAVER(13) Restore caller's R2-R12
 BR 14 Return to caller
*
STATIC_DATA DS 0D
* Begin static data here
* ...
*
 IHASAVER
PGM CSECT
 LTORG ,
 END

Example of F8SA
In this example of F8SA, a primary mode target program receives control from a calling program that
provided a 72-byte word-aligned save area pointed to by GPR 13. The calling program can call through
the following two instructions:

L 15,=V(PGM)
BASR 14,15

The target program saves the calling program's registers into the save area that the calling program
provides. It uses the GETMAIN macro to obtain storage for its own save area. The code is in 31-bit
addressing mode and is reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE 31
 SYSSTATE ARCHLVL=2
 STM 14,12,SAVGRS14-SAVER(13)
* Save caller's registers in caller-
* provided R13 savearea
 LARL 12,STATIC_DATA Set up to address of static data
 USING STATIC_DATA,12
 SRLG 0,0,32 Move high half of GPR 0 into low half of GPR 0

12 z/OS: z/OS MVS Assembler Services Guide

 LR 2,0 Save high half of GPR 0 in low half of GPR 2
 SRLG 1,1,32 Move high half of GPR 1 into low half of GPR 1
 LR 3,1 Save high half of GPR 1 in low half of GPR 3
 SRLG 15,15,32 Move high half of GPR 15 into low half of GPR 15
 LR 4,15 Save high half of GPR 15 in low half of GPR 4
 GETMAIN RU,LV=SAVF8SA_LEN Get my reentrant savearea
 STG 13,SAVF8SAPREV-SAVF8SA(,1)
* Save caller's savearea address in my
* savearea (backward chain)
 STMH 2,14,SAVF8SAG64HS2-SAVF8SA(1)
 ST 2,SAVF8SAG64HS0-SAVF8SA(1)
 ST 3,SAVF8SAG64HS1-SAVF8SA(1)
 ST 4,SAVF8SAG64HS15-SAVF8SA(1)
 MVC SAVF8SAID-SAVF8SA(4,1),=A(SAVF8SAID_VALUE)
* Set ID into savearea to indicate how
* caller's regs are saved
 LGR 13,1 Put my savearea address in R13
* End of entry code. Begin program code here . . .
*
*
*
*
* Begin exit code
 LGR 1,13 Copy my savearea address
 LMH 2,14,SAVF8SAG64HS2-SAVF8SA(13)
* Restore high halves
 LG 13,SAVF8SAPREV-SAVF8SA(,13)
* Restore caller's savearea address
 FREEMAIN RU,A=(1),LV=SAVF8SA_LEN Free my reentrant savearea
 SLR 15,15 Set return code of zero
 L 14,SAVGRS14-SAVER(,13) Restore caller's R14
 LM 2,12,SAVGRS2-SAVER(13) Restore caller's R2-R12
 BR 14 Return to caller
*
STATIC_DATA DS 0D
* Begin static data here
* ...
*
 IHASAVER
PGM CSECT
 LTORG ,
 END

If starting in AMODE 64
An AMODE 64 program must specify SYSSTATE AMODE64=YES.

When it receives control, the target program saves the 64-bit GPRs into the 144-bytes (or larger)
doubleword-aligned caller-provided save area pointed to by 64-bit GPR 13. The format of this area is
shown in Figure 4 on page 13. As indicated by this figure, the contents of each GPR, except GPR 13,
must be saved in a specific location within the save area. GPR 13 is not saved into the save area; it holds
the address of the save area.
Figure 4. Format of the Format 4 Save Area (F4SA)

 Word Contents

 0 Used by language products.

 1 Value of "F4SA". "F4SA", stored by a program in its save area,
indicates how the program saved the calling program's registers.
Saving the 64-bit GPRs in the caller-provided save area whose
address is in words 32-33 of this save area.

 2 - 3 64-bit GPR 14 (return address).

 4 - 5 64-bit GPR 15.

 6 - 31 64-bit GPRs 0 - 12.

 32 - 33 Address of previous save area (stored by a program in its save area).

 34 - 35 Address of next save area (stored by target program within caller's
save area).

Chapter 2. Linkage conventions 13

You can save 64-bit GPRs either with a store-multiple (STMG) instruction or with the SAVE macro. Use the
following STMG instruction to place the contents of all 64-bit GPRs except GPR 13 into the proper words
of the save area:

STMG 14,12,8(13)

When SYSSTATE AMODE64=YES is in effect, the SAVE macro stores 64-bit GPRs into the save area. Code
the GPRs to be saved in the same order as in an STMG instruction. The following example of the SAVE
macro places the contents of all 64-bit GPRs except GPR 13 into the proper words of the save area.

 PROGNAME SAVE (14,12)

Note: The SAVE macro uses STMG and store that uses the F4SA format when SYSSTATE AMODE64=YES is
in effect, but uses STM and use the format that is mapped by the SAVER DSECT in macro IHASAVER when
it is not. Thus a program that wants to use F4SA format but is not AMODE 64 should not use the SAVE
macro.

Later, the program can use the RETURN macro (or the load-multiple (LMG) instruction) to restore 64-bit
GPRs and return to the caller. Similar to the note for SAVE, a program that is using F4SA format but is not
AMODE 64 should not use the RETURN macro.

Whether the target program creates its own save area, it must save the address of the calling program's
save area. If the target program is creating a save area, it:

1. Stores the address of the calling program's save area (the address passed in 64-bit GPR 13) into words
32 and 33 of its own save area.

2. Stores the address of its own save area (the address the target program places into 64-bit GPR 13) into
words 34 and 35 of the calling program's save area.

3. Saves the string "F4SA" into the second word of its own save area. "F4SA" indicates how the
target program saves the calling program's registers, in this case saving the 64-bit GPRs in the
caller-provided save area whose address is in words 32-33 of this save area.

These steps enable the target program to find the calling program's save area when it needs it to restore
the caller's registers, and they enable a trace backward from the most recent save area to previous save
areas should one be necessary while examining a dump. If the target program is not creating a save area,
it can keep the address of the calling program's save area in GPR 13 or store it in a location in virtual
storage.

If you choose not to use the SAVE and RETURN macros, you can use the IHASAVER macro to map the
fields in the save area.

Example
In this example, a primary mode target program receives control from a calling program that provided
144-bytes doubleword-aligned save area pointed to 64-bit GPR 13. The calling program can call through
the following two instructions:

L 15,=V(PGM)
BASR 14,15

The target program saves its calling program's registers into the save area that the calling program
provides. It uses the GETMAIN macro to obtain storage for its own save area. The code is in 64-bit
addressing mode and is reentrant.

PGM CSECT
PGM AMODE 64
PGM RMODE 31
 SYSSTATE AMODE64=YES
 STMG 14,12,SAVF4SAG64RS14-SAVF4SA(13)
* Save caller's registers in caller-
* provided R13 save area
 CNOP 0,4
 BRAS 12,*+8
 DC A(STATIC_DATA)

14 z/OS: z/OS MVS Assembler Services Guide

 L 12,0(12,0) Set up to address of static data
 USING STATIC_DATA,12
 GETMAIN RU,LV=144 Get my reentrant savearea
 STG 13,SAVF4SAPREV-SAVF4SA(,1)
* Save caller's savearea address in my
* savearea (backward chain)
 STG 1,SAVF4SANEXT-SAVF4SA(,13)
* Save my savearea address in caller's
* savearea (forward chain)
 MVC SAVF4SAID-SAVF4SA(4,1),=A(SAVF4SAID_VALUE)
* Set ID into savearea to indicate how
* caller's regs are saved
 LGR 13,1 Put my savearea address in R13
* End of entry code. Begin program code here . . .
⋮
* Begin exit code
 LGR 1,13 Copy my savearea address
 LG 13,SAVF4SAPREV-SAVF4SA(,13)
* Restore caller's savearea address
 FREEMAIN RU,A=(1),LV=144 Free my reentrant savearea
 SLR 15,15 Set return code of zero
 LG 14,SAVF4SAG64RS14-SAVF4SA(,13)
* Restore caller's R14
 LMG 2,12,SAVF4SAG64RS2-SAVF4SA(13)
* Restore caller's R2-R12
 BR 14 Return to caller
⋮
 STATIC_DATA DS 0D
* Begin static data here
 IHASAVER
 END

If changing ARs without using the linkage stack
An AR mode program must specify SYSSTATE ASCENV=AR.

When a program that changes ARs and chooses not to use the linkage stack receives control, the target
program saves the GPRs and ARs into the 216-byte (or larger) doubleword-aligned caller-provided save
area pointed to by GPR 13 (and AR 13 when the caller is in AR mode). The format of this area is shown
in Figure 5 on page 16. As indicated by this figure, the contents of each GPR, except GPR 13, must be
saved in a specific location within the save area. GPR 13 is not saved into the save area; it holds the
address of the save area. Similarly, the contents of each AR, except AR 13, must be saved in a specific
location within the save area. AR 13 is not saved into the save area; it holds the ALET of the save area.

Chapter 2. Linkage conventions 15

Word
Contents

0
Used by language products.

1
Value of "F7SA". "F7SA", stored by a program in its save area, indicates how the program saves
the calling program's registers. Saving the 64-bit GPRs and the ARs in the caller-provided save area
whose address is in words 32-33 of this save area.

2 - 3
64-bit GPR 14 (return address).

4 - 5
64-bit GPR 15.

6 - 31
64-bit GPRs 0 - 12.

32 - 33
Address of previous save area (stored by a program in its save area).

34 - 35
Address of next save area (stored by target program within caller's save area).

36 - 50
ARs 14, 15, 0-12.

51
ALET of previous save area.

52
ASC mode of calling program.

53
Undefined.

Figure 5. Format of the Format 7 save area (F7SA)

You can save 64-bit GPRs with a store-multiple (STMG) instruction. Use the following STMG instruction to
place the contents of all GPRs except GPR 13 into the proper words of the save area:

STMG 14,12,8(13)

You can save ARs with a store-access-register-multiple (STAM) instruction. Use the following STAM
instruction to place the contents of all AR into the proper words of the save area:

STAM 14,12,144(13)

Later, the program can use the LAM and LMG instructions to restore ARs and GPRs and return to the caller.

Whether the target program creates its own save area, it must save the address of the calling program's
save area. If the target program creates a save area it:

1. Stores the 64-bit address of the calling program's save area (the address passed in 64-bit GPR 13) into
words 32 and 33 of its own save area.

2. Stores the ASC mode of the calling program into word 52 of its own save area.
3. Stores the ALET of the calling program's save area (the value in AR 13) into word 51 of its own save

area
4. Stores the address of its own save area (the address the target program places in GPR 13) into words

34 and 35 of the calling program's save area.

16 z/OS: z/OS MVS Assembler Services Guide

5. Saves the string "F7SA" into the second word of its own save area. "F7SA" indicates how the target
program saves the calling program's registers. Saving the 64-bit GPRs and the ARs in the caller-
provided save area whose address is in words 32-33 of this save area.

These steps enable the target program to find the calling program's save area when it needs it to restore
the caller's registers, and they enable a trace backward from the most recent save area to a previous save
area if one is necessary while examining a dump. If the target program is not creating a save area, it can
keep the address of the calling program's save area in GPR 13 or store it in a location in virtual storage.

Use the IHASAVER macro to map the fields in the save area.

If your program is AR mode but the calling program is not known to be AR mode (it might be known to be
primary ASC mode or it might be either primary ASC or AR mode), you need to save the calling program's
mode on entry and restore it on exit.

Example
In this example, an AR mode target program receives control from a calling program that provides a
216-byte doubleword-aligned save area pointed to by GPR 13.

The target program saves the calling program's registers (GPRs and ARs) into the save area that the
calling program provides. It uses the STORAGE OBTAIN macro to obtain storage for its own save area. The
code is in 31-bit addressing mode and is reentrant.

PGM CSECT
PGM AMODE 31
PGM RMODE 31
 SYSSTATE AMODE64=NO,ASCENV=AR
 STMG 14,12,SAVF7SAG64RS14-SAVF7SA(13)
* Save caller's registers in caller-
* provided R13 save area
 STAM 14,12,SAVF7SAAR14-SAVF7SA(13) Save caller's ARs
 IAC 2 Save caller's ASC mode
 SAC 512 Make sure we are in AR mode
 LARL 12,STATIC_DATA Set up to address of static data
 LAE 12,0(12,0) Make sure AR12 is 0
 USING STATIC_DATA,12
 STORAGE OBTAIN,LENGTH=216 Get my reentrant savearea
 STG 13,SAVF7SAPREV-SAVF7SA(,1)
* Save caller's savearea address in my
* savearea (backward chain)
 ST 2,SAVF7SAASC-SAVF7SA(,1) Save caller's ASC mode
 STAM 13,13,SAVF7SAAR13-SAVF7SA(1) Save caller's AR13
 STG 1,SAVF7SANEXT-SAVF7SA(,13)
* Save my savearea address in caller's
* savearea (forward chain)
 MVC SAVF7SAID-SAVF7SA(4,1),=A(SAVF7SAID_VALUE)
* Set ID into savearea to indicate how
* caller's regs are saved

 LAE 13,0(0,1) Put my savearea address/ALET in R13
* End of entry code. Begin program code here . . .
⋮
* Begin exit code
 LGR 1,13 Copy my savearea address
 LAM 2,2,SAVF7SAAR13-SAVF7SA(13) Fetch caller's AR13
 L 2,SAVF7SAASC-SAVF7SA(,13) Fetch caller's ASC mode
 LG 13,SAVF7SAPREV-SAVF7SA(,13)
* Restore caller's savearea address
 STORAGE RELEASE,ADDR=(1),LENGTH=216 Free my savearea
 SLR 15,15 Set return code of zero
 SAC 0(2) Restore caller's ASC mode
 CPYA 13,2 Restore caller's AR13
 LAM 14,12,SAVF7SAAR14-SAVF7SA(13) Restore caller's ARs
 LG 14,SAVF7SAG64RS14-SAVF7SA(,13) Restore caller's R14
 LMG 2,12,SAVF7SAG64RS2-SAVF7SA(13) Restore caller's R2-R12
 BR 14 Return to caller
⋮
 STATIC_DATA DS 0D
* Begin static data here
 IHASAVER
 END

Chapter 2. Linkage conventions 17

Establishing a base register
Each program establishes a base register immediately after it saves the calling program's registers.
Remember when you select a base register:

• Some instructions alter register contents (for example, TRT alters register 2). A list of instructions and
their processing is available in Principles of Operation.

• Registers 13 - 1 are used during program linkage.
• Register 12 is reserved for Language Environment (LE) use when writing an LE-conforming assembler

program. For more information see z/OS Language Environment Programming Guide.

Register 12 is generally a good choice for base register when not writing an LE-conforming assembler
program.

Your program should use the relative and immediate instruction set and thus not need code addressability
in general. If the program is AMODE 64, this is expected. But the program does need to establish
addressability to any static data that it might need. The program might also need temporary code
addressability when invoking system macros. Macros such as STORAGE require the invoker to have code
addressability surround the macro invocation. Nevertheless, you should also help out system macros by
identifying the architecture level under which your program is known to run. SYSSTATE ARCHLVL=2 can be
used for all programs that run only on supported z/OS releases.

When your program is entered in one AMODE and will change to another, be sure to set your base
registers properly for the eventual AMODE. For example, suppose that your program is entered in AMODE
31 and will switch to AMODE 64. If you use the LA or LARL instruction to set the base register while in
AMODE 31, that will not clear bits 0-31 of the 64-bit register. All 64 bits must be set properly when being
used in AMODE 64. After the LA or LARL, you could use the LLGTR instruction to clear bits 0-32 of the
64-bit register.

Linkage procedures for primary mode programs
A primary mode program can be called only by a program running in primary ASC mode. Thus an AR mode
program must switch to primary ASC mode before calling a primary mode program.

The information summarizes the linkage procedures a primary mode program follows when it receives
control, when it returns control to a caller, and when it calls another program.

Primary mode programs receiving control
When a primary mode program receives control, it can save the calling program's registers on the linkage
stack or in the caller-provided save area. If using the caller-provided save area, then distinctions are
made whether the primary mode program is or is not changing the 64-bit GPRs.

Note: The linkage conventions assume that a primary mode program does not use ARs. By leaving the
contents of the ARs untouched, the program preserves ARs 2 - 13 across program linkages.

Primary mode programs that use the linkage stack
A primary mode program that uses the linkage stack must perform the following actions:

• Issue a BAKR instruction, which saves the caller's ARs and 64-bit GPRs on the linkage stack.
• Establish a GPR as a base register.
• Set GPR 13 to indicate that the caller's registers are saved on the linkage stack:

– If the program creates a save area, obtain a 72-byte save area on a word boundary (or 144 byte
or larger on a doubleword boundary if routines called by the program need that extra space) in the
primary address space:

1. Set the second word of the save area to the character string F1SA if obtaining a 72-byte save area
or F6SA if obtaining a 144 byte or larger save area

18 z/OS: z/OS MVS Assembler Services Guide

2. Load GPR 13 with the save area address.
– If the program does not create a save area, do one of following actions:

- Load 0 into GPR 13.
- Set the second word of a two-word area in the primary address space to the character string F1SA.

Load the address of the two-word area into GPR 13.

Primary mode programs that use the caller-provided save area
The actions to be taken by a primary mode program that uses the caller-provided save area depend on the
following conditions:

• If the program does not change 64-bit GPRs and that uses the 72-byte caller-provided save area, the
program must perform the following actions:

– Save 32-bit GPRs 0-12, 14, and 15 into the caller-provided save area pointed to by GPR 13.
– Establish a base register.
– Obtain a 72-byte save area on a word boundary (or 144 byte or larger on a doubleword boundary if

routines called by the program need that extra space) in the primary address space.
– Store the address of the caller's save area into the back chain field of its own save area.
– Store the address of its save area into the forward chain field of the caller's save area.

See “Example” on page 9.
• If the program changes 64-bit GPRs and that uses the 72-byte caller-provided save area, the program

must perform the following actions:

– Save the low halves (bits 32 - 63) of GPRs 0-12, 14, and 15 into the caller-provided save area pointed
to by GPR 13.

– Obtain a 216 byte (if using F5SA) or 288 byte (if using F8SA) save area on a doubleword boundary in
the primary address space

– Save the high halves (bits 0 - 31) of GPRs 0 - 15 into its own save area.
– Store the address of the caller's save area into the back chain field of its own save area.
– Store the address of its save area into the forward chain field of the caller's save area.
– Set the word at offset 4 to F5SA or F8SA to indicate how the caller's registers were saved.

See “Example of F5SA” on page 11 and “Example of F8SA” on page 12.
• If the program changes 64-bit GPRs and that uses the 144 byte caller-provided save area, the program

must perform the following actions:

– Save 64-bit GPRs 0-12, 14, and 15 into the caller-provided save area pointed to by GPR 13 in F4SA
format.

– Obtain a 144 byte save area on a doubleword boundary (or larger if routines called by the program
need that extra space) in the primary address space.

– Store the address of the caller's save area into the back chain field of its own save area.
– Store the address of its save area into the forward chain field of the caller's save area.
– Set the word at offset 4 to F4SA to indicate how the caller's registers were saved.

See “Example” on page 14.

Primary mode programs returning control
The method that a primary mode program uses to return control to a caller depends on whether the
primary mode program used the linkage stack or the caller-provided save area.

A primary mode program that uses the linkage stack must:

Chapter 2. Linkage conventions 19

• Place return information (if any) for the caller into GPR 0, 1, or both. For information about passing
information through a parameter list, see “Conventions for passing information through a parameter
list” on page 22.

• Load the return code, if any, into GPR 15.
• Issue the PR instruction. The PR instruction restores the caller's ARs 2 - 14 and 64-bit GPRs 2-14 and

ASC mode from the linkage stack. The PR instruction removes the entry from the linkage stack, and
returns control to the caller.

A primary mode program that uses a caller-provided save area must:

• Place return information (if any) for the caller into GPR 0, 1, or both. For information about passing
information through a parameter list, see “Conventions for passing information through a parameter
list” on page 22.

• Load GPR 13 with the address of the save area the calling program passes when making the call.
• Load the return code, if any, into GPR 15.
• Restore GPRs 2 - 12 and 14 from the caller's save area.
• Return to the calling program.

Primary mode programs calling another program
When a primary mode program calls another program, the calling program must:

• Place the address of its save area into GPR 13.
• Load parameter information, if any, into GPR 0, GPR 1, or both.
• Place the entry point address of the target program into GPR 15.
• Call the target program.

Linkage procedures for AR mode programs
An AR mode program can be called by other AR mode programs or by primary mode programs. The
information summarizes the linkage procedures an AR mode program can follow when it receives control,
when it returns control to a caller, and when it calls another program.

AR mode programs receiving control and using the linkage stack
When an AR mode program receives control and uses the linkage stack, it would:

• Issue a BAKR instruction, which saves the caller's 64-bit GPRs and ARs on the linkage stack. (Although
a primary mode caller provides a save area, an AR mode target program would not use the area.

• Establish a GPR as a base register and load an ALET of 0 into the corresponding AR. (An ALET of 0
causes the system to reference an address within the primary address space).

• Set GPR 13 to indicate that the caller's registers are saved on the linkage stack:

– If the program creates a save area, obtain a 72-byte save area on a word boundary (or 144 byte or
larger save area on a doubleword boundary if routines called by this program need it) in the primary
address space.

- Set the second word of the save area to the character string "F1SA" if obtaining a 72-byte save area
or "F6SA" if obtaining a 144 byte or larger save area

- Load GPR 13 with the save area address.
- Set AR 13 to zero to indicate that the storage resides in the primary address space.

– If the program does not create a save area, do one of following actions:

- Load 0 into GPR 13.
- Set the second word of a two word area in the primary address space to the character string

"F1SA". Load the address of the two word area into GPR 13.

20 z/OS: z/OS MVS Assembler Services Guide

AR mode programs returning control and using the linkage stack
To return control to the calling program after saving registers on the linkage stack, an AR mode program
would:

• Place return information, if any, for the caller into AR/GPR 0, AR/GPR 1, or both. For information
about passing information through a parameter list, see “Conventions for passing information through a
parameter list” on page 22.

• Load the return code, if any, into GPR 15.
• Issue the PR instruction. The PR instruction restores the caller's ARs 2-14 and 64-bit GPRs 2-14 and

ASC mode from the linkage stack, removes the entry from the linkage stack, and returns control to the
caller.

AR mode programs receiving control and not using the linkage stack
When an AR mode program receives control, and does not want to use the linkage stack, its caller must
provide an area large enough for the target program to save the 64-bit GPRs and the ARs into (at least 216
bytes). The AR mode program would:

• Issue STMG to save the 64-bit GPRs into the caller-provided save area.
• Issue STAM to save the ARs into the caller-provided area.
• Establish a GPR as a base register and load an ALET of 0 into the corresponding AR. An ALET of 0 causes

the system to reference storage within the primary address space.
• Issue IAC to save the current ASC mode.
• Switch to a suitable ASC mode for continued processing.
• Allocate a new save area.
• Save the saved ASC mode and the calling program's AR13 into the new save area.
• Store the address of the caller's save area into the back chain field of its own save area.
• Store the address of its save area into the forward chain field of the caller's save area.
• Save "F7SA" at offset 4 to indicate how the calling program's registers were saved.

See “Example” on page 17.

AR mode programs returning control and not using the linkage stack
To return control to the calling program, an AR mode program would:

• Place return information (if any) for the caller into AR/GPR 0, AR/GPR 1, or both. For information
about passing information through a parameter list, see “Conventions for passing information through a
parameter list” on page 22.

• Load the return code, if any, into GPR 15.
• Load the address of the calling program's save area from words 33-34 of the AR mode program's save

area into GPR 13.
• Load the ALET of the calling program's save area from word 51 of the AR mode program's save area.
• Load the ASC mode of the calling program from word 52 of the AR mode program's save area.
• Restore the calling program's ASC mode.
• Restore ARs 14-12 from the calling program's save area.
• Restore GPR 14 and GPRs 0-12 from the calling program's save area.
• Return to the caller by using the BR 14 or BSM, 0, 14 instruction according to your documentation

See “Example” on page 17.

Chapter 2. Linkage conventions 21

AR mode programs calling another program
The definition of an AR mode program, as stated in Chapter 2, “Linkage conventions,” on page 5, includes
the fact that such a program might switch from one ASC mode to another. Procedures for an AR mode
program calls another program differ depending on whether the AR mode program is in primary ASC
mode or AR mode at the time of the call.

To call while in AR mode, an AR mode program must:

• Load parameter information, if any, into AR/GPR 0, AR/GPR 1, or both. For information about passing
information through a parameter list, see “Conventions for passing information through a parameter
list” on page 22.

• Place the entry point address of the target program into GPR 15. There is no need to load an ALET into
AR 15.

• Call the target program.

To call while in primary ASC mode, an AR mode program must follow the linkage conventions described in
“Primary mode programs calling another program” on page 20.

Conventions for passing information through a parameter list
The ASC mode of a calling program at the time it calls determines whether addresses that the program
passes are ALET-qualified. The following two sections describe how programs in primary ASC mode and
AR mode pass parameters through a parameter list.

Program in primary ASC mode
If the calling program is in primary ASC mode, the parameter list must be in the primary address space.
All addresses that are passed by the programs must be contained in the primary address space and must
not be ALET-qualified. The program that passes parameter data can use GPRs 0 and 1, or both. To pass
the address of a parameter list, the program should use GPR 1.

As an example, consider the way that the system uses a register to pass information in the PARM field
of an EXEC statement to your program. When your program receives control from the system, register 1
contains the address of a parameter list that points to one parameter. The parameter list is a fullword on
a fullword boundary in your program's address space see Figure 6 on page 22. The high-order bit (bit 0)
of this word is set to 1. For a program that is not AMODE 64, the system uses this convention to indicate
the last word in a variable-length parameter list. Bits 1-31 of the fullword contain the address of a 2-byte
length field on a halfword boundary. The length field contains a binary count of the number of data bytes
in the PARM field. The data bytes immediately follow the length field. If the PARM field was omitted in
the EXEC statement, the count is set to zero. To prevent possible errors, always use the count as a length
attribute in acquiring the information in the PARM field.

Figure 6. Primary Mode Parameter List EXEC PGM=

22 z/OS: z/OS MVS Assembler Services Guide

Note: The system builds a parameter list that matches the previous description even if the program is the
target of an EXEC statement is AMODE 64. It is not a typical parameter list for an AMODE 64 program and
the AMODE 64 program must not use the address word without first clearing bit 0.

Unlike the parameter list produced for an EXEC statement, within a general parameter list:

• There can be multiple parameters.
• There is no system-imposed limitation on the length of any parameter.
• No parameter has a system-defined format.

Lengths and formats of parameters are defined by the called service. For an AMODE 24 or AMODE
31 program, the parameter list consists of 4-byte wide address slots; for an AMODE 64 program, the
parameter list consists of 8-byte wide address slots. For an AMODE 24 or AMODE 31 program, the
high-order bit of the last address slot is used to indicate the end of the list. For an AMODE 64 program,
that convention is not used. Instead, a separate parameter would be provided if the target program needs
to be able to determine how many parameters were passed. That separate parameter might be within the
parameter list (for example, the first parameter list slot) or might be in register 0.

Programs in AR mode
If the calling program is in AR mode, all addresses that it passes, whether they are in a GPR or in a
parameter list, must be ALET-qualified. A parameter list can be in an address space other than the calling
program's primary address space or in a data space. It cannot be in the calling program's secondary
address space.

The Figure 7 on page 23 shows one way to format addresses and ALETs in a parameter list. The
addresses passed to the called program are at the beginning of the list and their associated ALETs follow
the addresses. Notice that the third address has the high-order bit set on to indicate the end of the list.
For an AMODE 64 program, instead, the parameter list consists of 8-byte wide address slots (still followed
by 4-byte wide ALET slots) and the high-order bit of the last address slot would not be used to indicate
the end of the list.

Figure 7. AR Mode Parameter List when Not AMODE 64

All addresses that an AR mode target program returns to an AR mode caller, whether the address is in
GPR 0 or 1 or in a parameter list, must be ALET-qualified.

Chapter 2. Linkage conventions 23

24 z/OS: z/OS MVS Assembler Services Guide

Chapter 3. Subtask creation and control

The control program creates one task in the address space as a result of initiating execution of the job
step task. You can create additional tasks in your program. However, if you do not, the job step task is the
only task in the address space being executed. The benefits of a multiprogramming environment are still
available even with only one task in the job step; work is still being performed for other address spaces
when your task is waiting for an event, such as an input operation, to occur.

The advantage in creating additional tasks within the job step is that more tasks are competing for control.
When a wait state occurs in one of your tasks, it is not necessarily a task from some other address space
that gets control. It can be one of your tasks, a portion of your job.

The general rule is that you should choose parallel execution of a job step (that is, more than one
task in an address space) only when a significant amount of overlap between two or more tasks can
be achieved. You must take into account the amount of time that is taken by the control program
in establishing and controlling additional tasks, and your increased effort to coordinate the tasks and
provide for communications between them.

Creating the task
A new task is created by issuing an ATTACH, or, if your program runs in access register ASC mode, an
ATTACHX macro. The task that is active when the ATTACH or ATTACHX issued is the originating task; the
newly created task is the subtask of the originating task. The subtask competes for control in the same
manner as any other task in the system, by priority (both address space priority and task priority within
the address space) and the current ability to use a processor. The address of the task control block for the
subtask is returned in register 1.

If the ATTACH or ATTACHX executes successfully, control returns to the user with a return code of 0 in
register 15.

The entry point in the load module to be given control when the subtask becomes active is specified as
it is in a LINK or LINKX macro, that is, by using the EP, EPLOC, and DE parameters. The use of these
parameters is discussed in Chapter 4, “Program management,” on page 29. You can pass parameters
to the subtask using the PARAM and VL parameters, also described under the LINK macro. Additional
parameters deal with the priority of the subtask, provide for communication between tasks, specify
libraries to be used for program linkages, and establish an error recovery environment for the new
subtask.

Priorities
This information considers three priorities: address space priorities, task priorities, and subtask priorities.

Address space priority
When a job is initiated, the control program creates an address space. All successive steps in the job
execute in the same address space. The address space has a dispatching priority, which is normally
determined by the control program. The control program selects, and alters, the priority to achieve the
best load balance in the system. This makes the most efficient use of processor time and other system
resources.

You might want some jobs to execute at a different address space priority than the default priority
assigned. The active workload management (WLM) service policy determines the dispatching priority
assigned to the job. For additional information, see z/OS MVS Planning: Workload Management.

© Copyright IBM Corp. 1988, 2022 25

Task priority
Each task in an address space has a limit priority and a dispatching priority associated with it. The control
program sets these priorities when a job step is initiated. When you use the ATTACH or ATTACHX macro
to create other tasks in the address space, you can use the LPMOD and DPMOD parameters to give them
different limit and dispatching priorities.

The dispatching priorities of the tasks in an address space do not affect the order in which the control
program selects jobs for execution. The order is selected based on the work unit (WEB) that is at the top
of the work unit queue (WUQ). The dispatcher no longer selects from within an address space the top
priority task awaiting execution. Thus, task priorities cannot affect processing within an address space.

Note: In a multiprocessing system, task priorities might not be in the order of which the tasks run. More
than one task might be running simultaneously in the same address space on different processors. Page
faults can alter the order in which the tasks run.

Subtask priority
When a subtask is created, the limit and dispatching priorities of the subtask are the same as the current
limit and dispatching priorities of the originating task except when the subtask priorities are modified by
the LPMOD and DPMOD parameters of the ATTACH and ATTACHX macro. The LPMOD parameter specifies
the signed number to be subtracted from the current limit priority of the originating task. The result of the
subtraction is assigned as the limit priority of the subtask. If the result is zero or negative, zero is assigned
as the limit priority. The DPMOD parameter specifies the signed number to be added to the current
dispatching priority of the originating task. The result of the addition is assigned as the dispatching priority
of the subtask, unless the number is greater than the limit priority or less than zero. In that case, the limit
priority or 0, respectively, is used as the dispatching priority.

Assigning and changing priority
Assign tasks with many I/O operations a higher priority than tasks with little I/O because the tasks with
much I/O are in a wait state for a greater amount of time. The lower priority tasks are executed when the
higher priority tasks are in a wait state. As the I/O operations are completed, the higher priority tasks get
control so that more I/O can be started.

You can change the priorities of subtasks by using the CHAP macro. The CHAP macro changes the
dispatching priority of the active task or one of its subtasks by adding a positive or negative value. The
dispatching priority of an active task can be made less than the dispatching priority of another task. If this
occurs and the other task is dispatchable, it would be given control after execution of the CHAP macro.

You can also use the CHAP macro to increase the limit priority of any of an active task's subtasks. An
active task cannot change its own limit priority. The dispatching priority of a subtask can be raised above
its own limit priority, but not above the limit of the originating task. When the dispatching priority of a
subtask is raised above its own limit priority, the subtask's limit priority is automatically raised to equal its
new dispatching priority.

Stopping and restarting a subtask (STATUS macro)
To stop a subtask means to change its dispatch-ability status from ready to not ready. You might need
to stop a subtask that is ready or running, and then to restart, or make ready, that subtask. Stopping a
subtask is a programming technique to control the dispatch-ability of other related tasks or subtasks in a
multitasking environment when the tasks are in problem state.

To stop all subtasks of an originating task, issue the STATUS macro with the STOP parameter. To stop
a specific subtask, issue the STATUS macro with the STOP, TCB parameter, which identifies a specific
subtask.

To restart the stopped subtask or subtasks, issue STATUS START. As with STATUS STOP, use the TCB
parameter to restart a specific subtask.

26 z/OS: z/OS MVS Assembler Services Guide

Task and subtask communications
The task management information is required only for establishing communications among tasks in the
same job step. The relationship of tasks in a job step is shown in Figure 8 on page 27. The horizontal
lines in Figure 8 on page 27 separate originating tasks and subtasks. They have no bearing on task
priority. Tasks A, A1, A2, A2a, B, B1, and B1a are all subtasks of the job-step task; tasks A1, A2, and A2a
are subtasks of task A. Tasks A2a and B1a are the lowest level tasks in the job step. Although task B1 is at
the same level as tasks A1 and A2, it is not considered a subtask of task A.

Task A is the originating task for both tasks A1 and A2, and task A2 is the originating task for task A2a.
A hierarchy of tasks exists within the job step. Therefore, the job step task, task A, and task A2 are
predecessors of task A2a, while task B has no direct relationship to task A2a.

Figure 8. Levels of Tasks in a Job Step

All of the tasks in the job step compete independently for processor time; if no constraints are provided,
the tasks are performed and are terminated asynchronously. However, since each task is performing a
portion of the same job step, some communication and constraints between tasks are required, such as
notifying each other when a subtask completes. If a predecessor task attempts to terminate before all of
its subtasks are complete, those subtasks and the predecessor task are abnormally terminated.

Two parameters, the ECB and ETXR parameters, are provided in the ATTACH or ATTACHX macro to help
communication between a subtask and the originating task. These parameters are used to indicate the
normal or abnormal termination of a subtask to the originating task. If you coded the ECB or ETXR
parameter, or both, in the ATTACH or ATTACHX macro, the task control block of the subtask is not
removed from the system when the subtask is terminated. The originating task must remove the task
control block from the system after termination of the subtask by issuing a DETACH. If you specified
the ECB parameter in the ATTACH or ATTACHX macro, the ECB must be in storage addressable by the

Chapter 3. Subtask creation and control 27

attaching task and control program so that the issuer of ATTACH can wait on it (using the WAIT macro)
and the control program can post it on behalf of the terminating task. The task control blocks for all
subtasks must be removed before the originating task can terminate normally.

The ETXR parameter specifies the address of an end-of-task exit routine in the originating task, which is
to be given control when the subtask being created is terminated. Therefore, the end-of-task routine is
given control asynchronously after the subtask has terminated and must be in virtual storage when it is
required. After the control program terminates the subtask, the end-of-task routine that is specified is
scheduled to be executed. It competes for CPU time using the priority of the originating task and of its
address space and can receive control even though the originating task is in the wait state. Although the
DETACH does not have to be issued in the end-of-task routine, this is a good place for it.

The ECB parameter specifies the address of an event control block (discussed under "Task
Synchronization"), which is posted by the control program when the subtask is terminated. After posting
occurs, the event control block contains the completion code specified for the subtask.

If you specified not the ECB or the ETXR parameter in the ATTACH or ATTACHX macro, the task control
block for the subtask is removed from the system when the subtask terminates. Its originating task does
not have to issue a DETACH. A reference to the task control block in a CHAP or a DETACH macro in this
case is as risky as task termination. Since the originating task is not notified of subtask termination, you
can refer to a task control block that is removed from the system, which would cause the active task to be
abnormally terminated.

Note: The originating task is abended if it attempts to normally terminate when it has active subtasks.

28 z/OS: z/OS MVS Assembler Services Guide

Chapter 4. Program management

This chapter discusses facilities that will help you to design your programs. It includes descriptions of
the residency mode and addressing mode of programs, linkage considerations, load module structures,
facilities for passing control between programs, and the use of the associated macro.

Residency and addressing mode of programs
The control program ensures that each load module is loaded above or below 16 megabytes virtual as
appropriate and that it is invoked in the correct addressing mode (24-bit or 31-bit). The placement of
the module above or below 16 megabytes depends on the residency mode (RMODE) that you define for
the module. Whether a module executes in 24-bit or 31-bit addressing mode depends on the addressing
mode (AMODE) that you define for the module.

When a program is executing in 24-bit addressing mode, the system treats both instruction and data
addresses as 24-bit addresses. This allows programs executing in 24-bit addressing mode to address 16
megabytes (16,777,216 bytes) of storage. Similarly, when a program is executing in 31-bit addressing
mode, the system treats both instruction and data addresses as 31-bit addresses. This allows a
program executing in 31-bit addressing mode to address 2 gigabytes (2,147,483,648 bytes or 128 x
16 megabytes) of storage.

You can define the residency mode and the addressing mode of a program in the source code. Figure 9
on page 29 shows an example of the definition of the AMODE and RMODE attributes in the source code.
This example defines the addressing mode of the load module as 31-bit and the residency mode of the
load module as 24-bit. Therefore, the program will receive control in 31-bit addressing mode and will
reside below 16 megabytes.

SAMPLE CSECT
SAMPLE AMODE 31
SAMPLE RMODE 24

Figure 9. Assembler Definition of AMODE/RMODE

The assembler places the AMODE and RMODE in the external symbol dictionary (ESD) of the output object
module for use by the linkage editor. The linkage editor passes this information on to the control program
through the directory entry for the partitioned data set (PDS) that contains the load module and the
composite external symbol dictionary (CESD) record in the load module. You can also specify the AMODE/
RMODE attributes of a load module by using linkage editor control cards. Chapter 5, “Understanding 31-
bit addressing,” on page 59 contains additional information about residency and addressing mode; z/OS
MVS Program Management: User's Guide and Reference and z/OS MVS Program Management: Advanced
Facilities contain information about the linkage editor control cards.

Residency mode definitions
The control program uses the RMODE attribute from the PDS directory entry for the module to load the
program above or below 16 megabytes. The RMODE attribute can have one of the following values:
24

specifies that the program must reside in 24-bit addressable virtual storage.
ANY

specifies that the program can reside anywhere in virtual storage because the code has no virtual
storage residency restrictions.

Note: The default value for RMODE is 24.

© Copyright IBM Corp. 1988, 2022 29

Addressing mode definitions
The AMODE attribute, located in the PDS directory entry for the module, specifies the addressing mode
that the module expects at entry. Bit 32 of the program status word (PSW) indicates the addressing mode
of the program that is executing. The system supports programs that execute in either 24-bit or 31-bit
addressing mode. The AMODE attribute can have one of the following values:
24

specifies that the program is to receive control in 24-bit addressing mode.
31

specifies that the program is to receive control in 31-bit addressing mode.
ANY

specifies that the program is to receive control in either 24-bit or 31-bit addressing mode.

Note: The default value for AMODE is 24.

Linkage considerations
The system supports programs that execute in either 24-bit or 31-bit addressing mode. The following
branch instructions take addressing mode into consideration:

• Branch and link (BAL)
• Branch and link, register form (BALR)
• Branch and save (BAS)
• Branch and save, register form (BASR)
• Branch and set mode (BSM)
• Branch and save and set mode (BASSM)
• Branch and stack (BAKR)

See Principles of Operation for a complete description of how these instructions function. The following
paragraphs provide a general description of these branch instructions.

The BAL and BALR instructions are unconditional branch instructions (to the address in operand 2).
BAL and BALR function differently depending on the addressing mode in which you are executing. The
difference is in the linkage information passed in the link register when these instructions execute. In
31-bit addressing mode, the link register contains the AMODE indicator (bit 0) and the address of the next
sequential instruction (bits 1-31); in 24-bit addressing mode, the link register contains the instruction
length code, condition code, program mask, and the address of the next sequential instruction.

BAS and BASR perform the same function that BAL and BALR perform when BAL and BALR execute in
31-bit addressing mode.

The BSM instruction provides problem programs with a way to change the AMODE bit in the PSW. BSM
is an unconditional branch instruction (to the address in operand 2) that saves the current AMODE in the
high-order bit of the link register (operand 1), and sets the AMODE indicator in the PSW to agree with the
AMODE of the address to which you are transferring control (that is, the high order bit of operand 2).

The BASSM instruction functions in a manner similar to the BSM instruction. In addition to saving the
current AMODE in the link register, setting the PSW AMODE bit, and transferring control, BASSM also
saves the address of the next sequential instruction in the link register thereby providing a return address.

BASSM and BSM are used for entry and return linkage in a manner similar to BALR and BR. The major
difference from BALR and BR is that BASSM and BSM can save and change addressing mode.

The BAKR instruction is an unconditional branch to the address in operand 2. In addition to the branching
action, it adds an entry to the linkage stack.

For more information on the linkage stack, see “System-provided linkage stack” on page 7.

30 z/OS: z/OS MVS Assembler Services Guide

Floating point considerations
The application program and run-time environment are responsible for managing the contents of the
Floating Point Control (FPC) register. The system will normally not change the FPC register settings of an
existing MVS task or SRB.

The S/390® linkage convention for the Floating Point Registers and the FPC register in described in
Chapter 2, “Linkage conventions,” on page 5. To summarize the convention, FPRs 0 to 7 are volatile and
FPRs 8 to 15 are non-volatile across a call. The FPC register is non-volatile except for two fields: the IEEE
exception flags and the DXC, which are volatile.

Passing control between programs with the same AMODE
If you are passing control between programs that execute in the same addressing mode, there are several
combinations of instructions that you can use. Some of these combinations are:
Transfer

Return
BAL/BALR

BR
BAS/BASR

BR

Passing control between programs with different AMODEs
If you are passing control between programs executing in different addressing modes, you must change
the AMODE indicator in the PSW. The BASSM and BSM instructions perform this function for you. You can
transfer to a program in another AMODE using a BASSM instruction and then return by means of a BSM
instruction. This sequence of instructions ensures that both programs execute in the correct AMODE.

Figure 10 on page 32 shows an example of passing control between programs with different addressing
modes. In the example, TEST executes in 24-bit AMODE and EP1 executes in 31-bit AMODE. Before
transferring control to EP1, the TEST program loads register 15 with EPA, the pointer defined entry point
address (that is, the address of EP1 with the high order bit set to 1 to indicate 31-bit AMODE). This is
followed by a BASSM 14,15 instruction, which performs the following functions:

• Sets the high-order bit of the link register (register 14) to 0 (because TEST is currently executing in
24-bit AMODE) and puts the address of the next sequential instruction into bits 1-31.

• Sets the PSW AMODE bit to 1 to agree with bit 0 of register 15.
• Transfers to EP1 (the address in bits 1-31 of register 15).

The EP1 program executes in 31-bit AMODE. Upon completion, EP1 sets a return code in register 15 and
executes a BSM 0,14 instruction, which performs the following functions:

• Sets the PSW AMODE bit to 0 to correspond to the high-order bit of register 14.
• Transfers control to the address following the BASSM instruction in the TEST program.

Chapter 4. Program management 31

TEST CSECT
TEST AMODE 24
TEST RMODE 24
 .
 .
 L 15,EPA OBTAIN TRANSFER ADDRESS
 BASSM 14,15 SWITCH AMODE AND TRANSFER
 .
 .
 EXTRN EP1
EPA DC A(X'80000000'+EP1) POINTER DEFINED ENTRY POINT ADDRESS
 .
 .
 END
__
EP1 CSECT
EP1 AMODE 31
EP1 RMODE ANY
 .
 .
 SLR 15,15 SET RETURN CODE 0
 BSM 0,14 RETURN TO CALLER'S AMODE AND TRANSFER
 END

Figure 10. Example of Addressing Mode Switch

Passing control between programs with all registers intact
The CSRL16J callable service allows you to transfer control to another program running under the same
request block (RB) as the calling program. The CSRL16J callable service functions much like a branch
instruction except that you can specify the contents of all 16 registers when you transfer control. You
do not have to use one register to specify the address of the target routine, as you do with a branch
instruction.

When you transfer control to the other routine, use the CSRL16J callable service to:

• Define the entry characteristics and register contents for the target routine.
• Optionally free dynamic storage associated with the calling program.

When the CSRL16J callable service is successful, control transfers to the target routine. After the target
routine runs, it can transfer control to any program running under the same RB, including the calling
program.

Defining the entry characteristics of the target routine
Before calling CSRL16J, you must build the L16J data area to form a parameter list that defines the entry
characteristics and register contents for the target routine. Include the CSRYL16J mapping macro to map
data area L16J. To build the L16J parameter list, first initialize the parameter list with zeroes and then fill
in the desired fields. This processing ensures that all fields requiring zeroes are correct. You can specify
the following characteristics for the target routine in the indicated fields of data area L16J:
L16JLENGTH

Length of the L16J parameter list. Initialize this field with constant L16J_LEN.
L16JGRS

General purpose registers (GPRs) 0-15 on entry to the target routine.
L16JARS

Access registers (ARs) 0-15 on entry to the target routine, if you set the L16JPROCESSARS bit on.
L16JPSW

Includes the following PSW information for the target routine. See Principles of Operation for more
information about the contents of the PSW.

• PSW address and AMODE
• PSW ASC mode — primary or AR

32 z/OS: z/OS MVS Assembler Services Guide

• PSW program mask
• PSW condition code

APF-authorized callers, callers in supervisor state, PSW key 0-7, or PKM allowing key 0-7, can specify:

• PSW state - problem or supervisor
• PSW key.

For unauthorized callers, the PSW state and key of the calling program are used for the target routine.

L16JPROCESSARS
A bit indicating whether or not you want to specify the contents of the access registers (ARs) for the
target routine. Set the bit on if you want to specify the contents of the ARs. If you set the bit off, the
access registers (ARs) contents are determined by the system.

When CSRL16J passes control to the target routine, the GPRs contain:
Register

Contents
0-15

Values specified by the caller

If the L16JPROCESSARS bit is set on, when CSRL16J passes control to the target routine the access
registers (ARs) contain:
Register

Contents
0-15

Values specified by the caller

If the L16JPROCESSARS bit is set off, when CSRL16J passes control to the target routine the access
registers (ARs) contain:
Register

Contents
0-1

Do not contain any information for use by the routine
2-13

The contents are the same as they were when the caller issued the CSRL16J callable service.
14-15

Do not contain any information for use by the routine

Freeing dynamic storage associated with the caller
If the calling program has a dynamic storage area associated with it, you can specify that CSRL16J free
some or all of this storage area before it transfers control to the target routine. In the L16J parameter list,
specify the following fields:
L16JSUBPOOL

Specify the subpool of the area that you want the system to free.
L16JLENGTHTOFREE

Specify the length, in bytes, of the dynamic storage area you want the system to free.
L16JAREATOFREE

Specify the address of the dynamic storage area you want the system to free.

Make sure that the address is on a doubleword boundary. Otherwise, the service ends with an abend
code X'978'. See z/OS MVS System Codes for information on abend code X'978'.

The system frees the storage only when the CSRL16J callable service is successful.

Chapter 4. Program management 33

Load module structure types
Each load module used during a job step can be designed in one of three load module structures: simple,
planned overlay, or dynamic. A simple structure does not pass control to any other load modules during
its execution, and comes into virtual storage all at one time. A planned overlay structure may, if necessary,
pass control to other load modules during its execution, and it does not come into virtual storage all
at one time. Instead, segments of the load module reuse the same area of virtual storage. A dynamic
structure comes into virtual storage all at one time, and passes control to other load modules during its
execution. Each of the load modules to which control is passed can be one of the three structure types.
Characteristics of the load module structure types are summarized in Table 1 on page 34.

Because the large capacity of virtual storage eliminates the need for complex overlay structures, planned
overlays will not be discussed further.

Table 1. Characteristics of Load Modules

Structure Type Loaded All at One Time Passes Control to Other Load Modules

Simple Yes No

Planned Overlay No Optional

Dynamic Yes Yes

Simple structure
A simple structure consists of a single load module produced by the linkage editor. The single load
module contains all of the instructions required and is paged into central storage by the control program
as it is executed. The simple structure can be the most efficient of the two structure types because
the instructions it uses to pass control do not require control-program assistance. However, you should
design your program to make most efficient use of paging.

Dynamic structure
A dynamic structure requires more than one load module during execution. Each required load module
can operate as either a simple structure or another dynamic structure. The advantages of a dynamic
structure over a simple structure increase as the program becomes more complex, particularly when
the logical path of the program depends on the data being processed. The load modules required in a
dynamic structure are paged into central storage when required, and can be deleted from virtual storage
when their use is completed.

Load module execution
Depending on the configuration of the operating system and the macros used to pass control, execution
of the load modules is serial or in parallel. Execution is serial in the operating system unless you
use an ATTACH or ATTACHX macro to create a new task. The new task competes for processor time
independently with all other tasks in the system. The load module named in the ATTACH or ATTACHX
macro is executed in parallel with the load module containing the ATTACH or ATTACHX macro. The
execution of the load modules is serial within each task.

The following paragraphs discuss passing control for serial execution of a load module. For information on
creating and managing new tasks, see “Creating the task” on page 25.

Passing control in a simple structure
There are certain procedures to follow when passing control to an entry point in the same load module.
The established conventions to use when passing control are also discussed. These procedures and
conventions are the framework for all program interfaces.

34 z/OS: z/OS MVS Assembler Services Guide

Passing control without return
Some control sections pass control to another control section of the load module and do not receive
control back. An example of this type of control section is a housekeeping routine at the beginning of a
program that establishes values, initializes switches, and acquires buffers for the other control sections in
the program. Use the following procedures when passing control without return.

Preparing to pass control
• Restore the contents of register 14.

Because control will not be returned to this control section, you must restore the contents of register
14. Register 14 originally contained the address of the location in the calling program (for example,
the control program) to which control is to be passed when your program is finished. Since the current
control section does not make the return to the calling program, the return address must be passed on
to the control section that does make the return.

• Restore the contents of registers 2-12.

In addition, the contents of registers 2-12 must be unchanged when your program eventually returns
control, so you must also restore these registers.

If control were being passed to the next entry point from the control program, register 15 would contain
the entry address. You should use register 15 in the same way, so that the called routine remains
independent of the program that passed control to it.

• Use register 1 to pass parameters.

Establish a parameter list and place the address of the list in register 1. The parameter list should
consist of consecutive fullwords starting on a fullword boundary, each fullword containing an address
to be passed to the called control section. When executing in 24-bit AMODE, each address is located
in the three low-order bytes of the word. When executing in 31-bit AMODE, each address is located in
bits 1-31 the word. In both addressing modes, set the high-order bit of the last word to 1 to indicate
that it is the last word of the list. The system convention is that the list contain addresses only. You may,
of course, deviate from this convention; however, when you deviate from any system convention, you
restrict the use of your programs to those programmers who know about your special conventions.

• Pass the address of the save area in register 13 just as it was passed to you.

Since you have reloaded all the necessary registers, the save area that you received on entry is now
available, and should be reused by the called control section. By passing the address of the old save
area, you save the 72 bytes of virtual storage for a second, unnecessary, save area.

Note: If you pass a new save area instead of the one received on entry, errors could occur.

Passing control
• Load register 15 with a V-type address constant for the name of the external entry point, then branch to

the address in register 15.

This is the common way to pass control between one control section and an entry point in the same
load module. The external entry point must have been identified using an ENTRY instruction in the
called control section if the entry point is not the same as the control section's CSECT name.

Figure 11 on page 36 shows an example of loading registers and passing control. In this example, no
new save area is used, so register 13 still contains the address of the old save area. It is also assumed
for this example that the control section will pass the same parameters it received to the next entry point.
First, register 14 is reloaded with the return address. Next, register 15 is loaded with the address of the
external entry point NEXT, using the V-type address constant at the location NEXTADDR. Registers 0-12
are reloaded, and control is passed by a branch instruction using register 15. The control section to which
control is passed contains an ENTRY instruction identifying the entry point NEXT.

Chapter 4. Program management 35

 .
 .
 L 14,12(13) LOAD CALLER'S RETURN ADDRESS
 L 15,NEXTADDR ENTRY NEXT
 LM 0,12,20(13) RETURN CALLER's REGISTERS
 BR 15 NEXT SAVE (14,12)
 .
 .
NEXTADDR DC V(NEXT)

Figure 11. Passing Control in a Simple Structure

Figure 12 on page 36 shows an example of passing a parameter list to an entry point with the same
addressing mode. Early in the routine the contents of register 1 (that is, the address of the fullword
containing the PARM field address) were stored at the fullword PARMADDR. Register 13 is loaded with
the address of the old save area, which had been saved in word 2 of the new save area. The contents of
register 14 are restored, and register 15 is loaded with the entry address.

 .
 .
 USING *,12 Establish addressability
EARLY ST 1,PARMADDR Save parameter address
 .
 .
 L 13,4(13) Reload address of old save area
 L 0,20(13)
 L 14,12(13) Load return address
 L 15,NEXTADDR Load address of next entry point
 LA 1,PARMLIST Load address of parameter list
 OI PARMADDR,X'80' Turn on last parameter indicator
 LM 2,12,28(13) Reload remaining registers
 BR 15 Pass control
 .
 .
PARMLIST DS 0A
DCBADDRS DC A(INDCB)
 DC A(OUTDCB)
PARMADDR DC A(0)
NEXTADDR DC V(NEXT)

Figure 12. Passing Control With a Parameter List

The address of the list of parameters is loaded into register 1. These parameters include the addresses of
two data control blocks (DCBs) and the original register 1 contents. The high-order bit in the last address
parameter (PARMADDR) is set to 1 using an OR-immediate instruction. The contents of registers 2-12 are
restored. (Since one of these registers was the base register, restoring the registers earlier would have
made the parameter list unaddressable.) A branch register instruction using register 15 passes control to
entry point NEXT.

Passing control with return
The control program passed control to your program, and your program will return control when it is
through processing. Similarly, control sections within your program will pass control to other control
sections, and expect to receive control back. An example of this type of control section is a monitoring
routine; the monitor determines the order of execution of other control sections based on the type of
input data. Use the following procedures when passing control with return.

Preparing to pass control
• Use registers 15 and 1 in the same manner they are used to pass control without return.

Register 15 contains the entry address in the new control section and register 1 is used to pass a
parameter list.

• Ensure that register 14 contains the address of the location to which control is to be returned when the
called control section completes execution.

36 z/OS: z/OS MVS Assembler Services Guide

The address can be the instruction following the instruction which causes control to pass, or it can be
another location within the current control section designed to handle all returns.

Registers 2-12 are not involved in the passing of control; the called control section should not depend
on the contents of these registers in any way.

• Provide a new save area for use by the called control section as previously described, and pass the
address of that save area in register 13.

Note that the same save area can be reused after control is returned by the called control section. One
new save area is ordinarily all you will require regardless of the number of control sections called.

Passing control
You may use two standard methods for passing control to another control section and providing for
return of control. One is an extension of the method used to pass control without a return, and requires
a V-type address constant and a branch, a branch and link, or a branch and save instruction provided
both programs execute in the same addressing mode. If the addressing mode changes, use a branch and
save and set mode instruction. The other method uses the CALL macro to provide a parameter list and
establish the entry and return addresses. With either method, you must identify the entry point by an
ENTRY instruction in the called control section if the entry name is not the same as the control section
CSECT name. Figure 13 on page 37 and Figure 14 on page 38 illustrate the two methods of passing
control; in each example, assume that register 13 already contains the address of a new save area.

Figure 13 on page 37 also shows the use of an inline parameter list and an answer area. The address
of the external entry point is loaded into register 15 in the usual manner. A branch and link instruction is
then used to branch around the parameter list and to load register 1 with the address of the parameter
list. An inline parameter list, such as the one shown in Figure 13 on page 37, is convenient when you
are debugging because the parameters involved are located in the listing (or the dump) at the point they
are used, instead of at the end of the listing or dump. Note that the high-order bit of the last address
parameter (ANSWERAD) is set to 1 to indicate the end of the list. The area pointed to by the address in
the ANSWERAD parameter is an area to be used by the called control section to pass parameters back
to the calling control section. This is a possible method to use when a called control section must pass
parameters back to the calling control section. Parameters are passed back in this manner so that no
additional registers are involved. The area used in this example is twelve words. The size of the area for
any specific application depends on the requirements of the two control sections involved.

 .
 .
 L 15,NEXTADDR Entry address in register 15
 CNOP 0,4
 BAL 1,GOOUT Parameter list address in register 1
PARMLIST DS 0A Start of parameter list
DCBADDRS DC A(INDCB) Input DCB address
 DC A(OUTDCB) Output DCB address
ANSWERAD DC A(AREA+X'80000000') Answer area address with
 high-order bit on
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control; register 14 contains
 return address and current AMODE
RETURNPT ...
AREA DC 12F'0' Answer area from NEXT

Note: This example assumes that you are passing control to a program that executes in the same
addressing mode as your program. See “Linkage considerations” on page 30 for information on how to
handle branches between programs that execute in different addressing modes.

Figure 13. Passing Control With Return

Chapter 4. Program management 37

 CALL NEXT,(INDCB,OUTDCB,AREA),VL
RETURNPT ...
AREA DC 12F'0'

Note: If you are using the CALL macro to pass control to a program that executes in a different addressing
mode, you must include the LINKINST=BASSM parameter.

Figure 14. Passing Control With CALL

The CALL macro in Figure 14 on page 38 provides the same functions as the instructions in Figure 13 on
page 37. When the CALL macro is expanded, the parameters cause the following results:

• NEXT - A V-type address constant is created for NEXT, and the address is loaded into register 15.
• (INDCB,OUTDCB,AREA) - A-type address constants are created for the three parameters coded within

parentheses, and the address of the first A-type address constant is placed in register 1.
• VL - The high-order bit of the last A-type address constant is set to 1.

Control is passed to NEXT using a branch and link instruction. (Optionally, you can specify either a BASR
or BASSM instruction, with the LINKINST= parameter.) The address of the instruction following the CALL
macro is loaded into register 14 before control is passed.

In addition to the results described earlier, the V-type address constant generated by the CALL macro
requires the load module with the entry point NEXT to be link edited into the same load module as
the control section containing the CALL macro. The z/OS MVS Program Management: User's Guide and
Reference and z/OS MVS Program Management: Advanced Facilitiespublications tell more about this
service.

The parameter list constructed from the CALL macro in Figure 14 on page 38, contains only A-type
address constants. A variation on this type of parameter list results from the following coding:

CALL NEXT,(INDCB,(6),(7)),VL

In the preceding CALL macro, two of the parameters to be passed are coded as registers rather than
symbolic addresses. The expansion of this macro again results in a three-word parameter list; in this
example, however, the expansion also contains instructions that store the contents of registers 6 and 7 in
the second and third words, respectively, of the parameter list. The high-order bit in the third word is set
to 1 after register 7 is stored. You can specify as many address parameters as you need, and you can use
symbolic addresses or register contents as you see fit.

Analyzing the return
When the control program returns control to a caller after it invokes a system service, the contents of
registers 2-13 are unchanged. When control is returned to your control section from the called control
section, registers 2-14 contain the same information they contained when control was passed, as long as
system conventions are followed. The called control section has no obligation to restore registers 0 and 1;
so the contents of these registers may or may not have been changed.

When control is returned, register 15 can contain a return code indicating the results of the processing
done by the called control section. If used, the return code should be a multiple of four, so a branching
table can be used easily, and a return code of zero should be used to indicate a normal return. The control
program frequently uses this method to indicate the results of the requests you make using system
macros; an example of the type of return codes the control program provides is shown in the description
of the IDENTIFY macro.

The meaning of each of the codes to be returned must be agreed upon in advance. In some cases, either
a “good” or “bad” indication (zero or nonzero) will be sufficient for you to decide your next action. If this is
true, the coding in Figure 15 on page 39 could be used to analyze the results. Many times, however, the
results and the alternatives are more complicated, and a branching table, such as shown in Figure 16 on
page 39 could be used to pass control to the proper routine.

Note: Explicit tests are required to ensure that the return code value does not exceed the branch table
size.

38 z/OS: z/OS MVS Assembler Services Guide

RETURNPT LTR 15,15 Test return code for zero
 BNZ ERRORTN Branch if not zero to error routine
 .
 .

Figure 15. Test for Normal Return

RETURNPT B RETTAB(15) Branch to table using return code
RETTAB B NORMAL Branch to normal routine
 B COND1 Branch to routine for condition 1
 B COND2 Branch to routine for condition 2
 B GIVEUP Branch to routine to handle impossible situations.
 .
 .

Figure 16. Return Code Test Using Branching Table

How control is returned
In the discussion of the return under “Analyzing the return” on page 38, it was indicated that the control
section returning control must restore the contents of registers 2-14. Because these are the same
registers reloaded when control is passed without a return, refer to the discussion under “Passing Control
without Return” for detailed information and examples. The contents of registers 0 and 1 do not have to
be restored.

Register 15 can contain a return code when control is returned. As indicated previously, a return code
should be a multiple of four with a return code of zero indicating a normal return. The return codes other
than zero that you use can have any meaning, as long as the control section receiving the return codes is
aware of that meaning.

The return address is the address originally passed in register 14; you should always return control to that
address. If an addressing mode switch is not involved, you can either use a branch instruction such as
BR 14, or you can use the RETURN macro. An example of each of these methods of returning control is
discussed in the following paragraphs. If an addressing mode switch is involved, you can use a BSM 0,14
instruction to return control. See Figure 10 on page 32 for an example that uses the BSM instruction to
return control.

Figure 17 on page 39 shows a portion of a control section used to analyze input data cards and to
check for an out-of-tolerance condition. Each time an out-of-tolerance condition is found, in addition to
some corrective action, one is added to the one-byte value at the address STATUSBY. After the last data
card is analyzed, this control section returns to the calling control section, which bases its next action
on the number of out-of-tolerance conditions encountered. The coding shown in Figure 17 on page 39
loads register 14 with the return address. The contents of register 15 are set to zero, and the value at
the address STATUSBY (the number of errors) is placed in the low-order eight bits of the register. The
contents of register 15 are shifted to the left two places to make the value a multiple of four. Registers
2-12 are reloaded, and control is returned to the address in register 14.

 .
 .
 L 13,4(13) Load address of previous save area
 L 14,12(13) Load return address
 SR 15,15 Set register 15 to zero
 IC 15,STATUSBY Load number of errors
 SLA 15,2 Set return code to multiple of 4
 LM 2,12,28(13) Reload registers 2-12
 BR 14 Return
 .
 .
STATUSBY DC X'00'

Note: This example assumes that you are returning to a program with the same AMODE. If not, use the
BSM instruction to transfer control.

Figure 17. Establishing a Return Code

Chapter 4. Program management 39

The RETURN macro saves coding time. The expansion of the RETURN macro provides instructions that
restore a designated range of registers, load a return code in register 15, and branch to the address in
register 14. If T is specified, the RETURN macro flags the save area used by the returning control section
(that is, the save area supplied by the calling routine). It does this by setting the low-order bit of word four
of the save area to one after the registers have been restored. The flag indicates that the control section
that used the save area has returned to the calling control section. The flag is useful when tracing the flow
of your program in a dump. For a complete record of program flow, a separate save area must be provided
by each control section each time control is passed.

You must restore the contents of register 13 before issuing the RETURN macro. Code the registers to be
reloaded in the same order as they would have been designated for a load-multiple (LM) instruction. You
can load register 15 with the return code before you write the RETURN macro, you can specify the return
code in the RETURN macro, or you can reload register 15 from the save area.

The coding shown in Figure 18 on page 40 provides the same result as the coding shown in Figure 17
on page 39. Registers 13 and 14 are reloaded, and the return code is loaded in register 15. The RETURN
macro reloads registers 2-12 and passes control to the address in register 14. The save area used is
not flagged. The RC=(15) parameter indicates that register 15 already contains the return code, and the
contents of register 15 are not to be altered.

 .
 .
 L 13,4(13) Restore save area address
 L 14,12(13) Return address in register 14
 SR 15,15 Zero register 15
 IC 15,STATUSBY Load number of errors
 SLA 15,2 Set return code to multiple of 4
 RETURN (2,12),RC=(15) Reload registers and return
 .
 .
STATUSBY DC X'00'

Note: You cannot use the RETURN macro to pass control to a program that executes in a different
addressing mode.

Figure 18. Using the RETURN Macro

Figure 19 on page 40 illustrates another use of the RETURN macro. The correct save area address is
again established, and then the RETURN macro is issued. In this example, registers 14 and 0-12 are
reloaded, a return code of 8 is placed in register 15, the save area is flagged, and control is returned.
Specifying a return code overrides the request to restore register 15 even though register 15 is within the
designated range of registers.

 .
 .
 L 13,4(13)
 RETURN (14,12),T,RC=8

Figure 19. RETURN Macro with Flag

Return to the control program
The discussion in the preceding paragraphs has covered passing control within one load module, and
has been based on the assumption that the load module was brought into virtual storage because of
the program name specified in the EXEC statement. The control program established only one task to
be performed for the job step. When the logical end of the program is reached, control passes to the
return address passed (in register 14) to the first control section in the control program. When the
control program receives control at this point, it terminates the task it created for the job step, compares
the return code in register 15 with any COND values specified on the JOB and EXEC statements, and
determines whether or not subsequent job steps, if any are present, should be executed.

When your program returns to the control program, your program should use a return code between 0 and
4095 (X'0FFF'). A return code of more than 4095 might make return code testing, message processing,
and report generation inaccurate.

40 z/OS: z/OS MVS Assembler Services Guide

Passing control in a dynamic structure
The discussion of passing control in a simple structure provides the background for the discussion of
passing control in a dynamic structure. Within each load module, control should be passed as in a simple
structure. If you can determine which control sections will make up a load module before you code the
control sections, you should pass control within the load module without involving the control program.
The macros discussed provide increased linkage capability, but they require control program assistance
and possibly increased execution time.

Bringing the load module into virtual storage
The control program automatically brings the load module containing the entry name you specified on
the EXEC statement into virtual storage. Each load module or program object resides in a library, either
a partitioned data set (PDS) or partitioned data set extended (PDSE). A load module resides in a PDS,
and a program object resides in a PDSE. In most cases, references to load modules apply to both load
modules and program objects. Any exceptions are specifically noted. As the control program brings the
load module into virtual storage, it places the load module above or below 16 megabytes according to
its RMODE attribute. Any other load modules you require during your job step are brought into virtual
storage by the control program when requested. Make these requests by using the LOAD, LINK, LINKX,
ATTACH, ATTACHX, XCTL, and XCTLX macros. The LOAD macro sets the high-order bit of the entry point
address to indicate the addressing mode of the load module. The ATTACH, ATTACHX, LINK, LINKX, XCTL,
and XCTLX macros use this information to set the addressing mode for the module that gets control. If
the AMODE is ANY, the module will get control in the same addressing mode as the program that issued
the ATTACH, ATTACHX, LINK, LINKX, XCTL, or XCTLX macro. If a copy of the load module must be brought
into storage, the control program places the load module above or below 16 megabytes according to its
RMODE attribute. The following paragraphs discuss the proper use of these macros.

Location of the load module
Load modules and program objects can reside in the link library, the job or step library, the task library, or
a private library.

• The link library (defined by the LNKLSTxx or PROGxx member of SYS1.PARMLIB) is always present and
is available to all job steps of all jobs. The control program provides the data control block for the library
and logically connects the library to your program, making the members of the library available to your
program. For more information, see z/OS MVS Initialization and Tuning Guide.

• The job and step libraries are explicitly established by including //JOBLIB and //STEPLIB DD statements
in the input stream. The //JOBLIB DD statement is placed immediately after the JOB statement, while
the //STEPLIB DD statement is placed among the DD statements for a particular job step. The job library
is available to all steps of your job, except those that have step libraries. A step library is available to a
single job step; if there is a job library, the step library replaces the job library for the step. For either the
job library or the step library, the control program provides the data control block and issues the OPEN
macro to logically connect the library to your program.

Authorization: To invoke a program, an authorized program (supervisor state, APF-authorized, PSW key
0 - 7, or PKM allowing key 0 - 7) must reside in an APF-authorized library or in the link pack area. The
system treats any module in the link pack area (pageable LPA, modified LPA, fixed LPA, or dynamic LPA)
as though it come from an APF-authorized library. Ensure that you properly protect SYS1.LPALIB and
any other library that contributes modules to the link pack area to avoid system security and integrity
exposures, just as you protect any APF-authorized library. See “APF-authorized programs and libraries”
on page 52 for more information about APF-authorized libraries.

• Unique task libraries can be established by using the TASKLIB parameter of the ATTACH or ATTACHX
macro. The issuer of the ATTACH or ATTACHX macro is responsible for providing the DD statement and
opening the data set or sets. If the TASKLIB parameter is omitted, the task library of the attaching task
is propagated to the attached task. In the following example, task A's job library is LIB1. Task A attaches
task B, specifying TASKLIB=LIB2 in the ATTACH or ATTACHX macro. Task B's task library is therefore
LIB2. When task B attaches task C, LIB2 is searched for task C before LIB1 or the link library. Because

Chapter 4. Program management 41

task B did not specify a unique task library for task C, its own task library (LIB2) is propagated to task C
and is the first library searched when task C requests that a module be brought into virtual storage.

Task A ATTACH EP=B,TASKLIB=LIB2
Task B ATTACH EP=C

• Including a DD statement in the input stream defines a private library that is available only to the job
step in which it is defined. You must provide the data control block and issue the OPEN macro for each
data set. You may use more than one private library by including more than one DD statement and an
associated data control block.

A library can be a single partitioned data set, or a collection of such data sets. When it is a collection,
you define each data set by a separate DD statement, but you assign a name only to the statement that
defines the first data set. Thus, a job library consisting of three partitioned data sets would be defined as
follows:

//JOBLIB DD DSNAME=PDS1,...
// DD DSNAME=PDS2,...
// DD DSNAME=PDS3...

The three data sets (PDS1, PDS2, PDS3) are processed as one, and are said to be concatenated.
Concatenation and the use of partitioned data sets is discussed in more detail in z/OS DFSMS Using
Data Sets.

Some of the load modules from the link library may already be in virtual storage in an area called the link
pack area. The contents of these areas are determined during the nucleus initialization process and will
vary depending on the requirements of your installation. The link pack area contains all reenterable load
modules from the LPA library, along with installation selected modules. These load modules can be used
by any job step in any job.

With the exception of those load modules contained in this area, copies of all of the reenterable load
modules you request are brought into your area of virtual storage and are available to any task in your job
step. The portion of your area containing the copies of the load modules is called the job pack area. Any
program loaded by a particular task is also represented within that task's load list.

The search for the load module
In response to your request for a copy of a load module, the control program searches the task's load list
and the job pack area. If a copy of the load module is found, the control program determines whether that
copy can be used (see "Using an Existing Copy"). If an existing copy can be used, the search stops. If it
cannot be used, the search continues until the module is located in a library or the link pack area. The
load module is then brought into the job pack area or placed into the load list.

The order in which the control program searches the libraries, load list, and pack areas depends on the
parameters used in the macro (LINK, LINKX, LOAD, XCTL, XCTLX, ATTACH or ATTACHX) requesting the
load module. The parameters that define the order of the search are EP, EPLOC, DE, DCB, and TASKLIB.

Use the TASKLIB parameter only for ATTACH or ATTACHX. If you know the location of the load module,
you should use parameters that eliminate as many of these searches as possible, as indicated in Figure 20
on page 43, Figure 21 on page 44, and Figure 22 on page 45.

The EP, EPLOC, or DE parameter specifies the name of the entry point in the load module. Code one of the
three every time you use a LINK, LINKX, LOAD, XCTL, XCTLX, ATTACH, or ATTACHX macro. The optional
DCB parameter indicates the address of the data control block for the library containing the load module.
Omitting the DCB parameter or using the DCB parameter with an address of zero specifies that the system
is to do its normal search. If you specified TASKLIB and if the DCB parameter contains the address of the
data control block for the link library, the control program searches no other library.

To avoid using "system copies" of modules resident in LPA and LINKLIB, you can specifically limit the
search for the load module to the load list and the job pack area and the first library on the normal search
sequence by specifying the LSEARCH parameter on the LINK, LOAD, or XCTL macro with the DCB for the
library to be used.

The following paragraphs discuss the order of the search when the entry name used is a member name.

42 z/OS: z/OS MVS Assembler Services Guide

The EP and EPLOC parameters require the least effort on your part; you provide only the entry name, and
the control program searches for a load module having that entry name. Figure 20 on page 43 shows the
order of the search when EP or EPLOC is coded, and the DCB parameter is omitted or DCB=0 is coded.

The control program searches:

1. The requesting task's load list for an available copy.
2. The job pack area for an available copy.
3. The requesting task's task library and all the unique task libraries of its preceding tasks. (For the

ATTACH or ATTACHX macro, the attached task's library and all the unique task libraries of its
preceding tasks are searched.)

4. The step library; if there is no step library, the job library (if any).
5. The link pack area.
6. The link library.

Figure 20. Search for Module, EP or EPLOC Parameter With DCB=0 or DCB Parameter Omitted

When used without the DCB parameter, the EP and EPLOC parameters provide the easiest method of
requesting a load module from the link, job, or step library. The control program searches the task
libraries before the job or step library, beginning with the task library of the task that issued the request
and continuing through the task libraries of all its antecedent tasks. It then searches the job or step
library, followed by the link library.

A job, step, or link library or a data set in one of these libraries can be used to hold one version of a load
module, while another can be used to hold another version with the same entry name. If one version is in
the link library, you can ensure that the other will be found first by including it in the job or step library.
However, if both versions are in the job or step library, you must define the data set that contains the
version you want to use before the data set that contains the other version. For example, if the wanted
version is in PDS1 and the unwanted version is in PDS2, a step library consisting of these data sets should
be defined as follows:

//STEPLIB DD DSNAME=PDS1,...
// DD DSNAME=PDS2,...

Use extreme caution when specifying duplicate module names. Even if you code the DCB parameter,
the wrong module can still receive control. For example, suppose there are two modules with the same
name you want to invoke, one after the other. To distinguish between them in this example they are called
PROG2 and PROG2'. PROG1 issues a LOAD for PROG2 and BALRs to it. PROG2 issues a LINK specifying
a DCB for the library with the other copy of PROG2 (which we are calling PROG2'). The LINK will find
a useable copy of PROG2 in the Job Pack Area and invoke it again, regardless of the DCB parameter.
PROG2 again issues a LINK for PROG2'. This time the copy of PROG2 in the Job Pack Area is marked "not
reusable" and PROG2' is loaded using the DCB parameter and given control.

The problem encountered in the previous example could be avoided by any one of the following
sequences:

• PROG1 links to PROG2 and PROG2 links to PROG2'
• PROG1 loads and branches to PROG2. PROG2 loads and branches to PROG2'
• PROG1 links to PROG2 and PROG2 loads and branches to PROG2'

Once a module has been loaded from a task library, step library, or job library, the module name is known
to all tasks in the address space and may be used as long as the module is considered usable. Generally
speaking, reenterable modules are always usable. Serially reusable modules are usable when they are
currently in use. Non-reentrant, non-serially reusable modules are considered usable for LOAD if the use
count is zero. A module is considered usable for ATTACH, LINK, or XCTL if it has not been marked NOT
REUSABLE by a previous ATTACH, LINK, or XCTL. The use count is not considered.

Chapter 4. Program management 43

If you know that the load module you are requesting is a member of one of the private libraries, you can
still use the EP or EPLOC parameter, this time in conjunction with the DCB parameter. Specify the address
of the data control block for the private library in the DCB parameter. The order of the search for EP or
EPLOC with the DCB parameter (when the DCB parameter is not 0) is shown in Figure 21 on page 44.

The control program searches:

1. The requesting task's load list for an available copy.
2. The job pack area for an available copy.
3. The specified library.
4. The link pack area.
5. The link library.

Figure 21. Search for Module, EP or EPLOC Parameters With DCB Parameter Specifying Private Library

Searching a job or step library slows the retrieval of load modules from the link library; to speed this
retrieval, you should limit the size of the job and step libraries. You can best do this by eliminating the
job library altogether and providing step libraries where required. You can limit each step library to the
data sets required by a single step. Some steps (such as compilation) do not require a step library and
therefore do not require searching and retrieving modules from the link library. For maximum efficiency,
you should define a job library only when a step library would be required for every step, and every step
library would be the same.

The DE parameter requires more work than the EP and EPLOC parameters, but it can reduce the amount
of time spent searching for a load module. Before you can use this parameter, you must use the BLDL
macro to obtain the directory entry for the module. The directory entry is part of the library that contains
the module. See z/OS DFSMS Macro Instructions for Data Sets for more information about the BLDL macro.

To save time, the BLDL macro must obtain directory entries for more than one entry name. Specify the
names of the load modules and the address of the data control block for the library when using the
BLDL macro; the control program places a copy of the directory entry for each entry name requested
in a designated location in virtual storage. If you specify the link library and the job or step library by
specifying DCB=0, the directory information indicates from which library the directory entry was taken.
The directory entry always indicates the relative track and block location of the load module in the library.
If the load module is not located on the library you indicate, a return code is given. You can then issue
another BLDL macro specifying a different library.

To use the DE parameter, provide the address of the directory entry and code or omit the DCB parameter
to indicate the same library specified in the BLDL macro. The task using the DE parameter should be the
same as the one which issued the BLDL or one which has the same job, step, and task library structure as
the task issuing the BLDL. The order of the search when the DE parameter is used is shown in Figure 22
on page 45 for the link, job, step, and private libraries.

The preceding discussion of the search is based on the premise that the entry name you specified is the
member name. The control program checks for an alias entry point name when the load module is found
in a library. If the name is an alias, the control program obtains the corresponding member name from
the library directory, and then searches to determine if a usable copy of the load module exists in the job
pack area. If a usable copy does not exist in a pack area, a new copy is brought into the job pack area.
Otherwise, the existing copy is used, conserving virtual storage and eliminating the loading time.

44 z/OS: z/OS MVS Assembler Services Guide

Searching when Directory Entry is provided. First two steps are *always* search load list and search job
pack queue.

• No DCB specified and no job/step/tasklib exists, or if DCB is specified and selects the LNKLST

– Search LPA
– Search LNKLST

• No DCB specified, job/step/tasklib exists

– DE indicates LNKLST

- Search LPA
- Search LNKLST

– DE indicates job/step/tasklib

- Search that job/step/tasklib
- Unless precluded by LSEARCH=YES

• Search other job/step/tasklibs
• Search LPA
• Search LNKLST

– DE indicates private library

- Search library specified by TCBJLB
- Unless precluded by LSEARCH=YES

• Search LPA
• Search LNKLST

• DCB specified, does not select LNKLST

– DE indicates LNKLST

- Search LPA
- Search LNKLST

– DE indicates job/step/tasklib

- Search that job/step/tasklib
- Unless precluded by LSEARCH=YES

• Search LPA
• Search LNKLST

– DE indicates private library

- Search library specified by DCB
- Unless precluded by LSEARCH=YES

• Search LPA
• Search LNKLST

Figure 22. Search for Module Using DE Parameter

As the discussion of the search indicates, you should choose the parameters for the macro that provide
the shortest search time. The search of a library actually involves a search of the directory, followed by
copying the directory entry into virtual storage, followed by loading the load module into virtual storage. If
you know the location of the load module, you should use the parameters that eliminate as many of these
unnecessary searches as possible, as indicated in Figure 20 on page 43, Figure 21 on page 44, and Figure
22 on page 45. Examples of the use of these figures are shown in the following discussion of passing
control.

Chapter 4. Program management 45

Using an existing copy
The control program uses a copy of the load module already in the requesting task's load list or the job
pack area if the copy can be used. Whether the copy can be used or not depends on the reusability
and current status of the load module, that is, the load module attributes, as designated using linkage
editor control statements, and whether the load module has already been used or is in use. The status
information is available to the control program only when you specify the load module entry name on an
EXEC statement, or when you use ATTACH, ATTACHX, LINK, LINKX, XCTL, or XCTLX macros to transfer
control to the load module. The control program protects you from obtaining an unusable copy of a load
module if you always "formally" request a copy using these macros (or the EXEC statement). If you pass
control in any other manner (for instance, a branch or a CALL macro), the control program, because it is
not informed, cannot protect your copy. If your program is in AR mode, and the SYSSTATE ASCENV=AR
macro has been issued, use the ATTACHX, LINKX, and XCTLX macros instead of ATTACH, LINK, and XCTL.
The macros whose names end with "X" generate code and addresses that are appropriate for AR mode.

All reenterable modules (modules designated as reenterable using the linkage editor) from any library are
completely reusable. Only one copy is normally placed in the link pack area or brought into your job pack
area, and you get immediate control of the load module. However, there might be circumstances beyond
your control that can cause an additional copy to be placed into your job pack area. The control program
might do this, for example, to preserve system integrity.

If the module is serially reusable, only one copy is ever placed in the job pack area; this copy is always
used for a LOAD macro. If the copy is in use, however, and the request is made using a LINK, LINKX,
ATTACH, ATTACHX, XCTL, or XCTLX macro, the task requiring the load module is placed in a wait condition
until the copy is available. You should not issue a LINK or LINKX macro for a serially reusable load module
currently in use for the same task; the task will be abnormally terminated. (This could occur if an exit
routine issued a LINK or LINKX macro for a load module in use by the main program.)

If the load module is not reusable, a LOAD macro will always bring in a new copy of the load module; an
existing copy is used only if you issued a LINK, LINKX, ATTACH, ATTACHX XCTL or XCTLX macro and the
copy has not been used previously. Remember, the control program can determine if a load module has
been used or is in use only if all of your requests are made using LINK, LINKX, ATTACH, ATTACHX, XCTL or
XCTLX macros.

Using the LOAD macro
If a copy of the specified load module is not already in the link pack area, use the LOAD macro to place
a copy in the address space. When you issue a LOAD macro, the control program searches for the load
module as discussed previously and brings a copy of the load module into the address space if required.
Normally, you should use the LOAD macro only for a reenterable or serially reusable load module, because
the load module is retained even though it is not in use.

The control program places the copy of the load module in subpool 244 or subpool 251, unless the
following three conditions are true:

• The module is reentrant
• The library is authorized
• You are not running under TSO/E test

In this case, the control program places the module in subpool 252. When choosing between subpools
244 and 251. the control program uses:

• subpool 244 only when within a task that was created by ATTACHX with the KEY=NINE parameter
• subpool 251 in all other cases.

Subpool 244 is not fetch protected and has a storage key equal to your PSW key. Subpool 251 is fetch
protected and has a storage key equal to your PSW key. Subpool 252 is not fetch protected and has
storage key 0.

The use count for the copy is lowered by one when you issue a DELETE macro during the task which was
active when the LOAD macro was issued. When a task is terminated, the count is lowered by the number

46 z/OS: z/OS MVS Assembler Services Guide

of LOAD macros issued for the copy when the task was active minus the number of deletions. When the
use count for a copy in a job pack area reaches zero, the virtual storage area containing the copy is made
available.

Passing control with return
Use the LINK or LINKX macro to pass control between load modules and to provide for return of control.
You can also pass control using branch, branch and link, branch and save, or branch and save and set
mode instructions or the CALL macro. However, when you pass control in this manner, you must protect
against multiple uses of non-reusable or serially reusable modules. You must also be careful to enter the
routine in the proper addressing mode. The following paragraphs discuss the requirements for passing
control with return in each case.

Using the LINK or LINKX macro
When you use the LINK or LINKX macro, you are requesting the system to assist you in passing control to
another load module. There is some similarity between passing control using a LINK or LINKX macro and
passing control using a CALL macro in a simple structure. These similarities are discussed first.

The convention regarding registers 2-12 still applies; the control program does not change the contents
of these registers, and the called load module should restore them before control is returned. Unless you
are an AR mode program calling an AR mode program that uses the linkage stack, you must provide the
address in register 13 of the save area for use by the called load module; the system does not use this
save area. You can pass address parameters in a parameter list to the load module using register 1. The
LINK or LINKX macro provides the same facility for constructing this list as the CALL macro. Register 0 is
used by the control program and the contents may be modified. In certain cases, the contents of register
1 may be altered by the LINK or LINKX macro.

There is also some difference between passing control using a LINK or LINKX macro and passing control
using a CALL macro. When you pass control using the CALL macro, register 15 contains the entry address
and register 14 contains the return address. When the called load module gets control, that is still what
registers 14 and 15 contain. When you use the LINK or LINKX macro, it is the control program that
establishes the values in registers 14 and 15. When you code the LINK or LINKX macro, you provide the
entry name and possibly some library information using the EP, EPLOC, or DE, and DCB parameters, but
you have to get this entry name and library information to the control program. The expansion of the LINK
or LINKX macro does this by creating a control program parameter list (the information required by the
control program) and passing its address to the control program. After the control program determines
the entry point address, it places the address in register 15 if the target routine is to run in 24-bit or 31-bit
addressing mode. If the target routine is to run in 64-bit addressing mode, that routine is expected to use
relative branching, and register 15 contains a value that can be used to determine the addressing mode of
the issuer of the LINK or LINKX macro as follows:

• Issuer AMODE 24: X'FFFFF000'
• Issuer AMODE 31: X'FFFFF002'
• Issuer AMODE 64: X'FFFFF004'

Note: For assistance in converting a program to use relative branching, refer to the IEABRC and IEABRCX
macros.

The return address in your control section is always the instruction following the LINK or LINKX; that is
not, however, the address that the called load module receives in register 14. The control program saves
the address of the location in your program in its own save area, and places in register 14 the address
of a routine within the control program that will receive control. Because control was passed using the
control program, return must also be made using the control program. The control program also handles
all switching of addressing mode when processing the LINK or LINKX macro.

Note: A program that is LINKed to will get control with the caller's Floating Point Registers and Floating
Point Control register. The S/390 linkage convention applies. For more information, see Chapter 2,
“Linkage conventions,” on page 5.

Chapter 4. Program management 47

The control program establishes a use count for a load module when control is passed using the LINK or
LINKX macro. This is a separate use count from the count established for LOAD macros, but it is used in
the same manner. The count is increased by one when a LINK or LINKX macro is issued and decreased by
one when return is made to the control program or when the called load module issues an XCTL or XCTLX
macro.

Figure 23 on page 48 and Figure 24 on page 48 show the coding of a LINK or LINKX macro used to pass
control to an entry point in a load module. In Figure 23 on page 48, the load module is from the link, job,
or step library; in Figure 24 on page 48, the module is from a private library. Except for the method used
to pass control, this example is similar to Figures 10 and 11. A problem program parameter list containing
the addresses INDCB, OUTDCB, and AREA is passed to the called load module; the return point is the
instruction following the LINK or LINKX macro. A V-type address constant is not generated, because the
load module containing the entry point NEXT is not to be edited into the calling load module. Note that
the EP parameter is chosen, since the search begins with the job pack area and the appropriate library as
shown in Figure 20 on page 43.

 LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1
RETURNPT ...
AREA DC 12F'0'

Figure 23. Use of the LINK Macro with the Job or Link Library

 OPEN (PVTLIB)
 .
 .
 LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=1
 .
 .
PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Figure 24. Use of the LINK Macro with a Private Library

Figure 25 on page 48 and Figure 26 on page 49 show the use of the BLDL and LINK macros to pass
control. Assuming that control is to be passed to an entry point in a load module from the link library,
a BLDL macro is issued to bring the directory entry for the member into virtual storage. (Remember,
however, that time is saved only if more than one directory entry is requested in a BLDL macro. Only one is
requested here for simplicity.)

 BLDL 0,LISTADDR
 .
 .
 DS 0H List description field:
LISTADDR DC H'01' Number of list entries
 DC H'60' Length of each entry
NAMEADDR DC CL8'NEXT' Member name
 DS 26H Area required for directory information

Figure 25. Use of the BLDL Macro

The first parameter of the BLDL macro is a zero, which indicates that the directory entry is on the link,
job, step, or task library. The second parameter is the address in virtual storage of the list description field
for the directory entry. The second two bytes at LISTADDR indicate the length of each entry. A character
constant is established to contain the directory information to be placed there by the control program as a
result of the BLDL macro. The LINK macro in Figure 26 on page 49 can now be written. Note that the DE
parameter refers to the name field, not the list description field, of the directory entry.

48 z/OS: z/OS MVS Assembler Services Guide

LINK DE=NAMEADDR,DCB=0,PARAM=(INDCB,OUTDCB,AREA),VL=1

Figure 26. The LINK Macro with a DE Parameter

Using CALL, BALR, BASR, or BASSM
When a module is reenterable, you can save time by passing control to a load module without using the
control program. Pass control without using the control program as follows.

• Issue a LOAD macro to obtain a copy of the load module, preceded by a BLDL macro if you can shorten
the search time by using it.

The control program returns the address of the entry point and the addressing mode in register 0 and
the length in doublewords in register 1.

• Load this address into register 15.

The linkage requirements are the same when passing control between load modules as when passing
control between control sections in the same load module: register 13 must contain a save area
address, register 14 must contain the return address, and register 1 is used to pass parameters in a
parameter list. A branch instruction, a branch and link instruction (BALR), a branch and save instruction
(BASR), a branch and save and set mode instruction (BASSM), or a CALL macro can be used to pass
control, using register 15. Use BASSM (or the CALL macro with the LINKINST=BASSM parameter
specified) only if there is to be an addressing mode switch. The return will be made directly to your
program.

Note:

1. You must use a branch and save and set mode instruction (or the CALL macro with the
LINKINST=BASSM parameter specified) if passing control to a module in a different addressing mode.

2. When control is passed to a load module without using the control program, you must check the
load module attributes and current status of the copy yourself, and you must check the status in all
succeeding uses of that load module during the job step, even when the control program is used to
pass control.

The reason you have to keep track of the usability of the load module has been discussed previously;
you are not allowing the control program to determine whether you can use a particular copy of the load
module. The following paragraphs discuss your responsibilities when using load modules with various
attributes. You must always know what the reusability attribute of the load module is. If you do not know,
you should not attempt to pass control yourself.

If the load module is reenterable, one copy of the load module is all that is ever required for a job step.
You do not have to determine the status of the copy; it can always be used. You can pass control by using
a CALL macro, a branch, a branch and link instruction, a branch and save instruction, or a branch and save
and set mode instruction (BASSM). Use BASSM (or the CALL macro with the LINKINST=BASSM parameter
specified) only if there is to be an addressing mode switch.

If the load module is serially reusable, one use of the copy must be completed before the next use begins.
If your job step consists of only one task, make sure that the logic of your program does not require a
second use of the same load module before completion of the first use. This prevents simultaneous use of
the same copy. An exit routine must not require the use of a serially reusable load module also required in
the main program.

Preventing simultaneous use of the same copy when you have more than one task in the job step requires
more effort on your part. You must still be sure that the logic of the program for each task does not require
a second use of the same load module before completion of the first use. You must also be sure that
no more than one task requires the use of the same copy of the load module at one time. You can use
the ENQ macro for this purpose. Properly used, the ENQ macro prevents the use of a serially reusable

Chapter 4. Program management 49

resource, in this case a load module, by more than one task at a time. For information on the ENQ macro,
see Chapter 6, “Resource control,” on page 101 You can also use a conditional ENQ macro to check for
simultaneous use of a serially reusable resource within one task.

If the load module is non-reusable, each copy can only be used once; you must be sure that you use a
new copy each time you require the load module. You can ensure that you always get a new copy by using
a LINK macro or by doing the following:

1. Issue a LOAD macro before you pass control.
2. Pass control using a branch, branch and link, branch and save, branch and save and set mode

instruction, or a CALL macro.
3. Issue a DELETE macro as soon as you are through with the copy.

How control is returned
The return of control between load modules is the same as return of control between two control sections
in the same load module. The program in the load module returning control is responsible for restoring
registers 2-14, possibly loading a return code in register 15, passing control using the address in register
14 and possibly setting the correct addressing mode. The program in the load module to which control
is returned can expect registers 2-13 to be unchanged, register 14 to contain the return address, and
optionally, register 15 to contain a return code. Control can be returned using a branch instruction, a
branch and set mode instruction or the RETURN macro. If control was passed without using the control
program, control returns directly to the calling program. However, if control was originally passed using
the control program, control returns first to the control program, then to the calling program.

Passing control without return
Use the XCTL or XCTLX macro to pass control to a target load module when return of control is not
required. You can also pass control using a branch instruction. However, when you pass control in this
manner, you must ensure that multiple uses of non-reusable or serially reusable modules does not occur.
The following paragraphs discuss the requirements for passing control without return in each case.

Passing control using a branch instruction
The same requirements and procedures for protecting against reuse of a non-reusable copy of a load
module apply when passing control without return as were stated under "Passing Control With Return."
The procedures for passing control are as follows.

Issue a LOAD macro to obtain a copy of the load module. The entry address and addressing mode
returned in register 0 are loaded into register 15. The linkage requirements are the same when passing
control between load modules as when passing control between control sections in the same load
module; register 13 must be reloaded with the old save area address, then registers 14 and 2-12 restored
from that old save area. Register 1 is used to pass parameters in a parameter list. If the addressing
mode does not change, a branch instruction is issued to pass control to the address in register 15; if the
addressing mode does change, a branch and save and set mode macro is used.

Note: Mixing branch instructions and XCTL or XCTLX macros is hazardous. The next topic explains why.

Using the XCTL or XCTLX macro
The XCTL or XCTLX macro, in addition to being used to pass control, is used to indicate to the control
program that this use of the load module containing the XCTL or XCTLX macro is completed. Because
control will not be returned, the XCTL issuer must load the address of the old save area into register 13
prior to issuing the XCTL. The return address must be loaded into register 14 from the old save area, as
must the contents of registers 2-12. The XCTL or XCTLX macro can be written to request the loading of
registers 2-12, or you can do it yourself. If you restore all registers yourself, do not use the EP parameter.
This creates an inline parameter list that can only be addressed using your base register, and your base
register is no longer valid. If EP is used, you must have XCTL or XCTLX restore the base register for you.

50 z/OS: z/OS MVS Assembler Services Guide

Note: A program that is XCTLed to will get control with the caller's Floating Point Registers and Floating
Point Control register. The program that issued the XCTL macro is not returned to, instead the XCTLed
program will return to the program that caused the issuer of the XCTL macro to run. The S/390 linkage
convention applies except that the non-volatile FPRs and FPC register that must be restored are different.
The issuer of the XCTL macro must restore its caller's non-volatile FPRs and FPC register before issuing
the XCTL (just as if it were returning to its caller). For more information on linkage conventions, see
Chapter 2, “Linkage conventions,” on page 5.

When using the XCTL or XCTLX macro, pass parameters to the target module in a parameter list. In
this case, however, the parameter list (or the parameter data) must be established in remote storage, a
portion of virtual storage outside the current load module containing the XCTL or XCTLX macro. This is
because the copy of the current load module may be deleted before the called load module can use the
parameters (more details follow).

The XCTL or XCTLX macro is similar to the LINK macro in the method used to pass control: control is
passed by the control program using a control parameter list. The control program loads a copy of the
target load module, if necessary, saves the address passed in register 14, and determines the entry
address. When the entry address is to run in 24-bit or 31-bit addressing mode, the control program
loads the entry address in register 15 and passes control to that address. When the entry address is to
run in 64-bit addressing mode, the 64-bit program is expected to use relative branching and the control
program puts into register 15 a value that can be used to determine the address mode of the issuer of the
XCTL or XCTLX macro as follows:

• Issuer AMODE 24: X'FFFFF000'
• Issuer AMODE 31: X'FFFFF002'
• Issuer AMODE 64: X'FFFFF004'

Note: For assistance in converting a program to use relative branching, refer to the IEABRC and IEABRCX
macros.

The control program then passes control to the entry address. The control program adds one to the use
count for the copy of the target load module and subtracts one from the use count for the current load
module. The current load module in this case is the load module last given control using the control
program in the performance of the active task. If you have been passing control between load modules
without using the control program, chances are the use count will be lowered for the wrong load module
copy. And remember, when the use count of a copy reaches zero, that copy may be deleted, causing
unpredictable results if you try to return control to it.

Figure 27 on page 52 shows how this could happen. Control is given to load module A, which passes
control to the load module B (step 1) using a LOAD macro and a branch and link instruction. Register
14 at this time contains the address of the instruction following the branch and link. Load module B
then executes, independently of how control was passed, and issues an XCTL or XCTLX macro when it
is finished (step 2) to pass control to target load module C. The control program knowing only of load
module A, lowers the use count of A by one, resulting in its deletion. Load module C is executed and
returns to the address which used to follow the branch and link instruction. Step 3 of Figure 27 on page
52 indicates the result.

Chapter 4. Program management 51

Figure 27. Misusing Control Program Facilities Causes Unpredictable Results

Two methods are available for ensuring that the proper use count is lowered. One way is to always use the
control program to pass control with or without return. The other method is to use only LOAD and DELETE
macros to determine whether or not a copy of a load module should remain in virtual storage.

Note: The control program abnormally terminates the task if the XCTL issuer added entries to the linkage
stack and did not remove them before issuing the XCTL.

APF-authorized programs and libraries
The authorized program facility (APF) helps your installation protect the system. APF-authorized
programs can access system functions that can affect the security and integrity of the system. APF-
authorized programs must reside in APF-authorized libraries, which are defined in an APF list, or in the
link pack area. The system treats any module in the link pack area (pageable LPA, modified LPA, fixed
LPA, or dynamic LPA) as though it comes from an APF-authorized library. Ensure that you properly protect
SYS1.LPALIB and any other library that contributes modules to the link pack area to avoid system security
and integrity exposures, just as you protect any APF-authorized library.

Unauthorized programs can issue the CSVAPF macro to:

• Determine whether or not a library is in the APF list
• Determine the current format (dynamic or static) of the APF list

52 z/OS: z/OS MVS Assembler Services Guide

• Obtain a list of all library entries in the APF list

APF also prevents authorized programs (supervisor state, APF-authorized, PSW key 0-7, or PKM 0-7)
from accessing a load module that is not in an APF-authorized library. The application development
documentation for programmers who use authorized programs provide more information about APF
authorization.

Additional Entry Points
Through the use of linkage editor facilities you can specify as many as 17 different names (a member
name and 16 aliases) and associated entry points within a load module. Take note that all names are
expected to be unique across all possible libraries where a module may be retrieved from; and all aliases
are expected to have the related primary module name in the same library. It is only through the use of
the member name or the aliases that a copy of the load module can be brought into virtual storage. Once
a copy has been brought into virtual storage, however, additional entry points can be provided for the load
module, subject to one restriction. The load module copy to which the entry point is to be added must be
one of the following:

• A copy that satisfied the requirements of a LOAD macro issued during the same task
• The copy of the load module most recently given control through the control program in performance of

the same task.

Add the entry point by using the IDENTIFY macro. The IDENTIFY macro cannot be issued by supervisor
call routines, SRBs, or asynchronous exit routines established using other supervisor macros.

When you use the IDENTIFY macro, you specify the name to be used to identify the entry point, and the
virtual storage address of the entry point in the copy of the load module. The address must be within a
copy of a load module that meets the previously stated requirements; if it is not, the entry point will not
be added, and you will be given a return code of 0C (hexadecimal). The name can be any valid symbol
of up to eight characters, and does not have to correspond to a name or symbol within the load module.
You are responsible for not duplicating a member name or an alias in any of the libraries. Duplicate names
cause the system to return a return code of 8.

The IDENTIFY service sets the addressing mode of the alias entry point equal to the addressing mode of
the major entry point.

If an authorized program creates an alias for a module in the pageable link pack area or active link
pack area, the IDENTIFY service places an entry for the alias on the active link pack area queue. If an
unauthorized user creates an alias for a module in the pageable link pack area or active link pack area, the
IDENTIFY service places an entry for the alias on the job pack queue of the requesting job.

Entry Point and Calling Sequence Identifiers as Debugging Aids
An entry point identifier is a character string of up to 70 characters that can be specified in a SAVE macro.
The character string is created as part of the SAVE macro expansion.

A calling sequence identifier is a 16-bit binary number that can be specified in a CALL, LINK, or LINKX
macro. When coded in a CALL, LINK, or LINKX macro, the calling sequence identifier is located in the two
low-order bytes of the fullword at the return address. The high-order two bytes of the fullword form a NOP
instruction.

Retrieving Information About Loaded Modules
Both the CSVINFO and CSVQUERY macros return information about loaded modules. A loaded module
is a load module that has been loaded into storage. Use CSVQUERY if you need information about a
particular loaded module or if your program is running in access register (AR) mode. Use CSVINFO to
obtain information about a group of loaded modules or when you want information about the loaded
module associated with a particular program request block (PRB) or information that the CSVQUERY
macro does not provide.

The following information is available only through the CSVINFO macro:

Chapter 4. Program management 53

• Whether the entry point is an alias created using the IDENTIFY macro.
• The starting address of every extent and the number of extents for loaded modules with multiple

extents. (CSVQUERY provides only the entry point address and the total module length.)
• The load count, system count, and total use count for the loaded module.
• The name of the major entry point, if the entry point is an alias.
• The full entry point name for modules with names longer than 8 characters.

In addition to the information you request, the CSVINFO macro returns the file name for modules in the
OpenMVS file system.

Using the CSVINFO macro
The CSVINFO macro provides information about loaded modules associated with a job step or a task. You
can invoke CSVINFO from a program or an IPCS exit.

Note: IBM recommends that you use the CSVINFO macro rather than write your own program to scan
control blocks for information about loaded modules. Using the CSVINFO macro enables you to retrieve
module information without depending on the details or structures of data areas.

The CSVINFO service requires a user-written module information processing routine (MIPR). The
CSVINFO service obtains information about loaded modules and uses the CSVMODI data area to pass that
information to the MIPR. The MIPR examines this data and returns control to CSVINFO, either requesting
information about an additional loaded module or indicating that no more information is needed. This
loop continues until the CSVINFO service has returned to the MIPR all requested information or all
available information.

For example, if you request information about all loaded modules in your job pack area (JPA), the
CSVINFO service uses the CSVMODI data area to pass information about the first loaded module to the
MIPR. The MIPR processes the information and returns control to CSVINFO to obtain information about
the next loaded module in the JPA. Processing continues until CSVINFO indicates that all information has
been obtained or until the MIPR determines that no more information is required.

When you issue the CSVINFO macro, use the FUNC parameter to specify the information you want, and
the ENV parameter to specify whether CSVINFO is being issued from a program or from an IPCS exit. Use
the MIPR parameter to pass the address of your MIPR. You can pass 16 bytes of information to the MIPR
using the USERDATA parameter. Information could include register contents, parameter list addresses, or
other information your MIPR requires. CSVINFO places your user data into the CSVMODI data area.

Figure 28 on page 55 shows the processing that occurs when your program or exit issues the CSVINFO
macro. The figure includes numbered steps which are explained following the figure.

54 z/OS: z/OS MVS Assembler Services Guide

Figure 28. Processing flow for the CSVINFO macro and the caller's MIPR

Figure 28 on page 55 depicts the following steps:

1. The application or IPCS exit invokes the CSVINFO macro.
2. CSVINFO retrieves the module information you want.
3. CSVINFO places the information into the CSVMODI data area.
4. CSVINFO passes control to your MIPR.
5. The MIPR reads the information that is in the CSVMODI data area.
6. The MIPR places the information into your storage or otherwise processes the information.
7. The MIPR sets a return code for CSVINFO:

• A return code of zero to request information about another loaded module
• A nonzero return code to indicate that no more information is needed.

8. The MIPR returns control to CSVINFO.
9. Steps 2 through 8 are repeated until the MIPR indicates to CSVINFO that no more information is

needed, or CSVINFO indicates to the MIPR that all information has been retrieved.
10. CSVINFO sets a return code and returns control to your program when the MIPR passes CSVINFO

a return code indicating that no more information is needed, or when CSVINFO has passed all the
information to the MIPR.

11. The application or IPCS exit continues processing.

Reference information:

• The CSVMODI data area serves as the interface between the CSVINFO service and the MIPR. For more
information about the CSVMODI mapping macro, see z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

Chapter 4. Program management 55

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

• z/OS MVS IPCS Commands explains how to verify the correct use of the CSVINFO macro in an IPCS exit.
See the TRAPON, TRAPOFF, and TRAPLIST subcommand descriptions.

• z/OS MVS IPCS Customization provides information about writing IPCS exits.

Serialization
Information about loaded modules in common storage is serialized by the LOCAL and CMS locks.
Information about other loaded modules is serialized by the LOCAL lock. When the CSVINFO service
runs with serialization, you are guaranteed that the information CSVINFO obtains is not in the process of
being updated.

If your program runs in problem state and invokes the CSVINFO macro, your program cannot hold the
appropriate locks and the CSVINFO service does not obtain them. Thus, the CSVINFO service retrieves
information without serializing on it. If you are requesting information about loaded modules in common
storage or if multi-tasking is taking place in your address space, the module information you request
might be changing while the CSVINFO service is retrieving information. In rare instances, the CSVINFO
service could return incorrect information or end abnormally.

If your program runs in supervisor state and invokes the CSVINFO macro, the CSVINFO service obtains
the appropriate locks if your program does not already hold them.

Coding a MIPR for the CSVINFO macro
This topic contains information about coding a MIPR.

Installing the MIPR
You can either link-edit your MIPR with the program that invokes the CSVINFO macro or include the MIPR
in mainline code.

MIPR environment
The MIPR receives control running under the unit of work that invoked the CSVINFO macro, in the
following environment:

Environment requirements:

Minimum authorization: Problem state and any PSW key.

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 31-bit

ASC mode: Primary

Interrupt status: Enabled for I/O and external interrupts

Control parameters: Control parameters must be in the primary address space.

Recovery for MIPR provided by CSVINFO
Table 2 on page 56 shows the recovery environment that the CSVINFO service establishes for itself and
the MIPR.

Table 2. CSVINFO Recovery

ENV Keyword Caller State/Key Recovery Provided

ENV=MVS Supervisor state The caller's MIPR gets control with CSVINFO's FRR
in effect.

56 z/OS: z/OS MVS Assembler Services Guide

Table 2. CSVINFO Recovery (continued)

ENV Keyword Caller State/Key Recovery Provided

ENV=MVS Problem state The caller's MIPR gets control with CSVINFO's
ESTAE routine in effect.

ENV=IPCS Problem or supervisor
state

No recovery provided

Entry specifications
The MIPR gets control through standard branch entry linkage. Input to the MIPR is the address of the
CSVMODI data area, containing information from the CSVINFO service.

Registers at entry
When the MIPR receives control, the general purpose registers (GPRs) contain the following information:
GPR

Contents
0

Does not contain any information for use by the routine
1

Address of the CSVMODI data area
2 - 12

Does not contain any information for use by the routine
13

Address of a standard 72-byte save area
14

Return address to the CSVINFO service
15

Entry point address of MIPR

Return specifications
Upon return from MIPR processing, you must ensure that the register contents are as follows:

Registers at exit
GPR

Contents
0-1

The MIPR does not have to place any information into these registers, and does not have to restore
their contents to what they were when the MIPR received control.

2-13
The MIPR must restore the register contents to what they were when the MIPR received control.

14
Return address to the CSVINFO service

15
Return code from the MIPR

Note: The CSVINFO service continues processing until either of the following occurs:

• It receives a non-zero return code from the MIPR.
• It has returned all available data

Chapter 4. Program management 57

When CSVINFO receives a non-zero return code, it returns control to the program that invoked the
CSVINFO macro.

CSVINFO service coding example
The CSVSMIPR member of SAMPLIB contains a coded example of the use of the CSVINFO service and its
associated MIPR. The sample program is a reentrant program that has its MIPR included within the same
module.

58 z/OS: z/OS MVS Assembler Services Guide

Chapter 5. Understanding 31-bit addressing

Note to reader

This information documents the programming considerations for running 31-bit addressing mode
programs on previous versions and releases of MVS. Because this information might be useful for
programmers who maintain or update legacy programs, the chapter is preserved to reflect the
programming environment of previous MVS versions. If you intend to design and code a new program
to run on z/OS releases, consider the following:

• Always design a program to run in 31-bit addressing mode, to take full advantage of the virtual storage
capacity of MVS.

• Use the IBM High Level Assembler, instead of Assembler H, to assemble the new program. As of
MVS/SP 5.2, Assembler H is not supported.

• Use the program management binder, instead of the linkage editor and loader, to prepare the program
for execution.

End of Note to reader

z/Architecture® supports 64-bit real and virtual addresses. For compatibility with Enterprise Systems
Architecture (ESA) and 370/Extended Architecture (XA), z/Architecture also supports 31-bit real and
virtual addresses, which provide a maximum real and virtual address of two gigabytes minus one. For
compatibility with older systems, z/Architecture also supports 24-bit real and virtual addresses.

The basic characteristics of the system that provide for 64-bit and 31-bit addresses and the continued
use of 24-bit addresses are:

• A virtual storage map of two gigabytes with most MVS services to support programs executing or
residing anywhere in the first two gigabytes of virtual storage. A virtual storage map of a theoretical 16
exabytes to support programs executing in 64-bit mode.

• Two program attributes that specify expected address length on entry (addressing mode) and intended
location in virtual storage (residence mode).

• Trimodal operation, a capability of the processor that permits the execution of programs with 24-bit
addresses as well as programs with 31-bit and 64-bit addresses.

Virtual storage
In the MVS 31-bit virtual storage map:

• Each address space has its own two gigabytes of virtual storage.
• Each private area has a portion below 16 megabytes and an extended portion above 16 megabytes but,

logically, these areas can be thought of as one area.

Figure 29 on page 60 shows the virtual storage map for 24-bit, 31-bit, and 64-bit addressing. While this
topic only discusses 31-bit addressing, the entire virtual storage map is shown. The 24-bit addressing
range ends at the 16 MB line, the 31-bit addressing range ends at the 2 GB bar, and the 64-bit addressing
range ends at 16 EB. 64-bit addressing is covered in Chapter 12, “Using the 64-bit address space,” on
page 199.

Addressing mode and residency mode
The processor can treat addresses as having either 24 or 31 bits. Addressing mode (AMODE) describes
whether the processor is using 24-bit or 31-bit addresses. Programs can reside in 24-bit addressable
areas or beyond the 24-bit addressable area (above 16 megabytes). Residency mode (RMODE) specifies
whether the program must reside in the 24-bit addressable area or can reside anywhere in 31-bit
addressable storage.

© Copyright IBM Corp. 1988, 2022 59

Addressing mode (AMODE) and residency mode (RMODE) are program attributes specified (or defaulted)
for each CSECT, load module, and load module alias. These attributes are the programmer's specification
of the addressing mode in which the program is expected to get control and where the program is
expected to reside in virtual storage.

AMODE defines the addressing mode (24, 31, or ANY) in which a program expects to receive control.
Addressing mode refers to the address length that a program is prepared to handle on entry: 24-bit
addresses, 31-bit addresses, or both (ANY). Programs with an addressing mode of ANY have been
designed to receive control in either 24- or 31-bit addressing mode.

Extended CSA

“The bar”

“The line”

Extended User Region (Extended Low Private)

Extended PLPA/FLPA/MLPA

Extended SQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA

CSA

PSA

System Region

User Region (Low Private)

LSQA/SWA/AUK (High Private)

16 MB

24 KB

24-bit
addressing

31-bit
addressing

64-bit
addressing

8 KB

0

Private

Common

Extended
Common

Extended
Private

2 GB
Extended LSQA/SWA/AUK (Extended High Private)

64 GB

320 GB

2 TB

High-Virtual
Private

Compressed References Area

Local System Area

High-Virtual User Region

High-Virtual Common

Common

High-Virtual Shared

High-Virtual User Region

16 EB

High-Virtual
Common

High-Virtual
Shared Area

High-Virtual
Private

Extended Restricted Use CSA (RUCSA)

Restricted Use CSA (RUCSA)

Figure 29. Virtual storage map (not drawn to scale)

A 370-XA or 370-ESA processor can operate with either 24-bit addresses (16 megabytes of
addressability) or 31-bit addresses (2 gigabytes of addressability). This ability of the processor to permit
the execution of programs in 24-bit addressing mode as well as programs in 31-bit addressing mode is
called bimodal operation. A program's AMODE attribute determines whether the program is to receive
control with 24-bit or 31-bit addresses. Once a program gets control, the program can change the AMODE
if necessary.

60 z/OS: z/OS MVS Assembler Services Guide

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit values. This makes it
impossible for a program in 24-bit addressing mode to address virtual storage with an address greater
than 16,777,215 (16 megabytes) because that is the largest number that a 24-bit binary field can contain.

In 31-bit addressing mode, the processor treats all virtual addresses as 31-bit values.

The processor supports bimodal operation so that both new programs and most old programs can
execute correctly. Bimodal operation is necessary because certain coding practices in existing programs
depend on 24-bit addresses. For example:

• Some programs use a 4-byte field for a 24-bit address and place flags in the high-order byte.
• Some programs use the LA instruction to clear the high-order byte of a register. (In 24-bit addressing

mode, LA clears the high-order byte; in 31-bit addressing mode, it clears only the high-order bit.)
• Some programs depend on BAL and BALR to return the ILC (instruction length code), the CC (condition

code), and the program mask. (BAL and BALR return this information in 24-bit addressing mode. In
31-bit addressing mode they do not.)

Each load module and each alias entry has an AMODE attribute.

A CSECT can have only one AMODE, which applies to all its entry points. Different CSECTs in a load
module can have different AMODEs.

RMODE specifies where a program is expected to reside in virtual storage. The RMODE attribute is not
related to central storage requirements. (RMODE 24 indicates that a program is coded to reside in virtual
storage below 16 megabytes. RMODE ANY indicates that a program is coded to reside anywhere in virtual
storage.)

Each load module and each alias entry has an RMODE attribute. The alias entry is assigned the same
RMODE as the main entry.

The following kinds of programs must reside in the range of addresses below 16 megabytes (addressable
by 24-bit callers):

• Programs that have the AMODE 24 attribute
• Programs that have the AMODE ANY attribute
• Programs that use system services that require their callers to be AMODE 24
• Programs that use system services that require their callers to be RMODE 24
• Programs that must be addressable by 24-bit addressing mode callers

Programs without these characteristics can reside anywhere in virtual storage.

“Addressing mode and residency mode” on page 68 describes AMODE and RMODE processing and
31-bit addressing support of AMODE and RMODE in detail.

Requirements for execution in 31-bit addressing mode
In general, to execute in 31-bit addressing mode a program must:

• Be assembled using Assembler H Version 2 or High Level Assembler and using the z/OS macro library.
• Be linked using the binder or linkage editor supplied with the operating system or be loaded using the

loader.

In general, to execute in 64-bit addressing mode a program must:

• Be assembled using High Level Assembler and the z/OS macro library.
• Be linked using the binder or linkage editor supplied with the operating system or be loaded using the

loader.

Rules and conventions for 31-bit addressing
It is important to distinguish the rules from the conventions when describing 31-bit addressing. There are
only two rules, and they are associated with hardware:

Chapter 5. Understanding 31-bit addressing 61

1. The length of address fields is controlled by the A-mode bit (bit 32) in the PSW. When bit 32=1,
addresses are treated as 31-bit values. When bit 32=0, addresses are treated as 24-bit values.

Any data passed from a 31-bit addressing mode program to a 24-bit addressing mode program must
reside in virtual storage below 16 megabytes. (A 24-bit addressing mode program cannot reference
data above 16 megabytes without changing addressing mode.)

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using system services must follow
these conventions.

• A program must return control in the same addressing mode in which it received control.
• A program expects 24-bit addresses from 24-bit addressing mode programs and 31-bit addresses from

31-bit addressing mode programs.
• A program should validate the high-order byte of any address passed by a 24-bit addressing mode

program before using it as an address in 31-bit addressing mode.

Mode sensitive instructions
The processor is sensitive to the addressing mode that is in effect (the setting of the PSW A-mode
bit). The current PSW controls instruction sequencing. The instruction address field in the current PSW
contains either a 24-bit address or a 31-bit address depending on the current setting of the PSW A-mode
bit. For those instructions that develop or use addresses, the addressing mode in effect in the current
PSW determines whether the addresses are 24 or 31 bits long.

Principles of Operation contains a complete description of the 370-XA and 370-ESA instructions. The
following topics provide an overview of the mode sensitive instructions.

BAL and BALR
BAL and BALR are addressing-mode sensitive. In 24-bit addressing mode, BAL and BALR work the same
way as they do when executed on a processor running in 370 mode. BAL and BALR put link information
into the high-order byte of the first operand register and put the return address into the remaining three
bytes before branching.

In 31-bit addressing mode, BAL and BALR put the return address into bits 1 through 31 of the first
operand register and save the current addressing mode in the high-order bit. Because the addressing
mode is 31-bit, the high-order bit is always a 1.

When executing in 31-bit addressing mode, BAL and BALR do not save the instruction length code, the
condition code, or the program mask. IPM (insert program mask) can be used to save the program mask
and the condition code.

62 z/OS: z/OS MVS Assembler Services Guide

LA
The LA (load address) instruction, when executed in 31-bit addressing mode, loads a 31-bit value and
clears the high-order bit. When executed in 24-bit addressing mode, it loads a 24-bit value and clears the
high-order byte (as in MVS/370 mode).

LRA
The LRA (load real address) instruction always results in a 31-bit real address regardless of the issuing
program's AMODE. The virtual address specified is treated as a 24-bit or 31-bit address based on the
value of the PSW A-mode bit at the time the LRA instruction is executed.

Branching instructions
BASSM (branch and save and set mode) and BSM (branch and set mode) are branching instructions that
manipulate the PSW A-mode bit (bit 32). Programs can use BASSM when branching to modules that
might have different addressing modes. Programs invoked through a BASSM instruction can use a BSM
instruction to return in the caller's addressing mode. BASSM and BSM are described in more detail in
“Establishing linkage” on page 77.

BAS (branch and save) and BASR:

• Save the return address and the current addressing mode in the first operand.
• Replace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and BASR perform the same
function that BAL and BALR perform in 31-bit addressing mode. In 24-bit mode, BAS and BASR put
zeroes into the high-order byte of the return address register.

Use of 31-bit addressing
In addition to providing support for the use of 31-bit addresses by user programs, MVS includes many
system services that use 31-bit addresses.

Some system services are independent of the addressing mode of their callers. These services accept
callers in either 24-bit or 31-bit addressing mode and use 31-bit parameter address fields. They assume
24-bit addresses from 24-bit addressing mode callers and 31-bit addresses from 31-bit addressing mode
callers. Most supervisor macros are in this category.

Other services have restrictions with respect to address parameter values. Some of these services
accept SVC callers and allow them to be in either 24-bit or 31-bit addressing mode. However, the same
services might require branch entry callers to be in 24-bit addressing mode or might require one or more
parameter addresses to be less than 16 megabytes.

Some services do not support 31-bit addressing at all. To determine a service's addressing mode
requirements, see the documentation that explains how to invoke the service. (VSAM accepts entry by a
program that executes in either 24-bit or 31-bit addressing mode.)

z/OS provides instructions that support 31-bit addressing mode and bimodal operation (31-bit and 24-
bit). Your program also can be trimodal (64-bit, 31-bit and 24-bit) but that can be complicated so it is
rare. These instructions are supported by High Level Assembler. The binder and linkage editor functions
for z/OS are described in z/OS MVS Program Management: User's Guide and Reference.

Planning for 31-bit addressing
Most programs that run on MVS/370 will run in 24-bit addressing mode without change. Some programs
need to be modified to execute in 31-bit addressing mode to provide the same function. Still other
programs need to be modified to run in 24-bit addressing mode.

The MVS conversion notebook helps you identify programs that need to be changed. You will need to
consult one or more versions of the MVS conversion notebook. The versions you need depend on your

Chapter 5. Understanding 31-bit addressing 63

current version of MVS and the version of MVS to which you are migrating. See the appropriate version of
the MVS conversion notebook for your migration.

“Planning for 31-bit addressing” on page 63 helps you determine what changes to make to a module you
are converting to 31-bit addressing and indicates 31-bit address considerations when writing new code.

Some reasons for converting to 31-bit addressing mode are:

• The program can use more virtual storage for tables, arrays, or additional logic.
• The program needs to reference control blocks that have been moved above 16 megabytes.
• The program is invoked by other 31-bit addressing mode programs.
• The program must run in 31-bit addressing mode because it is a user exit routine that the system

invokes in 31-bit mode.
• The program needs to invoke services that expect to get control in 31-bit addressing mode.

Converting existing programs
Keeping in mind that 31-bit addressing mode programs can reside either below or above 16 megabytes,
you can convert existing programs as follows:

1. Converting the program to use 31-bit addresses - a change in addressing mode only.

• You can change the entire module to use 31-bit addressing.
• You can change only that portion that requires 31-bit addressing mode execution.

Be sure to consider whether or not the code has any dependencies on 24-bit addresses. Such code
does not produce the same results in 31-bit mode as it did in 24-bit mode. See “Mode sensitive
instructions” on page 62 for an overview of instructions that function differently depending on
addressing mode.

Figure 30 on page 64 summarizes the things that you need to do to maintain the proper interface with
a program that you plan to change to 31-bit addressing mode.

Figure 30. Maintaining Correct Interfaces to Modules that Change to AMODE 31
2. Moving the program above 16 megabytes - a change in both addressing mode and residency mode

In general, you move an existing program above 16 megabytes because there is not enough room for it
below 16 megabytes. For example:

• An existing program or application is growing so large that soon it will not fit below 16 megabytes.

64 z/OS: z/OS MVS Assembler Services Guide

• An existing application that now runs as a series of separate programs, or that executes in an overlay
structure, would be easier to manage as one large program.

• Code is in the system area, and moving it would provide more room for the private area below 16
megabytes.

The techniques used to establish proper interfaces to modules that move above 16 megabytes depend
on the number of callers and the ways they invoke the module. Table 3 on page 65 summarizes
the techniques for passing control. The programs involved must ensure that any addresses passed as
parameters are treated correctly. (High-order bytes of addresses to be used by a 31-bit addressing mode
program must be validated or zeroed.)

Table 3. Establishing Correct Interfaces to Modules That Move Above 16 Megabytes

Means of Entry to Moved Module (AMODE
31,RMODE ANY) Few AMODE 24,RMODE 24 Callers Many AMODE 24,RMODE 24 Callers

LOAD macro and BALR • Have caller use LINK OR LINKX

 or
• Have caller use LOAD macro and BASSM

(invoked program returns via BSM)

 or
• Change caller to AMODE 31,RMODE 24

before BALR

Create a linkage assist routine (described in
“Establishing linkage” on page 77). Give
the linkage assist routine the name of the
moved module.

BALR using an address in a common control
block

• Have caller switch to AMODE 31 when
invoking

 or
• Change the address in the control block

to a pointer-defined value (described in
“Establishing linkage” on page 77) and
use BASSM. (The moved module will use
BSM to return.)

Create a linkage assist routine (described in
“Establishing linkage” on page 77).

ATTACH, ATTACHX, LINK, LINKX, XCTL, or
XCTLX

No changes required. No changes required.

SYNCH or SYNCHX in AMODE 24 • Have caller use SYNCH or SYNCHX with
AMODE=31 parameter

 or
• Have caller switch to AMODE 31 before

issuing SYNCH or SYNCHX.
• Change address in the control block to a

pointer-defined value and use SYNCH or
SYNCHX with AMODE=DEFINED.

Create a linkage assist routine (described in
“Establishing linkage” on page 77).

In deciding whether or not to modify a program to execute in 31-bit addressing mode either below or
above 16 megabytes, there are several considerations:

1. How and by what is the module entered?
2. What system and user services does the module use that do not support 31-bit callers or parameters?
3. What kinds of coding practices does the module use that do not produce the same results in 31-bit

mode as in 24-bit mode?
4. How are parameters passed? Can they reside above 16 megabytes?

Among the specific practices to check for are:

1. Does the module depend on the instruction length code, condition code, or program mask placed in
the high order byte of the return address register by a 24-bit mode BAL or BALR instruction? One
way to determine some of the dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where BAL or BALR were used to save the old program mask,
which SPM might then have reset. The IPM (insert program mask) instruction can be used to save the
condition code and the program mask.

Chapter 5. Understanding 31-bit addressing 65

2. Does the module use an LA instruction to clear the high-order byte of a register? This practice will not
clear the high-order byte in 31-bit addressing mode.

3. Are any address fields that are less than 4 bytes still appropriate? Make sure that a load instruction
does not pick up a 4-byte field containing a 3-byte address with extraneous data in the high-order
byte. Make sure that bits 1-7 are zero.

4. Does the program use the ICM (insert characters under mask) instruction? The use of this instruction
is sometimes a problem because it can put data into the high-order byte of a register containing an
address, or it can put a 3-byte address into a register without first zeroing the register. If the register is
then used as a base, index, or branch address register in 31-bit addressing mode, it might not indicate
the proper address.

5. Does the program invoke 24-bit addressing mode programs? If so, shared data must be below 16
megabytes.

6. Is the program invoked by 24-bit or 31-bit addressing mode programs? Is the data in an area
addressable by the programs that need to use it? (The data must be below 16 megabytes if used
by a 24-bit addressing mode program.)

Writing new programs that use 31-bit addressing
You can write programs that execute in either 24-bit or 31-bit addressing mode. However, to maintain an
interface with existing programs and with some system services, your 31-bit addressing mode programs
need subroutines or portions of code that execute in 24-bit addressing mode. If your program resides
below 16 megabytes, it can change to 24-bit addressing mode when necessary.

If your program resides above 16 megabytes, it needs a separate load module to perform the linkage to
an unchanged 24-bit addressing mode program or service. Such load modules are called linkage assist
routines and are described in “Establishing linkage” on page 77.

When writing new programs, there are some things you can do to simplify the passing of parameters
between programs that might be in different addressing modes. In addition, there are functions that you
should consider and that you might need to accomplish your program's objectives. Following is a list of
suggestions for coding programs:

• Use fullword fields for addresses even if the addresses are only 24 bits in length.
• When obtaining addresses from 3-byte fields in existing areas, use SR (subtract register) to zero the

register followed by ICM (insert characters under mask) in place of the load instruction to clear the
high-order byte. For example:

Rather than: L 1,A

 use: SR 1,1
 ICM 1,7,A+1

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes beginning at location A+1
into register 1 under control of the mask. The bytes to be filled correspond to the 1 bits in the mask.
Because the high-order byte in register 1 corresponds to the 0 bit in the mask, it is not filled.

• If the program needs storage above 16 megabytes, obtain the storage using the STORAGE macro or the
VRU, VRC, RU, and RC forms of GETMAIN and FREEMAIN, or the corresponding functions on STORAGE.
In addition, you can obtain storage above 16 megabytes by using CPOOL services. These are the only
forms that allow you to obtain and free storage above 16 megabytes. Do not use storage areas above 16
megabytes for save areas and parameters passed to other programs.

• Do not use the STAE macro; use ESTAE or ESTAEX. STAE has 24-bit addressing mode dependencies.
• Do not use SPIE; use ESPIE. SPIE has 24-bit addressing mode dependencies.
• Do not use previous paging services macros; use PGSER.
• To make debugging easier, switch addressing modes only when necessary.
• Identify the intended AMODE and RMODE for the program in a prologue.

66 z/OS: z/OS MVS Assembler Services Guide

• 31-bit addressing mode programs should use ESTAE, ESTAEX or the ESTAI parameter on the ATTACH,
or ATTACHX macro rather than STAE or STAI. STAI has 24-bit addressing mode dependencies. When
recovery routines refer to the SDWA for PSW-related information, they should refer to SDWAEC1 (EC
mode PSW at the time of error) and SDWAEC2 (EC mode PSW of the program request block (PRB) that
established the ESTAE-type recovery.

When writing new programs, you need to decide whether to use 24-bit addressing mode or 31-bit
addressing mode.

The following are examples of kinds of programs that you should write in 24-bit addressing mode:

– Programs that must execute on MVS/370 and do not require any new MVS functions.
– Service routines, even those in the common area, that use system services requiring entry in 24-bit

addressing mode or that must accept control directly from unchanged 24-bit addressing mode
programs.

When you use 31-bit addressing mode, you must decide whether the new program should reside above
or below 16 megabytes (unless it is so large that it will not fit below). Your decision depends on what
programs and system services the new program invokes and what programs invoke it.

New programs below 16 megabytes
The main reason for writing new 31-bit addressing mode programs that reside below 16 megabytes is
to be able to address areas above 16 megabytes or to invoke 31-bit addressing mode programs while,
at the same time, simplifying communication with existing 24-bit addressing mode programs or system
services, particularly data management. For example, VSAM macros accept callers in 24-bit or 31-bit
addressing mode.

Even though your program resides below 16 megabytes, you must be concerned about dealing with
programs that require entry in 24-bit addressing mode or that require parameters to be below 16
megabytes. Figure 35 on page 78 in “Establishing linkage” on page 77 contains more information
about parameter requirements.

New programs above 16 megabytes
When you write new programs that reside above 16 megabytes, your main concerns are:

• Dealing with programs that require entry in 24-bit addressing mode or that require parameters to be
below 16 megabytes. Note that these are concerns of any 31-bit addressing mode program no matter
where it resides.

• How routines that remain below 16 megabytes invoke the new program.

Writing programs for MVS/370 and MVS systems with 31-bit addressing
You can write new programs that will run on systems that use 31-bit addressing. If these programs do not
need to use any new MVS functions, the best way to avoid errors is to assemble the programs on MVS/370
with macro libraries from a 31-bit addressing system. You can also assemble these programs on 31-bit
addressing systems with macro libraries from MVS/370, but you must generate MVS/370-compatible
macro expansions by specifying the SPLEVEL macro at the beginning of the programs.

Programs designed to execute on either 24 or 31-bit addressing systems must use fullword addresses
where possible and use no new functions on macros except the LOC parameter on GETMAIN. These
programs must also be aware of downward incompatible macros and use SPLEVEL as needed.

SPLEVEL macro
Some macros are downward incompatible. The level of the macro expansion generated during assembly
depends on the value of an assembler language global SET symbol.

The SPLEVEL macro allows programmers to change the value of the SET symbol. The SPLEVEL macro sets
a default value of 5 for the SET symbol. Therefore, unless a program or installation specifically changes
the default value, the macros generated are z/OS macro expansions.

Chapter 5. Understanding 31-bit addressing 67

The SPLEVEL macro sets the SET symbol value for that program's assembly only and affects only the
expansions within the program being assembled. A single program can include multiple SPLEVEL macros
to generate different macro expansions. The following example shows how to obtain different macro
expansions within the same program by assembling both expansions and making a test at execution time
to determine which expansion to execute.

* DETERMINE WHICH SYSTEM IS EXECUTING
 TM CVTDCB,CVTMVSE (CVTMVSE is bit 0 in the
 BO SP2 CVTDCB field.)
* INVOKE THE MVS/370 VERSION OF THE WTOR MACRO
 SPLEVEL SET=1
 WTOR
 B CONTINUE
SP2 EQU *
* INVOKE THE VERSION OF THE WTOR MACRO
 SPLEVEL SET=2
 WTOR
CONTINUE EQU *

z/OS MVS Programming: Assembler Services Guide and z/OS MVS Programming: Assembler Services
Reference IAR-XCT describe the SPLEVEL macro.

Certain macros produce a “map” of control blocks or parameter lists. These mapping macros do not
support the SPLEVEL macro. Mapping macros for different levels of MVS systems are available only in the
macro libraries for each system. When programs use mapping macros, a different version of the program
may be needed for each system.

Dual programs
Sometimes two programs may be required, one for each system. In this case, use one of the following
approaches:

• Keep each in a separate library
• Keep both in the same library but under different names

Addressing mode and residency mode
Every program that executes is assigned two program attributes: an addressing mode (AMODE) and a
residency mode (RMODE). Programmers can specify these attributes for new programs. Programmers can
also specify these attributes for old programs through reassembly, linkage editor PARM values, linkage
editor MODE control statements, or loader PARM values. MVS assigns default attributes to any program
that does not have AMODE and RMODE specified.

Addressing mode - AMODE
AMODE is a program attribute that can be specified (or defaulted) for each CSECT, load module, and load
module alias. AMODE states the addressing mode that is expected to be in effect when the program is
entered. AMODE can have one of the following values:

• AMODE 24 - The program is designed to receive control in 24-bit addressing mode.
• AMODE 31 - The program is designed to receive control in 31-bit addressing mode.
• AMODE ANY - The program is designed to receive control in either 24-bit or 31-bit addressing mode.

Residency mode - RMODE
RMODE is a program attribute that can be specified (or defaulted) for each CSECT, load module, and
load module alias. RMODE states the virtual storage location (either above 16 megabytes or anywhere in
virtual storage) where the program should reside. RMODE can have the following values:

• RMODE 24 - The program is designed to reside below 16 megabytes in virtual storage. MVS places the
program below 16 megabytes.

68 z/OS: z/OS MVS Assembler Services Guide

• RMODE ANY - The program is designed to reside at any virtual storage location, either above or below
16 megabytes. MVS places the program above 16 megabytes unless there is no suitable virtual storage
above 16 megabytes.

AMODE and RMODE combinations
Figure 31 on page 69 shows all possible AMODE and RMODE combinations and indicates which are
valid.

AMODE and RMODE combinations at execution time
At execution time, there are only three valid AMODE/RMODE combinations:

1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

The ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX macros give the invoked module control in the
AMODE previously specified. However, specifying a particular AMODE does not guarantee that a module
that gets control by other means will receive control in that AMODE. For example, an AMODE 24 module
can issue a BALR to an AMODE 31, RMODE 24 module. The AMODE 31 module will get control in 24-bit
addressing mode.

1.
This combination is invalid because an AMODE 24 module cannot reside above 16 megabytes.

2.
This is a valid combination in that the assembler, linkage editor, and loader accept it from all sources.
However, the combination is not used at execution time. Specifying ANY is a way of deferring a
decision about the actual AMODE until the last possible moment before execution. At execution time,
however, the module must execute in either 24-bit or 31-bit addressing mode.

3.
The attributes AMODE ANY/RMODE ANY take on a special meaning when used together. (This
meaning might seem to disagree with the meaning of either taken alone.) A module with the
AMODE ANY/RMODE ANY attributes will execute on either an MVS/370 or a system that uses 31-bit
addressing if the module is designed to:

• Use no facilities that are unique.
• Execute entirely in 31-bit addressing mode on a system that uses 31-bit addressing and return

control to its caller in 31-bit addressing mode. (The AMODE could be different from invocation to
invocation.)

• Execute entirely in 24-bit addressing mode on an MVS/370 system.

The linkage editor and loader accept this combination from the object module or load module but
not from the PARM field of the linkage editor EXEC statement or the linkage editor MODE control
statement. The linkage editor converts AMODE ANY/RMODE ANY to AMODE 31/RMODE ANY.

Figure 31. AMODE and RMODE Combinations

Determining the AMODE and RMODE of a load module
Use the AMBLIST service aid to find out the AMODE and RMODE of a load module. The module summary
produced by the LISTLOAD control statement contains the AMODE of the main entry point and the AMODE

Chapter 5. Understanding 31-bit addressing 69

of each alias, as well as the RMODE specified for the load module. Refer to z/OS MVS Diagnosis: Tools and
Service Aids for information about AMBLIST.

You can look at the source code to determine the AMODE and RMODE that the programmer intended for
the program. However, the linkage editor or the loader can override these specifications.

Assembler support of AMODE and RMODE
Assembler H Version 2 and High Level Assembler support AMODE and RMODE assembler instructions.
Using AMODE and RMODE assembler instructions, you can specify an AMODE and an RMODE to be
associated with a control section, an unnamed control section, or a named common control section.

AMODE and RMODE in the object module
The only combination of AMODE and RMODE that is not valid is AMODE 24/ RMODE ANY.

The following errors will keep your program from assembling:

• Multiple AMODE/RMODE statements for a single control section
• An AMODE/RMODE statement with an incorrect or missing value
• An AMODE/RMODE statement whose name field is not that of a valid control section in the assembly.

AMODE and RMODE assembler instructions
The AMODE instruction specifies the addressing mode to be associated with a CSECT in an object module.
The format of the AMODE instruction is:

Name Operation Operand

Any symbol or blank AMODE 24/31/ANY

The name field associates the addressing mode with a control section. If there is a symbol in the name
field of an AMODE statement, that symbol must also appear in the name field of a START, CSECT, or COM
statement in the assembly. If the name field is blank, there must be an unnamed control section in the
assembly.

Similarly, the name field associates the residency mode with a control section. The RMODE statement
specifies the residency mode to be associated with a control section. The format of the RMODE
instruction is:

Name Operation Operand

Any symbol or blank RMODE 24/ANY

Both the RMODE and AMODE instructions can appear anywhere in the assembly. Their appearance
does not initiate an unnamed CSECT. There can be more than one RMODE (or AMODE) instruction per
assembly, but they must have different name fields.

The defaults when AMODE, RMODE, or both are not specified are:

Specified Defaulted

Neither AMODE 24 RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

70 z/OS: z/OS MVS Assembler Services Guide

Linkage editor and binder support of AMODE and RMODE
The linkage editor accepts AMODE and RMODE specifications from any or all of the following:

• Object modules.
• Load modules.
• PARM field of the linkage editor EXEC statement. For example:

//LKED EXEC PGM=name,PARM='AMODE=31,RMODE=ANY,.....'

PARM field input overrides object module and load module input.
• Linkage editor MODE control statements in the SYSLIN data set. For example:

MODE AMODE(31),RMODE(24)

MODE control statement input overrides object module, load module and PARM input.

Linkage editor processing results in two sets of AMODE and RMODE indicators located in:

• The load module
• The PDS entry for the member name and any PDS entries for alternate names or alternate entry points

that were constructed using the linkage editor ALIAS control statement.

These two sets of indicators might differ because they can be created from different input. The linkage
editor creates indicators in the load module based on input from the input object module and load
module. The linkage editor creates indicators in the PDS directory based not only on input from the object
module and load module but also on the PARM field of the linkage editor EXEC statement, and the MODE
control statements in the SYSLIN data set. The last two sources of input override indicators from the
object module and load module. Figure 32 on page 72 shows linkage editor processing of AMODE and
RMODE.

Chapter 5. Understanding 31-bit addressing 71

Figure 32. AMODE and RMODE Processing by the Linkage Editor

The linkage editor and binder use default values of AMODE 24 and RMODE 24 for:

• Object modules produced by assemblers older than Assembler H Version 2 and High Level Assembler
• Object modules produced by Assembler H Version 2 or High Level Assembler where source statements

did not specify AMODE or RMODE
• Load modules produced by linkage editors older than the MVS/XA linkage editor

72 z/OS: z/OS MVS Assembler Services Guide

• Load modules produced by the linkage editor that did not have AMODE or RMODE specified from any
input source

• Load modules in overlay structure

Treat programs in overlay structure as AMODE 24, RMODE 24 programs. Putting a program into overlay
structure destroys any AMODE and RMODE specifications contained in the load module.

The linkage editor recognizes as valid the following combinations of AMODE and RMODE:
AMODE 24

RMODE 24
AMODE 31

RMODE 24
AMODE 31

RMODE ANY
AMODE ANY

RMODE 24
AMODE ANY

RMODE ANY

The linkage editor accepts the ANY/ANY combination from the object module or load module and places
AMODE 31, RMODE ANY into the PDS (unless overridden by PARM values or MODE control statements).
The linkage editor does not accept ANY/ANY from the PARM value or MODE control statement.

Any AMODE value specified alone in the PARM field or MODE control statement implies an RMODE of 24.
Likewise, an RMODE of ANY specified alone implies an AMODE of 31. However, for RMODE 24 specified
alone, the linkage editor does not assume an AMODE value. Instead, it uses the AMODE value specified in
the CSECT in generating the entry or entries in the PDS.

When the linkage editor creates an overlay structure, it assigns AMODE 24, RMODE 24 to the resulting
program.

Linkage editor RMODE processing
In constructing a load module, the linkage editor frequently is requested to combine multiple CSECTs, or it
may process an existing load module as input, combining it with additional CSECTs or performing a CSECT
replacement.

The linkage editor determines the RMODE of each CSECT. If the RMODEs are all the same, the linkage
editor assigns that RMODE to the load module. If the RMODEs are not the same (ignoring the RMODE
specification on common sections), the more restrictive value, RMODE 24, is chosen as the load module's
RMODE.

The RMODE chosen can be overridden by the RMODE specified in the PARM field of the linkage editor
EXEC statement. Likewise, the PARM field RMODE can be overridden by the RMODE value specified on the
linkage editor MODE control statement.

The linkage editor does not alter the RMODE values obtained from the object module or load module
when constructing the new load module. Any choice that the linkage editor makes or any override
processing that it performs affects only the PDS.

Loader support for AMODE and RMODE
The loader's processing of AMODE and RMODE is similar to the linkage editor's. The loader accepts
AMODE and RMODE specifications from:

• Object modules
• Load modules
• PARM field of the JCL EXEC statement

Chapter 5. Understanding 31-bit addressing 73

Unlike the linkage editor, the loader does not accept MODE control statements from the SYSLIN data set,
but it does base its loading sequence on the sequence of items in SYSLIN.

The loader passes the AMODE value to MVS. The loader processes the RMODE value as follows. If the
user specifies an RMODE value in the PARM field, that value overrides any previous RMODE value. Using
the value of the first RMODE it finds in the first object module or load module it encounters that is not for
a common section, the loader obtains virtual storage for its output. As the loading process continues, the
loader may encounter a more restrictive RMODE value. If, for example, the loader begins loading based on
an RMODE ANY indicator and later finds an RMODE 24 indicator in a section other than a common section,
it issues a message and starts over based on the more restrictive RMODE value. Figure 33 on page 74
shows loader processing of AMODE and RMODE.

Figure 33. AMODE and RMODE Processing by the Loader

System support of AMODE and RMODE
The following are examples of system support of AMODE and RMODE:

• The system obtains storage for the module as indicated by RMODE.
• ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX give the invoked module control in the addressing

mode specified by its AMODE.
• LOAD brings a module into storage based on its RMODE and sets bit 0 in register 0 to indicate its

AMODE.

74 z/OS: z/OS MVS Assembler Services Guide

• CALL passes control in the AMODE of the caller.
• SYNCH or SYNCHX has an AMODE parameter that you can use to specify the AMODE of the invoked

module.
• For SVCs, the system saves and sets the addressing mode.
• SRBs are dispatched in the addressing mode indicated by the SRB specified to the SCHEDULE macro.
• The cross memory instructions PC and PT establish the addressing mode for the target program.
• Access methods support all valid combinations of AMODE and RMODE with these exceptions:

– AMODE 64 and RMODE 64 are not supported unless otherwise documented for the interface.
– Some devices such as unit record devices and TSO terminals have documented restrictions.

• Dumping is based on the AMODE specified in the error-related PSW.

Program Fetch
The system uses RMODE information from the PDS to determine whether to obtain storage above or
below 16 megabytes.

ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX
Issuing an ATTACH or ATTACHX macro causes the control program to create a new task and indicates
the entry point to be given control when the new task becomes active. If the entry point is a member
name or an alias in the PDS. ATTACH or ATTACHX gives it control in the addressing mode specified in
the PDS or in the mode specified by the loader. If the invoked program has the AMODE ANY attribute,
it gets control in the AMODE of its caller.

The LINK, LINKX, XCTL, and XCTLX macros also give the invoked program control in the addressing
mode indicated by its PDS for programs brought in by fetch or in the AMODE specified by the loader.
The entry point specified must be a member name or an alias in the PDS passed by the loader, or
specified in an IDENTIFY macro. If the entry point is an entry name specified in an IDENTIFY macro,
IDENTIFY sets the addressing mode of the entry name equal to the addressing mode of the main
entry point.

LOAD
Issuing the LOAD macro causes MVS to bring the load module containing the specified entry point
name into virtual storage (if a usable copy is not already there). LOAD sets the high-order bit of the
entry point address in register 0 to indicate the module's AMODE (0 for 24, 1 for 31), which LOAD
obtains from the module's PDS entry. If the module's AMODE is ANY, LOAD sets the high-order bit in
register 0 to correspond to the caller's AMODE.

LOAD places the module in virtual storage either above or below 16 megabytes as indicated by the
module's RMODE, which is specified in the PDS for the module.

Specifying the ADDR parameter indicates that you want the module loaded at a particular location. If
you specify an address above 16 megabytes, be sure that the module being loaded has the RMODE
ANY attribute. If you do not know the AMODE and RMODE attributes of the module, specify an
address below 16 megabytes or omit the ADDR parameter.

CALL
The CALL macro passes control to an entry point via BALR. Thus control is transferred in the AMODE of
the caller. CALL does not change AMODE.

SYNCH or SYNCHX
Using the AMODE parameter on the SYNCH or SYNCHX macro, you can specify the addressing mode
in which the invoked module is to get control. Otherwise, SYNCH or SYNCHX passes control in the
caller's addressing mode.

SVC
For SVCs (supervisor calls), the system saves and restores the issuer's addressing mode and makes
sure that the invoked service gets control in the specified addressing mode.

Chapter 5. Understanding 31-bit addressing 75

SRB
When an SRB (service request block) is dispatched, the system sets the addressing mode based on
the high-order bit of the SRBEP field. This bit, set by the issuer of the SCHEDULE macro, indicates the
addressing mode of the routine operating under the dispatched SRB.

PC and PT
For a program call (PC), the entry table indicates the target program's addressing mode. The address
field in the entry table must be initialized by setting the high-order bit to 0 for 24-bit addressing mode
or to 1 for 31-bit addressing mode.

The PC instruction sets up register 14 with the return address and AMODE for use with the PT
(program transfer) instruction. If PT is not preceded by a PC instruction, the PT issuer must set the
high-order bit of the second operand register to indicate the AMODE of the program being entered (0
for 24-bit addressing mode or 1 for 31-bit addressing mode).

Data Management Access Methods
User programs can be in AMODE 24 or AMODE 31 when invoking access methods except with certain
devices. The non-VSAM access methods require certain parameter lists, control blocks and user exit
routines to reside in virtual storage below 16 megabytes. Some interfaces support only AMODE 24
and some support AMODE 64. See z/OS DFSMS Using Data Sets and z/OS DFSMS Macro Instructions
for Data Sets.

AMODE's Effect on Dumps
The only time AMODE has an effect on dumps is when data on either side of the address in each
register is dumped. If the addresses in registers are treated as 24-bit addresses, the data dumped
may come from a different storage location than when the addresses are treated as 31-bit addresses.
If a dump occurs shortly after an addressing mode switch, some registers may contain 31-bit
addresses and some may contain 24 bit addresses, but dumping services does not distinguish among
them. Dumping services uses the AMODE from the error-related PSW. For example, in dumping the
area related to the registers saved in the SDWA, dumping services uses the AMODE from the error
PSW stored in the SDWA.

How to change addressing mode
To change addressing mode you must change the value of the PSW A-mode bit. The following list includes
all the ways to change addressing mode.

• The mode setting instructions BASSM and BSM.
• Macros (ATTACH, ATTACHX, LINK, LINKX, XCTL, or XCTLX). The system makes sure that routines get

control in the specified addressing mode. Users need only ensure that parameter requirements are met.
MVS restores the invoker's mode on return from LINK or LINKX.

• SVCs. The supervisor saves and restores the issuer's addressing mode and ensures that the service
routine receives control in the addressing mode specified in its SVC table entry.

• SYNCH or SYNCHX with the AMODE parameter to specify the addressing mode in which the invoked
routine is to get control.

• The CIRB macro and the stage 2 exit effector. The CIRB macro is described in z/OS MVS Programming:
Authorized Assembler Services Guide and z/OS MVS Programming: Authorized Assembler Services
Reference ALE-DYN.

• A PC, PT, or PR instruction. These three instructions establish the specified addressing mode.
• An LPSW instruction (not recommended).

The example in Figure 34 on page 77 illustrates how a change in addressing mode in a 24-bit addressing
mode program enables the program to retrieve data from the ACTLB control block, which might reside
above 16 megabytes. The example works correctly whether or not the control block is actually above
16 megabytes. The example uses the BSM instruction to change addressing mode. In the example, the
instruction L 2,4(,15) must be executed in 31-bit addressing mode. Mode setting code (BSM) before
the instruction establishes 31-bit addressing mode and code following the instruction establishes 24-bit
addressing mode.

76 z/OS: z/OS MVS Assembler Services Guide

USER CSECT
USER RMODE 24
USER AMODE 24
 L 15,ACTLB
 L 1,LABEL1 SET HIGH-ORDER BIT OF REGISTER 1 TO 1
 AND PUT ADDRESS INTO BITS 1-31
 BSM 0,1 SET AMODE 31 (DOES NOT PRESERVE AMODE)
LABEL1 DC A(LABEL2 + X'80000000')
LABEL2 DS 0H
 L 2,4(,15) OBTAIN DATA FROM ABOVE 16 MEGABYTES
 LA 1,LABEL3 SET HIGH-ORDER BIT OF REGISTER 1 TO 0
 AND PUT ADDRESS INTO BITS 1-31
 BSM 0,1 SET AMODE 24 (DOES NOT PRESERVE AMODE)
LABEL3 DS 0H

Figure 34. Mode Switching to Retrieve Data from Above 16 Megabytes

Establishing linkage
This information describes the mechanics of correct linkage in 31-bit addressing mode. Keep in mind that
there are considerations other than linkage, such as locations of areas that both the calling module and
the invoked module need to address.

As shown in Figure 35 on page 78, it is the linkage between modules whose addressing modes are
different that is an area of concern. The areas of concern that appear in Figure 35 on page 78 fall into
two basic categories:

• Addresses passed as parameters from one routine to another must be addresses that both routines can
use.

– High-order bytes of addresses must contain zeroes or data that the receiving routine is programmed
to expect.

– Addresses must be less than 16 megabytes if they could be passed to a 24-bit addressing mode
program.

• On transfers of control between programs with different AMODEs, the receiving routine must get control
in the AMODE it needs and return control to the calling routine in the AMODE the calling routine needs.

There are a number of ways of dealing with the areas of concern that appear in Figure 35 on page 78:

• Use the branching instructions (BASSM and BSM)
• Use pointer-defined linkage
• Use supervisor-assisted linkage (ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX)
• Use linkage assist routines
• Use “capping.”

Chapter 5. Understanding 31-bit addressing 77

Figure 35. Linkage Between Modules with Different AMODEs and RMODEs

Using the BASSM and BSM instructions
The BASSM (branch and save and set mode) and the BSM (branch and set mode) instructions are
branching instructions that set the addressing mode. They are designed to complement each other.
(BASSM is used to call and BSM is used to return, but they are not limited to such use.)

The description of BASSM appears in Figure 36 on page 79. (See Principles of Operation for more
information.)

78 z/OS: z/OS MVS Assembler Services Guide

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link information
in the general register designated by R1. Subsequently, the addressing mode and instruction address
in the current PSW are replaced from the second operand. The action associated with the second
operand is not performed if the R2 field is zero.

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however when the R2 field is zero, the operation is performed without branching and
without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address is
generated from the contents of the register under the control of the new addressing mode. The new
value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: Trace (R2 field is not zero).

Figure 36. BRANCH and SAVE and Set Mode Description

The description of BSM appears in Figure 37 on page 79. (See Principles of Operation for more
information.)

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand. Subsequently the
addressing mode and instruction address in the current PSW are replaced from the second operand.
The action associated with an operand is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated by R1, and
bits 1-31 of the register remain unchanged; however, when the R1 field is zero, the bit is not inserted,
and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however, when the R2 field is zero, the operation is performed without branching and
without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address is
generated from the contents of the register under the control of the new addressing mode. The new
value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Figure 37. Branch and Set Mode Description

Calling and returning with BASSM and BSM
In the following example, a module named BELOW has the attributes AMODE 24, RMODE 24. BELOW uses
a LOAD macro to obtain the address of module ABOVE. The LOAD macro returns the address in register

Chapter 5. Understanding 31-bit addressing 79

0 with the addressing mode indicated in bit 0 (a pointer-defined value). BELOW stores this address in
location EPABOVE. When BELOW is ready to branch to ABOVE, BELOW loads ABOVE's entry point address
from EPABOVE into register 15 and branches using BASSM 14,15. BASSM places the address of the next
instruction into register 14 and sets bit 0 in register 14 to 0 to correspond to BELOW's addressing mode.
BASSM replaces the PSW A-mode bit with bit 0 of register 15 (a 1 in this example) and replaces the PSW
instruction address with the branch address (bits 1-31 of register 15) causing the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing mode because 0 is
specified as the first operand register. It replaces the PSW A-mode bit with bit 0 of register 14 (BELOW's
addressing mode set by BASSM) and branches.

Figure 38. Using BASSM and BSM

Using pointer-defined linkage
Pointer-defined linkage is a convention whereby programs can transfer control back and forth without
having to know each other's AMODEs. Pointer-defined linkage is simple and efficient. You should use it in
new or modified modules where there might be mode switching between modules.

Pointer-defined linkage uses a pointer-defined value, which is a 4-byte area that contains both an
AMODE indicator and an address. The high-order bit contains the AMODE; the remainder of the word
contains the address. To use pointer-defined linkage, you must:

• Use a pointer-defined value to indicate the entry point address and the entry point's AMODE. (The LOAD
macro provides a pointer-defined value.)

• Use the BASSM instruction specifying a register that contains the pointer-defined value. BASSM saves
the caller's AMODE and next the address of the next sequential instruction, sets the AMODE of the
target routine, and branches to the specified location.

• Have the target routine save the full contents of the return register and use it in the BSM instruction to
return to the caller.

80 z/OS: z/OS MVS Assembler Services Guide

Using an ADCON to obtain a pointer-defined value
The following method is useful when you need to construct pointer-defined values to use in pointer-
defined linkages between control sections or modules that will be link edited into a single load module.
You can also use this method when the executable program is prepared in storage using the loader.

The method requires the use of an externally-defined address constant in the routine to be invoked that
identifies its entry mode and address. The address constant must contain a pointer-defined value. The
calling program loads the pointer-defined value and uses it in a BASSM instruction. The invoked routine
returns using a BSM instruction.

In Figure 39 on page 81, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1, the invoking
routine does not have to know the addressing modes of RTN2 and RTN3. Later, RTN2 or RTN3 could be
changed to use different addressing modes, and at that time their address constants would be changed
to correspond to their new addressing mode. RTN1, however, would not have to change the sequence of
code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines that have multiple
entry points (possibly with different AMODE attributes). You need to construct a table of address
constants, one for each entry point to be handled.

As with all forms of linkage, there are considerations in addition to the linkage mechanism. These include:

• Both routines must have addressability to any parameters passed.
• Both routines must agree which of them will clean up any 24-bit addresses that might have extraneous

information bits 1-7 of the high-order byte. (This is a consideration only for AMODE 31 programs.)

When a 24-bit addressing mode program invokes a module that is to execute in 31-bit addressing mode,
the calling program must ensure that register 13 contains a valid 31-bit address of the register save area
with no extraneous data in bits 1-7 of the high-order byte. In addition, when any program invokes a 24-bit
addressing mode program, register 13 must point to a register save area located below 16 megabytes.

RTN1 CSECT
 EXTRN RTN2AD
 EXTRN RTN3AD
 .
 .
 L 15,=A(RTN2AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
 L 15,0(,15) LOAD POINTER-DEFINED VALUE
 BASSM 14,15 GO TO RTN2 VIA BASSM
 .
 .
 L 15,=A(RTN3AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
 L 15,0(,15) LOAD POINTER DEFINED-VALUE
 BASSM 14,15 GO TO RTN3 VIA BASSM
 .

__
RTN2 CSECT
RTN2 AMODE 24
 ENTRY RTN2AD
 .
 BSM 0,14 RETURN TO CALLER IN CALLER'S MODE
RTN2AD DC A(RTN2) WHEN USED AS A POINTER-DEFINED VALUE,
 INDICATES AMODE 24 BECAUSE BIT 0 IS 0

__
RTN3 CSECT
RTN3 AMODE 31
 ENTRY RTN3AD
 .
 BSM 0,14 RETURN TO CALLER IN CALLER'S MODE
RTN3AD DC A(X'80000000'+RTN3) WHEN USED AS A POINTER-DEFINED VALUE
 INDICATES AMODE 31 BECAUSE BIT 0 IS 1

Figure 39. Example of Pointer-Defined Linkage

Chapter 5. Understanding 31-bit addressing 81

Using the LOAD macro to obtain a pointer-defined value
LOAD returns a pointer-defined value in register 0. You can preserve this pointer-defined value and use it
with a BASSM instruction to pass control without having to know the target routine's AMODE.

Using supervisor-assisted linkage
Figure 40 on page 83 shows a “before” and “after” situation involving two modules, MOD1 and MOD2.
In the BEFORE part of the figure both modules execute in 24-bit addressing mode. MOD1 invokes MOD2
using the LINK or LINKX macro. The AFTER part of the figure shows MOD2 moving above 16 megabytes
and outlines the steps that were necessary to make sure both modules continue to perform their previous
function.

82 z/OS: z/OS MVS Assembler Services Guide

Figure 40. Example of Supervisor-Assisted Linkage

Linkage assist routines
A linkage assist routine, sometimes called an addressing mode interface routine, is a module that
performs linkage for modules executing in different addressing or residency modes. Using a linkage assist
routine, a 24-bit addressing mode module can invoke a 31-bit addressing mode module without having

Chapter 5. Understanding 31-bit addressing 83

to make any changes. The invocation results in an entry to a linkage assist routine that resides below 16
megabytes and invokes the 31-bit addressing mode module in the specified addressing mode.

Conversely, a 31-bit addressing mode module, such as a new user module, can use a linkage assist
routine to communicate with other user modules that execute in 24-bit addressing mode. The caller
appears to be making a direct branch to the target module, but branches instead to a linkage assist
routine that changes modes and performs the branch to the target routine.

The main advantage of using a linkage assist routine is to insulate a module from addressing mode
changes that are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to the interface. In
addition, it takes time to develop and test the linkage assist routine. Some alternatives to using linkage
assist routines are:

• Changing the modules to use pointer-defined linkage (described in “Using pointer-defined linkage” on
page 80).

• Adding a prologue and epilogue to a module to handle entry and exit mode switching, as described later
in this chapter under “Capping.”

Example of using a linkage assist routine
Figure 41 on page 85 shows a “before” and “after” situation involving modules USER1 and USER2.
USER1 invokes USER2 by using a LOAD and BALR sequence. The “before” part of the figure shows USER1
and USER2 residing below 16 megabytes and lists the changes necessary if USER2 moves above 16
megabytes. USER1 does not change.

The “after” part of the figure shows how things look after USER2 moves above 16 megabytes. Note that
USER2 is now called USER3 and the newly created linkage assist routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the move.

84 z/OS: z/OS MVS Assembler Services Guide

Figure 41. Example of a Linkage Assist Routine

USER1 (This module will not change):

* USER MODULE USER1 CALLS MODULE USER2 00000100
USER1 CSECT 00000200
BEGIN SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.) 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400

Chapter 5. Understanding 31-bit addressing 85

* ENTRY CODING) 00000500
 .
 .
* ISSUE LOAD FOR MODULE USER2 00000700
 LOAD EP=USER2 ISSUE LOAD FOR MODULE "USER2" 00000800
* The LOAD macro returns a
* pointer-defined value. However, because module USER1
* has not been changed and executes in AMODE 24, the
* pointer-defined value has no effect on the BALR
* instruction used to branch to module USER2.
 ST 0,EPUSER2 PRESERVE ENTRY POINT 00000900
 .
* MAIN PROCESS BEGINS 00001000
PROCESS DS 0H 00001100
 .
 .
 .
 .
 .
 .
* PREPARE TO GO TO MODULE USER2 00002000
 L 15,EPUSER2 LOAD ENTRY POINT 00002100
 BALR 14,15 00002200
 .
 .
 .
 .
 TM TEST FOR END 00003000
 BC PROCESS CONTINUE IN LOOP 00003100
 .
 DELETE EP=USER2
 L 13,4(13)
 RETURN (14,12),T,RC=0 MODULE USER1 COMPLETED 00005000
EPUSER2 DC F'0' ADDRESS OF ENTRY POINT TO USER2 00007000
 END BEGIN 00007100

USER2 (Original application module):

* USER MODULE USER2 (INVOKED FREQUENTLY FROM USER1) 00000100
USER2 CSECT 00000200
 SAVE (14,12),,* SAVE REGISTER CONTENT, ETC. 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400
* ENTRY CODING)
 .
 .
 .
 .
 .
 L 13,4(13)
 RETURN (14,12),T,RC=0 MODULE USER2 COMPLETED 00008100
 END 00008200

USER2 (New linkage assist routine):

* THIS IS A NEW LINKAGE ASSIST ROUTINE 0000100
* (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT 0000200
* HAVE TO BE CHANGED) 0000300
USER2 CSECT 0000400
USER2 AMODE 24 0000500
USER2 RMODE 24 0000600
 SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.) 0000700
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 0000800
* ENTRY CODING)
 .
* FIRST TIME LOGIC, PERFORMED ON INITIAL ENTRY ONLY, 0002000
* (AFTER INITIAL ENTRY, BRANCH TO PROCESS (SHOWN BELOW)) 0002100
 .
 GETMAIN NEW REGISTER SAVE AREA 0003000
 .
 LOAD EP=USER3 0004000
* USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
* DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
* OF USER3 IS THE LAST ONE.
 ST 0,EPUSER3 PRESERVE POINTER DEFINED VALUE 0004100
 .
* PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE) 0005000
 .
 (FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)
 .

86 z/OS: z/OS MVS Assembler Services Guide

 .
* PRESERVE AMODE FOR USE DURING RETURN SEQUENCE 0007000
 LA 1,XRETURN SET RETURN ADDRESS 0008000
 BSM 1,0 PRESERVE CURRENT AMODE 0008100
 ST 1,XSAVE PRESERVE ADDRESS 0008200
 L 15,EPUSER3 LOAD POINTER DEFINED VALUE 0009000
* GO TO MODULE USER3 0009100
 BASSM 14,15 TO PROCESSING MODULE 0009200
* RESTORE AMODE THAT WAS IN EFFECT 0009300
 L 1,XSAVE LOAD POINTER DEFINED VALUE 0009400
 BSM 0,1 SET ADDRESSING MODE 0009500
XRETURN DS 0H 0009600
 L 13,4(13)
 .
 RETURN (14,12),T,RC=0 MODULE USER2 HAS COMPLETED 0010000
EPUSER3 DC F'0' POINTER DEFINED VALUE 0010100
XSAVE DC F'0' ORIGINAL AMODE AT ENTRY 0010200
 END 0010500

• Statements 8000 through 8200: These instructions preserve the AMODE in effect at the time of entry
into module USER2.

• Statement 9200: This use of the BASSM instruction:

– Causes the USER3 module to be entered in the specified AMODE (AMODE 31 in this example). This
occurs because the LOAD macro returns a pointer-defined value that contains the entry point of the
loaded routine, and the specified AMODE of the module.

– Puts a pointer-defined value for use as the return address into Register 14.
• Statement 9400: Module USER3 returns to this point.
• Statement 9500: Module USER2 re-establishes the AMODE that was in effect at the time the BASSM

instruction was issued (STATEMENT 9200).

USER3 (New application module):

* MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2) 00000100
USER3 CSECT 00000200
USER3 AMODE 31 00000300
USER3 RMODE ANY 00000400
 SAVE (14,12),,* (SAVE REGISTER CONTENT, ETC.) 00000500
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA 00000600
 .
 .
 .
 .
 .
 .
* RESTORE REGISTERS AND RETURN 00008000
 .
 RETURN (14,12),T,RC=0 00008100
 END 00008200

• Statements 300 and 400 establish the AMODE and RMODE values for this module. Unless they are
over-ridden by linkage editor PARM values or MODE control statements, these are the values that will be
placed in the PDS for this module.

• Statement 8100 returns to the invoking module.

Using capping - linkage using a prologue and epilogue
An alternative to linkage assist routines is a technique called capping. You can add a “cap” (prologue and
epilogue) to a module to handle entry and exit addressing mode switching. The cap accepts control in
either 24-bit or 31-bit addressing mode, saves the caller's registers, and switches to the addressing mode
in which the module is designed to run. After the module has completed its function, the epilogue portion
of the cap restores the caller's registers and addressing mode before returning control.

For example, when capping is used, a module in 24-bit addressing mode can be invoked by modules
whose addressing mode is either 24-bit or 31-bit; it can perform its function in 24-bit addressing mode

Chapter 5. Understanding 31-bit addressing 87

and can return to its caller in the caller's addressing mode. Capped modules must be able to accept
callers in either addressing mode. Modules that reside above 16 megabytes cannot be invoked in 24-bit
addressing mode. Capping, therefore, can be done only for programs that reside below 16 megabytes.

Figure 42 on page 88 shows a cap for a 24-bit addressing mode module.

MYPROG CSECT
MYPROG AMODE ANY
MYPROG RMODE 24
 USING *,15
 STM 14,12,12(13) SAVE CALLER'S REGISTERS BEFORE SETTING AMODE
 LA 10,SAVE SET FORWARD ADDRESS POINTER IN CALLER'S
 ST 10,8(13) SAVE AREA
 LA 12,MYMODE SET AMODE BIT TO 0 AND ESTABLISH BASE
 LA 11,RESETM GET ADDRESS OF EXIT CODE
 BSM 11,12 SAVE CALLER'S AMODE AND SET IT TO AMODE 24
 USING *,12
MYMODE DS 0H
 DROP 15
 ST 13,SAVE+4 SAVE CALLER'S SAVE AREA
 LR 13,10 ESTABLISH OWN SAVE AREA

 This is the functional part of the original module.
 This example assumes that register 11 retains its
 original contents throughout this portion of the program.

 L 13,4(13) GET ADDRESS OF CALLER'S SAVE AREA
 BSM 0,11 RESET CALLER'S AMODE
RESETM DS 0H
 LM 14,12,12(13) RESTORE CALLER'S REGISTERS IN CALLER'S AMODE
 BR 14 RETURN
 SAVE DS 0F
 DC 18F'0'

Figure 42. Cap for an AMODE 24 Module

Performing I/O in 31-bit addressing mode
Programs in 31-bit addressing mode sometimes need to use 24-bit addressing mode programs to
perform an I/O operation.

A 31-bit addressing mode program can perform an I/O operation by:

• Using VSAM, QSAM, BSAM, BPAM and BDAM services that accept callers in either 24-bit or 31-bit
addressing mode. (z/OS DFSMS Using Data Sets describes these services and shows examples. The
functions that require 24-bit mode are ISAM, some BDAM functions and BSAM and QSAM with a TSO
terminal or IBM 3886 or 3890 Document Processor.)

• Using the EXCP macro. All parameter lists, control blocks, CCWs, virtual IDAWs, and EXCP appendage
routines must reside in virtual storage below 16 megabytes. See “Using the EXCP macro” on page 88
for a description of using EXCP to perform I/O. CCWs can reside above the 16 MB line and virtual IDAWs
can point above the 16 MB line or above the 2 GB bar.

• Using the EXCPVR macro. All parameter lists, control blocks, CCWs, IDALs (indirect data address lists),
and appendage routines must reside in virtual storage below 16 megabytes. See “Using EXCPVR” on
page 89 for a description of using EXCPVR to perform I/O. CCWs can reside above the 16 MB line and
virtual and real IDAWs can point above the 16 MB line or above the 2 GB bar.

• Invoking a routine that executes in 24-bit addressing mode as an interface to the 24-bit access
methods, which accept callers executing in 24-bit addressing mode only. See “Establishing linkage”
on page 77 for more information about this method.

• Using the method shown in Figure 43 on page 90.

Using the EXCP macro
EXCP macro users can perform I/O to virtual storage areas above 16 megabytes. With the virtual IDAW
support, CCWs in the EXCP channel program can use a 24-bit address to point to a virtual IDAW that
contains the 31-bit virtual address of an I/O buffer. The CCWs and IDAWs themselves must reside in
virtual storage below 16 megabytes. The EXCP service routine supports format 0 and format 1 CCWs.

88 z/OS: z/OS MVS Assembler Services Guide

Any CCW that causes data to be transferred can point to a virtual IDAW. Virtual IDAW support is limited to
non-VIO data sets.

Although the I/O buffer can be in virtual storage above 16 megabytes, the virtual IDAW that contains the
pointer to the I/O buffer and all the other areas related to the I/O operation (CCWs, IOBs, DEBs, and
appendages) must reside in virtual storage below 16 megabytes.

Note: EXCP can translate your virtual channel program to a real channel program that uses 64-bit IDAWs
if you are running in z/Architecture mode and the device support code allows them.

For more EXCP information, see z/OS DFSMSdfp Advanced Services.

Using EXCPVR
The EXCPVR interface supports format 0 CCWs. Format 0 CCWs support only 24-bit addresses. All CCWs
and IDAWs used with EXCPVR must reside in virtual or central storage below 16 megabytes. The largest
virtual or central storage address you can specify directly in your channel program is 16 megabytes minus
one. However, using IDAWs (indirect data address words) you can specify any central storage address and
therefore you can perform I/O to any location in real or virtual storage. EXCPVR channel programs must
use IDAWs to specify buffer addresses above 16 megabytes in central storage.

The format 0 CCW may contain the address of an IDAL (indirect address list), which is a list of IDAWs
(indirect data address words).

You must assume that buffers obtained by data management access methods have real storage
addresses above 16 megabytes.

For more EXCPVR information, see z/OS DFSMSdfp Advanced Services.

Chapter 5. Understanding 31-bit addressing 89

Example of performing I/O while residing above 16 megabytes
Figure 43 on page 90 shows a “before” and “after” situation that involves two functions, USER1 and
USER2. In the BEFORE part of the example, USER1 contains both functions and resides below 16
megabytes. In the AFTER part of the example USER1 has moved above 16 megabytes. The portion of
USER1 that requests data management services has been removed and remains below 16 megabytes.

Following the figure is a detailed coding example that shows both USER1 and USER2.

Figure 43. Performing I/O while residing above 16 megabytes

USER1 application module:

*Module USER1 receives control in 31-bit addressing mode, resides in
*storage above 16 megabytes, and calls module USER2 to perform data
*management services.
*In this example, note that no linkage assist routine is needed.
USER1 CSECT
USER1 AMODE 31
USER1 RMODE ANY
*
* Save the caller's registers in save area provided
*
#100 SAVE (14,12) Save registers
 BASR 12,0 Establish base

90 z/OS: z/OS MVS Assembler Services Guide

 USING *,12 Addressability

Storage will be obtained via GETMAIN for USER2's work area (which will also contain the save area that
module USER2 will store into as well as parameter areas in which information will be passed.) Since
module USER2 must access data in the work area, the work area must be obtained below 16 megabytes.

 LA 0,WORKLNTH Length of the work area
* required for USER2
#200 GETMAIN RU,LV=(0),LOC=BELOW Obtain work area storage
 LR 6,1 Save address of obtained
* storage to be used for
* a work area for module
* USER2
 USING WORKAREA,6 Work area addressability

The SAVE operation at statement #100 may save registers into a save area that exists in storage either
below or above 16 megabytes. If the save area supplied by the caller of module USER1 is in storage below
16 megabytes, it is assumed that the high-order byte of register 13 is zero.

The GETMAIN at statement #200 must request storage below 16 megabytes for the following reasons:

1. The area obtained via GETMAIN will contain the register save area in which module USER2 will save
registers. Because module USER2 runs in 24-bit addressing mode, it must be able to access the save
area.

2. Because module USER2 will extract data from the work area to determine what function to perform,
the area must be below 16 megabytes, otherwise, USER2 would be unable to access the parameter
area.

 LA 0,GMLNTH Get dynamic storage for
* module USER1 (USER1 resides
* above 16 megabytes)
#300 GETMAIN RU,LV=(0),LOC=RES Get storage above 16
* megabytes
 LR 8,1 Copy address of storage
* obtained via GETMAIN
 USING DYNAREA,8 Base register for dynamic
* work area
#400 ST 13,SAVEBKWD Save address of caller's
* save area
 LR 9,13 Save caller's save area
* address
 LA 13,SAVEAREA USER1's save area address
* Note - save area is below
* 16 megabytes

 ST 13,8(9) Have caller's save area
* point to my save area
 LOAD EP=IOSERV Load address of data
* management service
* Entry point address
* returned will be pointer-defined
 ST 0,EPA Save address of loaded
* routine.

The GETMAIN at statement #300 requests that the storage to be obtained match the current residency
mode of module USER1. Because the module resides above 16 megabytes, the storage obtained will be
above 16 megabytes.

At statement #400, the address of the caller's save area is saved in storage below 16 megabytes.

Prepare to open input and output data base files:

 MVC FUNCTION,OPEN1 Indicate open file 1
* for input
 LA 1,COMMAREA Set up register 1 to
* point to the parameter
* area
#500 L 15,EPA Get pointer-defined address
* of the I/O service

Chapter 5. Understanding 31-bit addressing 91

* routine
#600 BASSM 14,15 Call the service routine
* Note: AMODE will change
#650 MVC FUNCTION,OPEN2 Indicate open file 2
* for output
 LA 1,COMMAREA Setup register 1 to
* point to the parameter
* area
#700 L 15,EPA Get pointer-defined address
* of the I/O service
* routine
 BASSM 14,15 Call the service routine
* Note: AMODE will change

The entry point address loaded at statements #500 and #700 is pointer-defined, as returned by the LOAD
service routine. That is, the low-order three bytes of the symbolic field EPA will contain the virtual address
of the loaded routine while the high order bit (bit 0) will be zero to indicate the loaded module is to receive
control in 24-bit addressing mode. The remaining bits (1-7) will also be zero in the symbolic field EPA.

The BASSM at statement #600 does the following:

• Places into bit positions 1-31 of register 14 the address of statement #650.
• Sets the high-order bit of register 14 to one to indicate the current addressing mode.
• Replaces bit positions 32-63 of the current PSW with the contents of register 15 (as explained earlier)

The BSM instruction used by the called service routine USER2 to return to USER1 will reestablish 31-bit
addressing mode.

Prepare to read a record from data base file 1:

READRTN DS 0H
 MVC FUNCTION,READ1 Indicate read to file 1
 XC BUFFER,BUFFER Clear input buffer
 LA 1,COMMAREA Set up register 1 to
* point to the parameter area
 L 15,EPA Get pointer-defined address
* of the I/O service routine
 BASSM 14,15 Call the service routine
* Note: The BASSM will change
* the AMODE to 24-bit. The
* BSM issued in the service
* routine will reestablish
* 31-bit addressing mode.
#900 CLC STATUS,ENDFILE End of file encountered
* by module USER2 ?
 BE EODRTN Close files and exit
 MVC BUFFR31A,BUFFER Move record returned to
* storage above 16 megabytes

At statement #900, a check is made to determine if called module USER2 encountered the end of file.
The end of file condition in this example can only be intercepted by USER2 because the EOD exit address
specified on the DCB macro must reside below 16 megabytes. The end of file condition must then be
communicated to module USER1.

Call a record analysis routine that exists above 16 megabytes:

 LA 1,BUFFR31A Get address of first buffer
 ST 1,BUFPTR+0 Store into parameter list
 LA 1,UPDATBFR Get address of output
* buffer
 ST 1,BUFPTR+4 Store into parameter list
 LA 1,BUFPTR Set up pointers to work
* buffers for the analysis
* routine
 L 15,ANALYZE Address of analysis routine
#1000 BASR 14,15 Call analysis routine
 MVC BUFFER,UPDATBFR Move updated record to
* storage below 16 megabytes
* so that the updated record can
* be written back to the data base

At statement #1000 a BASR instruction is used to call the analysis routine since no AMODE switching
is required. A BALR could also have been used. A BALR executed while in 31-bit addressing mode

92 z/OS: z/OS MVS Assembler Services Guide

performs the same function as a BASR instruction. The topic “Mode Sensitive Instructions” describes the
instruction differences.

 MVC FUNCTION,WRITE1 Indicate write to file 1
 LA 1,COMMAREA Set up register 1 to
* point to the parameter area
 L 15,EPA Get pointer-defined address
* of the I/O service routine
* routine
 BASSM 14,15 Call the service routine
* Note: The BASSM will set
* the AMODE to 24-bit. The
* BSM issued in the service
* routine will reestablish
* 31-bit addressing mode
 B READRTN Get next record to process

Prepare to close input and output data base files:

EODRTN DS 0H End of data routine
 MVC FUNCTION,CLOSE1 Indicate close file 1
 LA 1,COMMAREA Set up register 1 to
* point to the parameter area
 L 15,EPA Get pointer-defined address
* of the I/O service routine
 BASSM 14,15 Call the service routine
* Note: The BASSM sets
* the AMODE to 24-bit. The
* BSM issued in the service
* routine will reestablish
* 31-bit addressing mode
 MVC FUNCTION,CLOSE2 Indicate close file 2
 LA 1,COMMAREA Set up register 1 to
* point to the parameter area
 L 15,EPA Get pointer-defined address
* of the I/O service routine
 BASSM 14,15 Call the service routine
* Note: The BASSM sets
* the AMODE to 24-bit. The
* BSM issued in the service
* routine will reestablish
* 31-bit addressing mode

Prepare to return to the caller:

 L 13,SAVEBKWD Restore save area address
* of the caller of module
* USER1
 LA 0,WORKLNTH Length of work area and
* parameter area used by
* module USER2
 FREEMAIN RC,LV=(0),A=(6) Free storage
 DROP 6
 LA 0,GMLNTH Length of work area used
* by USER1
 FREEMAIN RC,LV=(0),A=(8) Free storage
 DROP 8
 XR 15,15 Set return code zero
 RETURN (14,12),RC=(15)

Define DSECTs and constants for module to module communication. Define constants used to
communicate the function module USER2 is to perform.

 DS 0F
READ1 DC C'R1' Read from file 1 opcode
WRITE1 DC C'W1' Write to file 1 opcode
OPEN1 DC C'O1' Open file 1 opcode
OPEN2 DC C'O2' Open file 2 opcode
CLOSE1 DC C'C1' Close file 1 opcode
CLOSE2 DC C'C2' Close file 2 opcode
ANALYZE DC V(ANALYSIS) Address of record
* analysis routine
ENDFILE DC C'EF' End of file indicator
WORKAREA DSECT
SAVEREGS DS 0F This storage exists
* below 16 megabytes
SAVEAREA EQU SAVEREGS

Chapter 5. Understanding 31-bit addressing 93

SAVERSVD DS F Reserved
SAVEBKWD DS F
SAVEFRWD DS F
SAVE1412 DS 15F Save area for registers 14-12
COMMAREA DS 0F Parameter area used to
* communicate with module
* USER2
FUNCTION DS CL2 Function to be performed
* by USER2
STATUS DS CL2 Status of read operation
BUFFER DS CL80 Input/output buffer
WORKLNTH EQU *-WORKAREA Length of this DSECT

Define DSECT work area for module USER1:

DYNAREA DSECT This storage exists
* above 16 megabytes
EPA DS F Address of loaded routine
BUFFR31A DS CL80 Buffer - above 16
* megabytes
BUFPTR DS 0F
 DS A Address of input buffer
 DS A Address of updated buffer
UPDATBFR DS CL80 Updated buffer returned
* by the analysis routine
GMLNTH EQU *-DYNAREA Length of dynamic area
 END

USER2 service routine:

*Module USER2 receives control in 24-bit addressing mode, resides below
*16 megabytes, and is called by module USER1 to perform data
*management services.

USER2 CSECT
USER2 AMODE 24
USER2 RMODE 24
*
* Save the caller's registers in save area provided
*
 SAVE (14,12) Save registers
 BASR 12,0 Establish base
 USING *,12 Addressability
 LR 10,1 Save parameter area pointer
* around GETMAINs
 USING COMMAREA,10 Establish parameter area
* addressability

Storage will be obtained via GETMAIN for a save area that module USER2 can pass to external routines it
calls.

 LA 0,WORKLNTH Length of the work area
* required
 GETMAIN RU,LV=(0),LOC=RES Obtain save area storage,
* which must be below
* 16 megabytes
 LR 6,1 Save address of obtained
* storage to be used for
* a save area for module
* USER2
 USING SAVEREGS,6 Save area addressability
 LA 0,GMLNTH Get dynamic storage for
* module USER2 below
* 16 megabytes.

Note: This GETMAIN will only be done on the initial call to this module.

#2000 GETMAIN RU,LV=(0),LOC=RES Obtain storage below
* 16 megabytes
 LR 8,1 Copy address of storage
* obtained via GETMAIN
 USING DYNAREA,8 Base register for the
* dynamic work area
 ST 13,SAVEBKWD Save address of caller's
* save area
 LR 9,13 Save caller's save area

94 z/OS: z/OS MVS Assembler Services Guide

* address
 LA 13,SAVEAREA USER1's save area address
* Note - save area is
* below 16 megabytes

The GETMAIN at statement #2000 requests that storage be obtained to match the current residency
mode of module USER2. Because the module resides below 16 megabytes, storage obtained will be
below 16 megabytes.

Note: The following store operation is successful because module USER1 obtained save area storage
below 16 megabytes.

 ST 13,8(9) Have caller's save area
* point to my save area
 .
 .
 .
 .
* Process input requests
 .
 .
 .
 .
READ1 DS 0H Read a record routine
 .
 L 13,SAVEBKWD
 LM 14,12,12(13) Reload USER1's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
WRITE1 DS 0H Write a record routine
 .
 L 13,SAVEBKWD
 LM 14,12,12(13) Reload USER1's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
OPEN1 DS 0H Open file 1 for input
 .
 L 13,SAVEBKWD
 LM 14,12,12(13) Restore caller's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
CLOSE1 DS 0H Close file 1 for input
 .
 L 13,SAVEBKWD
 LM 14,12,12(13) Restore caller's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
OPEN2 DS 0H Open file 2 for input
 .
 L 13,SAVEBKWD
 LM 14,12,12(13) Restore caller's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
CLOSE2 DS 0H Close file 2 for input
 .
 L 13.SAVEBKWD
 LM 14,12,12(13) Restore caller's registers
 BSM 0,14 Return to caller - this
* instruction sets AMODE 31
 .
 .

Note: This FREEMAIN will only be done on the final call to this module.

 LA 0,GMLNTH Length of work area used
* by USER2
 FREEMAIN RC,LV=(0),A=(8) Free storage
 .
 .
 .

DCB END OF FILE and ERROR ANALYSIS ROUTINES:

ENDFILE DS 0H End of file encountered
 .
 .

Chapter 5. Understanding 31-bit addressing 95

 MVC STATUS,ENDFILE Indicate end of file to
* module USER1
 .
 L 13,SAVWBKWD
 LM 14,12,12(13) Reload USER1's registers
 BSM 0,14 Return to USER1
* indicating end of file
* has been encountered
 .
 .
 .
 .
ERREXIT1 DS 0H SYNAD error exit one
 .
 .
 MVC STATUS,IOERROR Indicate I/O error to
* module 'USER1'
 .
 L 13,SAVWBKWD
 LM 14,12,12(13) Reload USER1's registers
 BSM 0,14 Return to USER1
* indicating an I/O error
* has been encountered
 .
 .
 .
 .
ERREXIT2 DS 0H SYNAD error exit two
 .
 .
 MVC STATUS,IOERROR Indicate I/O error to
* module 'USER1'
 .
 L 13,SAVWBKWD
 LM 14,12,12(13) Reload USER1's registers
 BSM 0,14 Return to USER1
* indicating an I/O error
* has been encountered

Note: Define the required DCBs that module USER2 will process. The DCBs exist in storage below 16
megabytes. The END OF DATA and SYNAD exit routines also exist in storage below 16 megabytes.

INDCB DCB DDNAME=INPUT1,DSORG=PS,MACRF=(GL),EODAD=ENDFILE, x
 SYNAD=ERREXIT1
OUTDCB DCB DDNAME=OUTPUT1,DSORG=PS,MACRF=(PL),SYNAD=ERREXIT2
* Work areas and constants for module USER2
IOERROR DC C'IO' Constant used to indicate
* an I/O error
ENDFILE DC C'EF' Constant used to indicate
* end of file encountered
SAVEREGS DSECT This storage exists
* below 16 megabytes
SAVEAREA EQU SAVEREGS
SAVERSVD DS F Reserved
SAVEBKWD DS F
SAVEFRWD DS F
SAVE1412 DS 15F Save area for registers 14-12
WORKLNTH EQU *-SAVEREGS Length of dynamic area
 .
 .
 .
 .
 .
COMMAREA DSECT Parameter area used to
* communicate with module
* USER1
FUNCTION DS CL2 Function to be performed
* by USER2
STATUS DS CL2 Status of read operation
BUFFER DS CL80 Input/output buffer
 .
 .
DYNAREA DSECT This storage exists
* below 16 megabytes
 .
 .
 .
 .
 .
 .

96 z/OS: z/OS MVS Assembler Services Guide

GMLNTH EQU *-DYNAREA Length of dynamic area
 .
 .
 END

Understanding the use of central storage
MVS programs and data reside in virtual storage that, when necessary, is backed by central storage. Most
programs and data do not depend on their real addresses. Some MVS programs, however, do depend on
real addresses and some require these real addresses to be less than 16 megabytes. MVS reserves as
much central storage below 16 megabytes as it can for such programs and, for the most part, handles
their central storage dependencies without requiring them to make any changes.

The system uses the area of central storage above 16 megabytes to back virtual storage with real
frames whenever it can. All virtual areas above 16 megabytes can be backed with real frames above 16
megabytes. In addition, the following virtual areas below 16 megabytes can also be backed with real
frames above 16 megabytes:

• SQA
• LSQA
• Nucleus
• Pageable private areas
• Pageable CSA
• PLPA
• MLPA
• Resident BLDL

The following virtual areas are always backed with real frames below 16 megabytes:

• V=R regions
• FLPA
• Subpool 226
• Subpools 227 and 228 (unless specified otherwise by the GETMAIN macro with the LOC parameter)

When satisfying page-fix requests, MVS backs pageable virtual pages that reside below 16 megabytes
with central storage below 16 megabytes, unless the GETMAIN macro specifies LOC=(24,31) or the
PGSER macro specifies the ANYWHER parameter. If the GETMAIN or STORAGE macro specifies or implies
a real location of 31, MVS backs pageable virtual pages with real frames above 16 megabytes even when
the area is page fixed.

Central storage considerations for user programs
Among the things to think about when dealing with central storage in 31-bit addressing mode are the
use of the load real address (LRA) instruction, the use of the LOC parameter on the GETMAIN macro, the
location of the DAT-off portion of the nucleus, and using EXCPVR to perform I/O. (EXCPVR was described
in the section Performing I/O in 31-Bit Addressing Mode.)

Load real address (LRA) instruction
The LRA instruction works differently depending on addressing mode you use. In 64-bit mode, the LRA
instruction results in a 64-bit real address stored in a 64-bit GPR. In 24-bit and 31-bit modes, the LRA
instruction results in a 31-bit real address stored in a 32-bit GPR. The LRA instruction cannot be used
to obtain the real address of locations backed by real frames above 2 gigabytes in 24-bit or 31-bit
addressing mode. For those situations, use the LRAG instruction instead of LRA. All programs that issue
an LRA instruction must be prepared to handle a 31-bit result if the virtual storage address specified
could have been backed with central storage above 16 megabytes, or a 64-bit result if the virtual storage
address specified could have been backed with central storage above 2 gigabytes. Issue LRA only against

Chapter 5. Understanding 31-bit addressing 97

areas that are fixed. The TPROT instruction can be used to replace the LRA instruction when a program is
using it to verify that the virtual address is translatable and the page backing it is in real storage.

GETMAIN macro
The LOC parameter on the RU, RC, VRU, and VRC forms of the GETMAIN macro specifies not only the
virtual storage location of the area to be obtained, but also the central storage location when the storage
is page fixed.

• LOC=24 indicates that the virtual storage is to be located below 16 megabytes. When the area is page
fixed, it is to be backed with central storage below 16 megabytes.

• LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes but that central storage
can be located either above or below 16 megabytes, but below 2 gigabytes.

• LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes but that central storage
can be located anywhere.

• LOC=31 and LOC=(31,31) indicate that both virtual and central storage can be located either above or
below 16 megabytes, but below 2 gigabytes in central storage.

• LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes but that central storage
can be located anywhere.

• LOC=RES indicates that the location of virtual and central storage depends on the location (RMODE) of
the GETMAIN issuer. If the issuer has an RMODE of 24, LOC=RES indicates the same thing as LOC=24; if
the issuer has an RMODE of ANY, LOC=RES indicates the same thing as LOC=31.

• LOC=(RES,31) indicates that the location of virtual storage depends on the location of the issuer but
that central storage can be located anywhere below 2 gigabytes.

• LOC=(RES,64) indicates that the location of virtual storage depends on the location of the issuer but
that central storage can be located anywhere.

Note: There is exception to the meaning of LOC=RES and LOC=(RES,31). A caller residing below 16
megabytes but running with 31-bit addressing can specify LOC=RES (either explicitly or by taking the
default) or LOC=(RES,31) to obtain storage from a subpool supported only above 16 megabytes. In this
case, the caller's AMODE determines the location of the virtual storage.

LOC is optional except in the following case: A program that resides above 16 megabytes and uses the RU,
RC, VRU, and VRC forms of GETMAIN must specify either LOC=24 or LOC=(24,31) on GETMAIN requests
for storage that will be used by programs running in 24-bit addressing mode. Otherwise, virtual storage
would be assigned above 16 megabytes and 24-bit addressing mode programs could not use it.

The location of virtual storage can also be specified on the PGSER (page services) macro. The ANYWHER
parameter on PGSER specifies that a particular virtual storage area can be placed either above or below
16 megabytes on future page-ins. This parameter applies to virtual storage areas where LOC=(24,31) or
LOC=(31,31) was not specified on GETMAIN.

DAT-off routines
The z/OS nucleus is mapped and fixed in central storage without attempting to make its virtual storage
addresses equal to its real addresses. Systems that use 31-bit addressing save a V=F (virtual=fixed)
nucleus.

Because the z/OS nucleus is not V=R, the nucleus code cannot turn DAT-off and expect the next
instruction executed to be the same as if DAT was on.

To allow for the execution of DAT-off nucleus code, the z/OS nucleus consists of two load modules, one
that runs with DAT on and one that runs with DAT off. Nucleus code that needs to run with DAT off must
reside in the DAT-off portion of the nucleus.

When the system is initialized, the DAT-off portion of the nucleus is loaded into the highest contiguous
central storage. Therefore, you must modify any user modules in the nucleus that run with DAT off so that
they operate correctly above 16 megabytes. Among the things you may have to consider are:

98 z/OS: z/OS MVS Assembler Services Guide

• All modules in the DAT-off portion of the nucleus have the attributes AMODE 31, RMODE ANY. They may
reside above 16 megabytes.

• These modules must return control via a BSM 0,14.
• Register 0 must not be destroyed on return.

To support modules in the DAT-off nucleus:

• Move the DAT-off code to a separate module with AMODE 31, RMODE ANY attributes. Use as its entry
point, IEAVEURn where n is a number from 1 to 4. (MVS reserves four entry points in the DAT-off
nucleus for users.) Use BSM 0,14 as the return instruction. Do not destroy register 0.

• Code a DATOFF macro to invoke the DAT-off module:

 DATOFF INDEX=INDUSRn

The value of n in INDUSRn must be the same as the value of n in IEAVEURn, the DAT-off module's entry
point.

• Link edit the DAT-off module (IEAVEURn) into the IEAVEDAT member of SYS1.NUCLEUS (the DAT-off
nucleus).

See z/OS MVS Programming: Authorized Assembler Services Guide and z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN for more information about modifying the DAT-off portion of the
nucleus and the DATOFF macro.

Chapter 5. Understanding 31-bit addressing 99

100 z/OS: z/OS MVS Assembler Services Guide

Chapter 6. Resource control

When your program executes, other programs are executing concurrently in the MVS multiprogramming
environment. Each group of programs, including yours, is a competitor for resources available at
execution time. A resource is anything that a program needs as it executes — such as processor time,
a data set, another program, a table, or a hardware device, etc. The competitor for resources is actually
the task that represents the program.

If you subdivide a program into separate logical parts, and code it as several small programs instead
of one large program, you can make the parts execute as separate tasks and with greater efficiency.
However, you must ensure that each part executes in correct order relative to the others:

• The WAIT, POST, and EVENTS macros introduce a strategic delay in the running of a program. This delay
forces a program to wait using an event control block (ECB), for a particular event to occur. When the
event occurs, the program can run once again. The event can be the availability of a necessary resource.

• Pause, Release, and Transfer are services you can call, using a pause element (PE), to synchronize task
processing with minimal overhead. Table 4 on page 101 compares the use of the Pause, Release, and
Transfer services with the WAIT and POST macros.

• The ISGENQ macro allows your program to serialize resources by:

– Obtaining a single ENQ or multiple ENQs with or without associated device reserves.
– Changing the control from shared to exclusive on one or more resources.
– Releasing a single ENQs, or multiple ENQs.
– Testing the availability of one or more resources.
– Testing how the resource request would be altered by RNL processsing or dynamic global resource

serialization exits.

Note: As of z/OS Release 6, the ENQ, DEQ, and RESERVE interfaces will continue to be supported,
though IBM recommends using the ISGENQ service for unauthorized serialization requests.

• The ISGQUERY macro allows you to obtain information about the use of resources.

Table 4. Task Synchronization Techniques

Pause, Release, and Transfer WAIT and POST

Can change the dispatchability of a task. Can change the dispatchability of a task.

Can release a task before it is paused. Can post a task before it waits.

An unauthorized caller can pause and release any task
in the caller's home address space.

An unauthorized caller can WAIT and POST any task in
the caller's home address space.

A task can pause multiple PEs at a time. When the
specified number of PEs has been released, the task is
made dispatchable.

A task may wait on multiple ECBs. If the wait count
numbers are posted, the task is made dispatchable.

The Transfer service can simultaneously pause one
task and release another.

There is no single service with comparable capability
for WAIT and POST.

The Transfer service can release a task and
immediately pass control to the released task.

There is no single service with comparable capability
for WAIT and POST.

The system ensures the Pause Elements are not
reused improperly, thus avoiding improper releases
caused by unexpected termination or asynchronous
ABENDs.

© Copyright IBM Corp. 1988, 2022 101

Table 4. Task Synchronization Techniques (continued)

Pause, Release, and Transfer WAIT and POST

Ability to pass control directly from one task to
another paused task.

High performance. No local lock contentions effects. Lower performance, possible local lock contention.

Callers may use ECBLIST or EVENTS service to wait on
multiple ECBs.

Synchronizing tasks (WAIT, POST, and EVENTS macros)
Some planning on your part is required to determine what portions of one task are dependent on the
completion of portions of all other tasks. The POST macro is used to signal completion of an event; the
WAIT and EVENTS macros are used to indicate that a task cannot proceed until one or more events have
occurred. An event control block (ECB) is used with the WAIT, EVENTS or POST macros; it is a fullword on
a fullword boundary, as shown in Figure 44 on page 102.

An ECB is also used when the ECB parameter is coded in an ATTACH or ATTACHX macro (see the z/OS
MVS Programming: Assembler Services Reference ABE-HSP for information on how to use the ATTACH or
ATTACHX macro to create a new task and indicate the entry point in the program to be given control when
the new task becomes active). In this case, the control program issues the POST macro for the event
(subtask termination). Either the 24-bit (bits 8 to 31) return code in register 15 (if the task completed
normally) or the completion code specified in the ABEND macro (if the task was abnormally terminated)
is placed in the ECB as shown in Figure 44 on page 102. The originating task can issue a WAIT macro or
EVENTS macro with WAIT=YES parameter specifying the ECB; the task will not regain control until after
the event has taken place and the ECB is posted (except if an asynchronous event occurs, for example,
timer expiration).

Figure 44. Event Control Block (ECB)

When an ECB is originally created, bits 0 (wait bit) and 1 (post bit) must be set to zero. If an ECB is
reused, bits 0 and 1 must be set to zero before a WAIT, EVENTS ECB= or POST macro can be specified.
If, however, the bits are set to zero before the ECB has been posted, any task waiting for that ECB to be
posted will remain in the wait state. When a WAIT macro is issued, bit 0 of the associated ECB is set to 1.
When a POST macro is issued, bit 1 of the associated ECB is set to 1 and bit 0 is set to 0. For an EVENTS
type ECB, POST also puts the completed ECB address in the EVENTS table.

A WAIT macro can specify more than one event by specifying more than one ECB. (Only one WAIT macro
can refer to an ECB at a time, however.) If more than one ECB is specified in a WAIT macro, the WAIT
macro can also specify that all or only some of the events must occur before the task is taken out of the
wait condition. When a sufficient number of events have taken place (ECBs have been posted) to satisfy
the number of events indicated in the WAIT macro, the task is taken out of the wait condition.

An optional parameter, LONG=YES or NO, allows you to indicate whether the task is entering a long wait or
a regular wait. A long wait should never be considered for I/O activity. However, you might want to use a
long wait when waiting for an operator response to a WTOR macro.

Through the LINKAGE parameter, POST and WAIT allow you to specify how the macro passes control to
the control program. You can specify that control is to be passed by an SVC or a PC instruction.

When you issue the WAIT or POST macro and specify LINKAGE=SVC (or use the default), your program
must not be in cross memory mode. The primary, secondary, and home address spaces must be the
same, your program must be in primary ASC mode, and it must not have an enabled unlocked task (EUT)

102 z/OS: z/OS MVS Assembler Services Guide

functional recovery routine (FRR) established. You may use WAIT and POST when the primary and the
home address spaces are different by specifying LINKAGE=SYSTEM. This option generates a PC interface
to the WAIT or POST service and requires that the program be enabled, unlocked, in primary ASC mode
and, for WAIT only, in task mode. For POST, the control program assumes that the ECB is in the primary
address space. For WAIT, it assumes that the ECB is in the home address space.

Figure 45 on page 103 shows an example of using LINKAGE=SYSTEM. The program that runs under TCB1
in ASN1 PCs to a program in ASN2. Now the primary address space is ASN2 and home address space
is ASN1. When the PC routine posts ECB2, it uses LINKAGE=SYSTEM because home and primary are
different. The PC routine waits on ECB1 using LINKAGE=SYSTEM because home and primary are still
different. Note that ECB1 is in the home address space.

Figure 45. Using LINKAGE=SYSTEM on the WAIT and POST Macros

Synchronizing tasks (Pause, Release, and Transfer)
Pause, Release, and Transfer are callable services that enable you to synchronize task processing with
minimal overhead. If you have, for example, an application that requires two or more tasks to trade
control back and forth, these services provide efficient transfers of control.

These services, which are available to both unauthorized and authorized callers in Assembler as well as
C or C++, use a system-managed object called a pause element to synchronize processing of tasks. The
services provide the following functions:

Table 5. Pause, Release, and Transfer callable services

Callable service
64-bit version
callable service Description

IEAVAPE, IEAVAPE2 IEA4APE, IEA4APE2 Obtains a pause element token (PET), which uniquely
identifies a pause element (PE).

IEAVDPE, IEAVDPE2 IEA4DPE, IEA4DPE2 Frees a pause element (PE) that is no longer needed.

IEAVPSE, IEAVPSE2 IEA4PSE, IEA4PSE2 Pauses the current task or SRB.

IEAVPME2 IEA4PME2 Pauses the current task or SRB using multiple PETs.

IEAVRLS, IEAVRLS2 IEA4RLS, IEA4RLS2 Releases a paused task or SRB.

IEAVRPI, IEAVRPI2 IEA4RPI, IEA4RPI2 Retrieves information about a pause element (PE).

IEAVTPE IEA4TPE Tests a pause element (PE) and determines its state.

Chapter 6. Resource control 103

Table 5. Pause, Release, and Transfer callable services (continued)

Callable service
64-bit version
callable service Description

IEAVXFR, IEAVXFR2 IEA4XFR, IEA4XFR2 Releases a paused task and, when possible, gives it
immediate control, while optionally pausing the task under
which the Transfer request is made.

The services use a system-managed pause element (PE) rather than an application-managed control
block, such as an event control block (ECB), thus reducing the possibility of error that might come from
improper reuse of the control block.

As a PE is much like an ECB, the Pause service is much like the WAIT macro, and the Release service is
much like the POST macro. Just as you can use POST to keep a task from waiting by preposting, you can
use Release to keep a task from pausing by prereleasing.

The Transfer service can both release a paused task and pass control directly to the released task. The
Transfer service can also pause the task that calls the service. Thus, Transfer enables quick dispatches,
saving the overhead of work search. It also allows two tasks to trade control back and forth with minimal
overhead.

To understand how to use the services, you need to know more about pause elements, (PEs) and the
pause element tokens (PETs) that identify them.

Pause elements and pause element tokens
A pause element (PE) is a system-managed object used to pause and release a work unit, which can be
either a task or SRB. Like an ECB, a PE is used by the system to control whether or not a work unit is
dispatchable. You can use a PE, like an ECB, to prerelease a work unit before it is paused. There are,
however, significant differences between an ECB and a PE Table 6 on page 104 compares the two:

Table 6. Pause Element (PE) and Event Control Block (ECB)

Pause Element (PE) Event Control Block (ECB)

Managed by the system. Managed by application programs.

Identified by a pause element token (PET). Identified by a simple address.

Cannot be reused once invalidated by an
asynchronous ABEND.

Can be reused after a task is removed from the wait
state by an asynchronous ABEND, although reuse
requires very complicated programming.

To prevent errors related to reuse, a PET can be used
only once to identify a PE. Once a task is paused and
released, an updated PET is needed to identify the
PE. The system returns the updated PET to the caller
through the Pause or Transfer service.

There is no control on the reuse of an ECB; the same
ECB address can be used over and over.

PEs are allocated and deallocated through calls to
system services.

ECBs are allocated by application programs.

The total number of PEs available to all unauthorized
programs in a system is limited to 130560.

The system imposes no limits on the number of ECBs.

PEs are not directly addressable through PETs. The
user of a PE does not know its actual address and
cannot modify it except through the use of system
services.

ECBs can be modified at will by application programs.

104 z/OS: z/OS MVS Assembler Services Guide

A PE allocated by an unauthorized caller can be used to pause and release any work unit in the
caller's home address space. An unauthorized caller cannot pause or release using a PE allocated with
auth_level=IEA_AUTHORIZED or pause_element_auth_level=IEA_AUTHORIZED.

When a PE is allocated with auth_level=IEA_AUTHORIZED (callable services IEAVAPE and IEA4APE) or
pause_element_auth_level=IEA_AUTHORIZED (callable services IEAVAPE2 and IEA4APE2), the PE can
be used to pause and release any task or SRB in the system. The same PE can be used, for example, to
pause a task in address space 10. After being released, the same PE can be used to pause an SRB in, say,
address space 23. There is, however, a small performance penalty imposed when a PE is used to pause a
task or SRB in one space and then reused to pause a task or SRB in another space. This cost is accrued
upon each space transition.

The following services (IEAVAPE2, IEAVDPE2, IEAVPME2, IEAVPSE2, IEAVRLS2, IEAVRPI2, IEAVXFR2,
IEA4APE2, IEA4DPE2, IEA4PME2, IEA4PSE2, IEA4RLS2, IEA4RPI2, and IEA4XFR2) have a 'LINKAGE='
keyword that specifies whether the caller is authorized (LINKAGE=BRANCH requires the caller to be in
key 0 supervisor state). The authorization of the PET is not specified, except when it is allocated via the
IEAVAPE2 (or IEA4APE2) service. Instead, the authorization of the PET is implied. Authorized users can
use any PET, but unauthorized users only can use a PET that was allocated for unauthorized use.

When an authorized program is passed a PET from an unauthorized program, the authorized program
must ensure that the PET is valid to be used by the unauthorized program. The authorized program can
validate this by invoking the IEAVRPI2 (or IEA4RPI2) service and specifying a special value for the linkage
parameter. When an authorized program needs to validate that a PET can be used by an unauthorized
program, add IEA_UNTRUSTED_PET to the value specified for LINKAGE and invoke the IEAVRPI2 service.
The data returned by the IEAVRPI2 service identifies whether the unauthorized caller is able to use the
PET:

• Return_code must be 0.
• Pause_element_auth_level must be IEA_PET_UNAUTHORIZED.

A PE can be used to pause only one task or SRB at a time; the system does not allow more then one
dispatchable unit to be paused under a single PE.

Pause elements are not supported by checkpoint/restart. However, support has been added with APAR
OA19821 to permit the allocation of pause elements that can allow a successful checkpoint/restart. This
is possible for applications that can tolerate the fact that the pause element will not be restored upon
a restart after a checkpoint. An application can tell if this support is available by checking if CVTPAUS4
has been set in the CVT. A new type is introduced for the auth_level parameter of the Allocate Pause
Element service. The new level is created by adding the value of the new type (IEA_CHECKPOINTOK) to
the existing value (at one time, only IEA_AUTHORIZED or IEA_UNAUTHORIZED can be specified). When
pause elements are allocated, a checkpoint is accepted only if all encountered pause elements have been
allocated indicating the IEA_CHECKPOINTOK type.

Using the services
There are 28 callable services available for task synchronization:

• Allocate_Pause_Element – IEAVAPE, IEAVAPE2, IEA4APE, or IEA4APE2
• Deallocate_Pause_Element – IEAVDPE, IEAVDPE2, IEA4DPE, or IEA4DPE2
• Pause – IEAVPSE, IEAVPSE2, IEA4PSE, or IEA4PSE2
• Pause_Multiple_Elements– IEAVPME2 or IEA4PME2
• Release – IEAVRLS, IEAVRLS2, IEA4RLS, or IEA4RLS2
• Retrieve_Pause_Element_Information - IEAVRPI, IEAVRPI2, IEA4RPI, or IEA4RPI2
• Test_Pause_Element - IEAVTPE or IEA4TPE
• Transfer – IEAVXFR, IEAVXFR2, IEA4XFR, or IEA4XFR2

To use Pause, Release, and Transfer, a program must first allocate a PE by calling the
Allocate_Pause_Element service. In response, the system allocates a PE and returns a pause element
token (PET) that identifies the pause element (PE).

Chapter 6. Resource control 105

You use the PET returned from Allocate_Pause_Element to identify the allocated PE until either:

• The PE has been used to pause (through Pause or Transfer) and release (through Release or Transfer) a
task.

• A paused task has been released through an asynchronous ABEND.

When you are finished with the PE, call the Deallocate_Pause_Element service to return the PE to the
system. If a task is asynchronously ABENDed while it is paused, the system itself invalidates the PE, and it
cannot be reused for pause requests. Thus, return an invalidated PE to the system as soon as possible by
a call to Deallocate_Pause_Element.

Though the PE remains allocated until you deallocate it, you can use a PET for only one pair of calls, which
result in a pause and a release of a task. When you specify a PET on a successful call to the Pause service
or to pause a task through a successful call to the Transfer service, the system invalidates the input PET
and returns an updated PET to identify the PE. Use the updated PET to reuse the PE or to deallocate the
PE.

Figure 46 on page 106 shows, in pseudocode, the sequence of calls to allocate a PE, pause the current
task, release the task, and deallocate the PE.

/* Common variables */ |
 |
 Dcl PET char(16); |
 |
 Workunit #1 | Workunit #2
 |
 /* Workunit #1 variables */ | /* Workunit #2 variables */
 Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
 Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
 Dcl Updated_pet char(16); | Dcl RelCode char(3);
 Dcl RetRelCode char(3); |
 |
 Auth1 = IEA_UNAUTHORIZED; | Auth2 = IEA_UNAUTHORIZED;
 . | .
 . | .
 . | .
 /* Allocate a Pause Element */ |
 Call IEAVAPE (RC1,Auth1,PET); |
 |
 /* Pause Workunit #1 */ |
 Call IEAVPSE (RC1,Auth1,PET, |
 Updated_PET,RetRelCode); |
 |
/*processing pauses until released*/ | RelCode = '123';
 | /* Release Workunit #1 */
 | Call IEAVRLS (RC2,Auth2,PET,
 . | RelCode);
 . |
 . |
 PET = UPET; |
 Call IEAVPSE (RC1,Auth1,PET); |
 Updated_PET,RetRelCode); |
 |
/*processing pauses until released*/ | RelCode = '345';
 . | /* Release Workunit #1 */
 . | Call IEAVRLS (RC2,Auth2,PET,
 . | RelCode);
 /* Deallocate the pause element */ |
 Call IEAVDPE (RC1,Auth1, |
 Updated_PET) |

Figure 46. Pause and Release Example

The Pause, Release, and Transfer services also provide a release code field that programs can use to
communicate, to indicate, for example, the reason for a release. The program that calls the Release
service can set a release code.

The release code is particularly useful when a task might be released before it is paused (prereleased).
When a subsequent call to the Pause service occurs, the system does not pause the task; instead, it
returns control immediately to the calling program and provides the release code specified on the release
call.

106 z/OS: z/OS MVS Assembler Services Guide

Figure 47 on page 107 shows, in pseudocode, the sequence of calls needed to allocate a PE, prerelease a
task, and deallocate the PE.

/* Common variables */ |
 |
 Dcl PET char(16); |
 |
 Workunit #1 | Workunit #2
 |
 /* Workunit #1 variables */ | /* Workunit #2 variables */
 Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
 Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
 Dcl Updated_PET char(16); | Dcl RelCode char(3);
 Dcl RetRelCode char(3); |
 |
 Auth1 = IEA_UNAUTHORIZED; |
 |
 /* Allocate a Pause Element */ |
 Call IEAVAPE (RC1,Auth1,PET); |
 . | Auth2 = IEA_UNAUTHORIZED;
 . | RelCode ='123';
 . |
 | /* Release Workunit #1 */
 | Call IEAVRLS (RC2,Auth2,PET,
 | RelCode);
 /* Pause Workunit #1 */ | .
 Call IEAVPSE (RC1,Auth1,PET, | .
 Updated_PET,RetRelCode); | .
 |
/*check release code and continue */ |
 . |
 . |
 . |
 /* Deallocate the pause element */ |
 Call IEAVDPE (RC1,Auth1, |
 Updated_PET); |

Figure 47. Release and Pause Example

If you make a release request (through Release or Transfer) specifying a PET that identifies a PE that has
not yet been used to pause a task, the system marks the PE as a prereleased PE. If a program tries to
pause a task using a prereleased PE, the system returns control immediately to the caller; it does not
pause the task. Instead, it resets the PE. As soon as a PE is reset, it can be reused for another Pause and
Release, but, as stated earlier, you use the returned updated PET for the next reused PE.

The Pause and Release services are very similar to the WAIT and POST macros, but the Transfer service
provides new function. You can use Transfer to either:

• Release a paused task and transfer control directly to the released task
• Pause the current task, release a paused task, and transfer control directly to the released task

Figure 48 on page 108 shows an example of using the Transfer service to release a task without pausing
the current task.

Because the Transfer service can affect multiple units of work, using Transfer requires you to work with
three PETs:

1. The current pause element token (CurrentDuPet in Figure 48 on page 108) identifies the allocated
pause element that Transfer is to use to pause the current task (the caller of the Transfer service).
When you do not need to pause the current task, you set this token to binary zeros, as shown in Figure
48 on page 108.

2. The updated pause element token (UPET2 in Figure 48 on page 108), which the system returns when
you specify a current pause element token. You need this updated token to reuse the pause element
on a subsequent Pause or Transfer or to deallocate the pause element. If you set the current token to
binary zeros, as done in Figure 48 on page 108, the contents of the updated pause element token are
not meaningful.

3. The target token (TargetDuPET in Figure 48 on page 108) identifies the allocated pause element that
Transfer is to use to release a task. In Figure 48 on page 108, it contains the PET that identifies the PE
used to pause Workunit #1.

Chapter 6. Resource control 107

A current release code and a target release code are also available on the call to Transfer. Whether or not
each code contains valid data depends on conventions set by the different parts of your program.

/* Common variables */ |
 |
 Dcl PET char(16); |
 |
 Workunit #1 | Workunit #2
 |
/* Workunit #1 variables */ | /* Workunit #2 variables */
 Dcl Auth1 fixed(32); | Dcl Auth2 fixed(32);
 Dcl RC1 fixed(32); | Dcl RC2 fixed(32);
 Dcl UPET1 char(16); | Dcl CurrentDuRelCode char(3);
 Dcl RetRelCode char(3); | Dcl CurrentDuPET char(16);
 . | Dcl UPET2 char(16);
 . | Dcl TargetDuPET char(16);
 . | Dcl TargetDuRelCode char(3);
Auth1 = IEA_UNAUTHORIZED; |
/* Allocate a Pause Element */ | Auth2 = IEA_UNAUTHORIZED;
 Call IEAVAPE (RC1,Auth1,PET); | .
 | .
/* Pause Workunit #1 */ | .
 Call IEAVPSE (RC1,Auth1,PET,UPET1, | TargetDuRelCode = '123';
 RetRelCode); | /* no pause-set token to zeros */
 | CurrentDuPet =''B;
 | TargetDuPET = PET
/*processing pauses until transfer*/ |
 | /* Transfer to Workunit #1 */
 | Call IEAVXFR (RC2,Auth2,
 | CurrentDuPET,UPET2,
 | CurrentDuRelCode,
 | TargetDuPET,
 | TargetDuRelCode);
/*processing continues */ | .
 | .
 /* Deallocate the Pause Element */ | .
 Call IEAVDPE (RC1,Auth1,UPET1); |

Figure 48. Transfer without Pause Example

Serializing access to resources (ISGENQ macro)
When one or more programs using a serially reusable resource modify the resource, they must not use the
resource simultaneously with other programs. Consider a data area in virtual storage that is being used by
programs associated with several tasks of a job step. Some of the programs are only reading records in
the data area; because they are not updating the records, they can access the data area simultaneously.
Other programs using the data area, however, are reading, updating, and replacing records in the data
area. Each of these programs must serially acquire, update, and replace records by locking out other
programs. In addition, none of the programs that are only reading the records want to use a record that
another program is updating until after the record has been replaced.

If your program uses a serially reusable resource, you must prevent incorrect use of the resource. You
must ensure that the logic of your program does not require the second use of the resource before
completion of the first use. Be especially careful when using a serially reusable resource in an exit routine;
because exit routines get control asynchronously with respect to your program logic, the exit routine
could obtain a resource already in use by the main program. When more than one task is involved, using
the ISGENQ macro correctly can prevent simultaneous use of a serially reusable resource.

z/OS Automatic Tape Switching (ATS STAR) uses the ISGDGRSRES exit to add additional device
information to the DISPLAY GRS command. For information and an example, see Providing ENQ resource
information on DISPLAY GRS command in z/OS MVS Programming: Authorized Assembler Services Guide.

The ISGENQ macro assigns control of a resource to the current task. The control program determines the
status of the resource and does one of the following:

• If the resource is available, the control program grants the request by returning control to the active
task.

• If the resource has been assigned to another task, the control program delays assignment of control by
placing the active task in a wait condition until the resource becomes available.

108 z/OS: z/OS MVS Assembler Services Guide

• Passes back a return code indicating the status of the resource.
• Abends the caller on unconditional requests that would otherwise result in a non-zero return code.

When the status of the resource changes so that the waiting task can get control, the task is taken out of
the wait condition and placed in the ready condition.

Naming the resource
The ISGENQ macro identifies the resource by qname, rname, and a scope value. The qname and rname
need not have any relation to any actual name of the resource. The control program does not associate
a name with an actual resource; it merely processes requests having the same qname, rname, and scope
on a first-in, first-out basis. It is up to you to associate the names with the resource by ensuring that all
users of the resource use the same qname, rname, and scope value to represent the same resource. The
control program treats requests having different qname, rname, and scope combinations as requests for
different resources. Because the control program cannot determine the actual name of the resource from
the qname, rname, and scope, a task could use the resource by specifying a different qname, rname, and
scope combination or by accessing the resource without using ISGENQ. In this case, the control program
cannot provide any protection.

In many cases it is impossible for you to determine what resources are being serialized by the resource
identified by the QNAME and RNAME. As such, GRS provides the ISGDGRSRES installation exit to allow
authorized programs to add additional resource information on the DISPLAY GRS command. For more
information and an example, see Providing ENQ resource information on DISPLAY GRS command in z/OS
MVS Programming: Authorized Assembler Services Guide.

Defining the scope of a resource
You can request a scope of STEP, SYSTEM, SYSTEMS, or SYSPLEX value on the ISGENQ macro.

• Use a scope of STEP if the resource is used only in your address space. The control program uses the
address space identifier to make your resource unique in case someone else in another address space
uses the same qname and rname and a scope of STEP.

• Use a scope of SYSTEM if the resource is serialized across all address spaces in a system. For example,
to prevent two jobs from using a named resource simultaneously, use SYSTEM.

• Use a scope of SYSTEMS or SYSPLEX if the resource is available to more than one system. All programs
that serialize on the resource must use the same qname and rname and a scope of SYSTEMS. For
example, to prevent two processors from using a named resource simultaneously, use SYSTEMS or
SYSPLEX.

Note: Note that the control program considers a resource with a SYSTEMS scope to be different from a
resource represented by the same qname and rname but with a scope of STEP or SYSTEM.

Local and global resources
The ISGENQ macro recognize two types of resources: local resources and global resources.

A local resource is a resource identified on ISGENQ, ENQ or DEQ by a scope of STEP or SYSTEM. A local
resource is recognized and serialized only within the requesting operating system. The local resource
queues are updated to reflect each request for a local resource. If a system is not operating under
global resource serialization (that is, the system is not part of a global resource serialization complex), all
resources requested are treated as local resources.

If a system is part of a global resource serialization complex, a global resource is either identified on the
ENQ or DEQ macro by a scope of SYSTEMS, or on the ISGENQ macro by a scope of SYSTEMS or SYSPLEX.

If your system is part of a global resource serialization complex, global resource serialization might
change the scope value during its resource name list (RNL) processing. If the resource appears in the
SYSTEM inclusion RNL, a resource with a scope of SYSTEM can have its scope converted to SYSTEMS or
SYSPLEX. If the resource appears in the SYSTEMS or SYSPLEX exclusion RNL, a scope of SYSTEMS or

Chapter 6. Resource control 109

SYSPLEX can have its scope changed to SYSTEM. This procedure is described in Selecting the data section
of z/OS MVS Planning: Global Resource Serialization.

Alternate serialization products have the ability to provide additional global resource serialization. As
such, a resource may be local (SYSTEM scope) from a global resource serialization perspective but
actually be globally managed by an alternate serialization product. See “Determining the resulting scope”
on page 110 for more details.

You can request that global resource serialization keep the API specified scope through the RNL
parameter on ISGENQ, ENQ and DEQ. The scope, which systems use to serialize a Global resource, and
other attributes, can be altered by a combination of the RNLs, installations exits or alternate serialization
products to allow the installation and alternate serialization products to manage the ENQ. Specifying
RNL=NO on the API will ensure that no changes are made and that only GRS will manage the resource
among the systems in the GRS complex.

Note: Certain ENQs should not be altered.

For more important information about when to use RNL=NO, see “Determining the resulting scope” on
page 110.

Determining the resulting scope
You can determine the resulting scope of your ISGENQ request and what caused any scope change
to take place by using one or both of the ISGQUERY and ISGENQ REQUEST=TEST services. Use these
services to insure that the resulting scope is correct for the current configuration of your product. For
RNL=YES requests, the scope can change by the RNL or installation exit.

Note that alternate serialization products use installation exits to control the scope that global resource
serialization uses. For example, an alternate serialization product can extend the scope such that it
would indicate to global resource serialization that the scope should be local so it could extend it to its
global scope. This scope might be larger or smaller than the global resource serialization complex. If the
resource must, under all possible user configurations, always be serialized at the specified scope and for
a SYSTEMS scope, the systems must all be within the GRS Complex and not at an extended, alternate
serialization product level or cross GRS Complex level, then use RNL=NO to prevent the ENQ Resource
domain from changing. See z/OS MVS Planning: Global Resource Serialization for more information on
Resource Name Lists and alternate serialization product.

To assist the installation with monitoring and possibly altering the scope of ENQs based on how the
product is configured, document all resources that are serialized by ENQs and how changing their scope
can be used to have the resource domain match various configurations. For example:

• To allow the installation to have unique instances of the product, on a system basis, the system unique
resources and associated ENQs with SCOPE=SYSTEM are required. For ENQs that are always issued
with SCOPE=SYSTEMS, use RNL=YES and require the installation to exclude the ENQ from the Global
ENQ domain via RNLs so the SCOPE is changed to SYSTEM and does not interact with others on
different systems.

• For a resource that is always shared within a Sysplex regardless of possible configurations, indicate that
the product specifies RNL=NO on GRS APIs in order to ensure that the scope is not altered and the
resource domain is always within the GRS complex. This would always include the Sysplex that issued
the ENQ request.

• To allow the installation to use to an alternate serialization product to create subsets of the product
within the GRS complex or Sysplex. Similar to unique instances per system, provide a means of having
unique resources per product instance domain and use RNL=YES on ENQ related APIs.

• To allow the installation to extend the sharing of the resource between GRS Complex domains via an
alternate serialization product, use RNL=YES on ENQ related APIs and document any other related
configuration requirements.

Check the following ISGQUERY output fields related to an ISGQUERY of the interested resource to
determine if its scope is global:

110 z/OS: z/OS MVS Assembler Services Guide

1. Is ISGYQUAARqxAltSerExtended on? This indicates that it is globally managed by an alternate
serialization product.

2. Is ISGYQUAARSSCOPE=ISGYQUAA_kSYSTEMS or ISGYQUAA_kSYSPLEX on? This indicates that it is
globally managed by global resource serialization.

Use various fields within the ISGYQUAA mapping to determine what caused the scope to be altered.

Test the resulting scope of an ISGENQ REQUEST=TEST request for resource by checking the following
ISGYENQ fields:

1. Is ISGYENQAAALTSEREXTENDED on? This indicates it is globally managed by an alternate serialization
product.

2. Is ISGYENQAAFinalScope=ISGENQ_SYSTEMS on? This indicates that it is globally managed by global
resource serialization.

Use various fields within the ISGYENQ mapping to determine what caused the scope to be altered.

Requesting exclusive or shared control
On ISGENQ, you specify either exclusive or shared control of a resource through the CONTROL parameter.

When your program has exclusive control of a resource, it is the only one that can use that resource; all
other programs that issue ENQs for the resource (either for exclusive or shared control) must wait until
your program releases the resource. If your program will change the resource, it should request exclusive
control.

When your program has shared control of a resource other programs can have concurrent use of the
resource. If another program requests exclusive control over the resource during the time your program
has shared use of the resource, that program will have to wait until all the current users have released the
resource. If your program will not change the resource, it should request shared control.

For an example of how the control program processes requests for exclusive and shared control of a
resource, see “Processing the requests” on page 112.

Limiting concurrent requests for resources
To prevent any one job, started task, or TSO/E user from generating too many concurrent requests for
resources, the control program counts and limits the number of ENQ requests in each address space.
When a user issues an ENQ request, the control program increases the count of outstanding requests for
that address space by one and decreases the count by one when the user issues a DEQ request.

ENQ RET=TEST, RET=CHNG, and ISGENQ equivalents do not cause this count to increase because they do
not queue up a new request block. A GQSCAN resulting in a continuation TOKEN however, along with the
ISGQUERY equivalent, does cause to count to increase.

Prior to an abend, messages ISG368E and ISG369I monitor address spaces that are approaching the
request maximum. If a particular subsystem requires more ENQs than normal, use the ISGADMIN
service to raise that subsystem's maximum for unauthorized and authorized requesters. As a temporary
workaround, you can raise the overall system maximum by issuing the following commands:

• SETGRS ENQMAXA for authorized
• SETGRS ENQMAXU for unauthorized

When the computed count reaches the threshold value or limit, the control program processes
subsequent requests as follows:

• Unconditional requests are abnormally ended with a system code of X'538'.
• Conditional requests are rejected and the user receives a return code of X'18'.
• For ISGENQ, see the return code of X'C01' explained in ISGENQ — Global resource serialization ENQ

service in z/OS MVS Programming: Assembler Services Reference IAR-XCT.

Chapter 6. Resource control 111

Processing the requests
The control program constructs a unique list for each qname, rname, and scope combination it receives.
When a task makes a request, the control program searches the existing lists for a matching qname,
rname, and scope. If it finds a match, the control program adds the task's request to the end of the
existing list; the list is not ordered by the priority of the tasks on it. If the control program does not find
a match, it creates a new list, and adds the task's request as the first (and only) element. The task gets
control of the resource based on the following:

• The position of the task's request on the list
• Whether or not the request was for exclusive or shared control

The best way to describe how the control program processes the list of requests for a resource is through
an example. Figure 49 on page 112 shows the status of a list built for a qname, rname, and scope
combination. The S or E next to the entry indicates that the request was for either shared or exclusive
control. The task represented by the first entry on the list always gets control of the resource, so the
task represented by ENTRY1 (Figure 49 on page 112, Step 1) is assigned the resource. The request that
established ENTRY2 (Figure 49 on page 112, Step 1) was for exclusive control, so the corresponding task
is placed in the wait condition, along with the tasks represented by all the other entries in the list.

Figure 49. ISGENQ Macro Processing

Eventually, the task represented by ENTRY1 releases control of the resource, and the ENTRY1 is removed
from the list. As shown in Figure 49 on page 112, Step 2, ENTRY2 is now first on the list, and the
corresponding task is assigned control of the resource. Because the request that established ENTRY2 was
for exclusive control, the tasks represented by all the other entries in the list remain in the wait condition.

Figure 49 on page 112, Step 3, shows the status of the list after the task represented by ENTRY2
releases the resource. Because ENTRY3 is now at the top of the list, the task represented by ENTRY3 gets
control of the resource. ENTRY3 indicates that the resource can be shared, and, because ENTRY4 also
indicates that the resource can be shared, ENTRY4 also gets control of the resource. In this case, the task
represented by ENTRY5 does not get control of the resource until both the tasks represented by ENTRY3
and ENTRY4 release control because ENTRY5 indicates exclusive use.

The control program uses the following general rules in manipulating the lists:

• The task represented by the first entry in the list always gets control of the resource.
• If the request is for exclusive control, the task is not given control of the resource until its request is the
first entry in the list.

• If the request is for shared control, the task is given control either when its request is first in the list or
when all the entries before it in the list also indicate a shared request.

• If the request is for several resources, the task is given control when all of the entries requesting
exclusive control are first in their respective lists and all the entries requesting shared control are either
first in their respective lists or are preceded only by entries requesting shared control.

Duplicate requests for a resource
A duplicate request occurs when a task issues an ISGENQ macro to request a resource that the task
already controls. With the second request, the system recognizes the contradiction and returns control
to the task with a non-zero return code (for a conditional request) or abnormally ends the task (for an

112 z/OS: z/OS MVS Assembler Services Guide

unconditional request). You should design your program to ensure that a second request for a resource
made by the same task is not issued as an unconditional request until control of the resource is released
for the first use. Be especially careful when using an ENQ macro in an exit routine.

Two specific reasons why the use of ISGENQ in an exit routine must be carefully planned are:

• The exit may be entered more than once for the same task.
• An exit routine may request resources already obtained by some other process associated with the task.

For more information on this topic, see “ENQ and DEQ conditional and unconditional requests” on page
113.

Releasing the resource
Use the RELEASE request to release a serially reusable resource that you obtained by using ISGENQ
macro. If a task tries to release a resource which it does not control, the control program either returns a
non-zero return code or abends the task. The control program might place many tasks in a wait condition
while it assigns control of the resource to one task. Having many tasks in the wait state might reduce the
amount of work being done by the system, therefore, you should release the resource, so that another
task can use it.

If a task terminates without releasing a resource, the control program releases the resource
automatically. By default, outstanding ENQs have affinity to the task that issued the ENQ. The system
releases any outstanding ENQs during termination as follows:

• Task termination: The user should provide a recovery routine to back out or complete any processing
that requires the serialization and then release any ENQs before the program gives up control. The
system automatically releases all of a task's outstanding ENQs after all recovery routines and task
related dynamic resources managers have executed.

• Memory termination: The system releases all ENQs during memory termination processing in cases
where task related recovery and termination resource managers may not have run. The ENQs are
released after all memory termination dynamic resource managers have executed.

Note that authorized routines that may get control under a resource manager must prevent themselves
from getting deadlocked. They may need to conditionally request an ENQ or query if it is already
outstanding by the address space that is in memory termination. They cannot obtain nor release an ENQ
that was obtained by the terminating space. However, they are guaranteed that no processing can take
place in the space that is terminating. As such, they can use the outstanding serialization to perform any
required back out or completion processing.

ENQ and DEQ conditional and unconditional requests
Up to this point, only unconditional requests have been considered. You can, however, make conditional
requests by using the COND parameter on ISGENQ and the RET parameter on the ENQ and DEQ macros.
One reason for making a conditional request is to avoid the abnormal termination that occurs if you
issue two ENQ macros for the same resource within the same task or when a DEQ macro is issued for a
resource for which you do not have control.

See “ISGENQ conditional and unconditional requests” on page 114 for detailed information on
conditional requests for ISGENQ.

The RET parameter of ENQ provides the following options:
RET=TEST

Indicates the availability of the resource is to be tested, but control of the resource is not requested.
RET=USE

Indicates control of the resource is to be assigned to the active task only if the resource is
immediately available. If any of the resources are not available, the active task is not placed in a
wait condition. When SYNCHRES is enabled, the request is subject to a delay for the reserve even if
RET=USE is specified.

Chapter 6. Resource control 113

RET=CHNG
Indicates the status of the resource specified is changed from shared to exclusive control.

RET=HAVE
Indicates that control of the resource is requested conditionally; that is, control is requested only if
the same task does not already have control of or an outstanding request for the same resource.

For the following descriptions, the term “active task” means the task issuing the ENQ macro. No reference
is intended to other tasks that might be active in other processors of a multiprocessor.

Use RET=TEST to test the status of the corresponding qname, rname, and scope combination, without
changing the list in any way or waiting for the resource. RET=TEST is most useful for determining if the
task already has control of the resource. It is less useful for determining the status of the list and taking
action based on that status. In the interval between the time the control program checks the status and
the time your program checks the return code and issues another ENQ macro, another task could have
been made active, and the status of the list could have changed.

Use RET=USE if you want your task to receive control of the resource only if the resource is immediately
available. If the resource is not immediately available, no entry will be made on the list and the task will
not be made to wait. RET=USE is most useful when there is other processing that can be done without
using the resource. For example, by issuing a preliminary ENQ with RET=USE in an interactive task, you
can attempt to gain control of a needed resource without locking your terminal session. If the resource is
not available, you can do other work rather than enter a long wait for the resource.

Use RET=CHNG to change a previous request from shared to exclusive control.

Use RET=HAVE to specify a conditional request for control of a resource when you do not know whether
you have already requested control of that resource. If the resource is owned by another task, you will be
put in a wait condition until the resource becomes available.

The RET=HAVE parameter on DEQ allows you to release control and prevents the control program from
abnormally ending the active task if a DEQ attempts to release a resource not held. If ENQ and DEQ are
used in an asynchronous exit routine, code RET=HAVE to avoid possible abnormal termination.

ISGENQ conditional and unconditional requests
The ISGENQ macro uses the COND keyword to determine if a request is conditional or unconditional. The
COND keyword is set to either YES or NO. No is the default.

Use the following descriptions to guide your ISGENQ conditional requests.

Use REQUEST(OBTAIN) TEST(YES) to test the status of the corresponding qname, rname, and scope
combination. When you specify TEST(YES) on the OBTAIN request an answer area is mapped in ISGYENQ.
The answer area can provide detailed information about the RNL and global resource serialization exit
processing. When you use an answer area you must also indicate the length of the answer area through
the ANSLEN keyword. Additionally, if a request already exists from the same task that matches the
specified resource, the ENQ token of that request will be returned.

Note: See ISGQUERY in z/OS MVS Programming: Assembler Services Reference IAR-XCT
SEARCH=BY_ENQTOKEN to obtain information on a specific outstanding ENQ request. Both ISGQUERY
and ISGENQ can be found in z/OS MVS Programming: Assembler Services Reference IAR-XCT.

Use REQUEST(OBTAIN) TEST(NO) CONTENTIONACT(FAIL) if you want your task to receive control of the
resource only if the resource is immediately available. If the resource is not immediately available, no
entry will be made on the list and the task will not be made to wait. This request is useful when there
is other processing that can be done without using the resource. For example, by issuing a preliminary
ISGENQ with CONTENTIONACT(FAIL) in an interactive task, you can attempt to gain control of a needed
resource without locking your terminal session. If the resource is not available, you can do other work
rather than enter a long wait for the resource. When SYNCHRES is enabled, the request is subject to a
delay for the reserve even if CONTENTIONACT=FAIL is specified.

Use REQUEST(OBTAIN) TEST(NO) CONTENTIONACT(WAIT) to specify a conditional request for control
of a resource when you do not know whether you have already requested control of that resource. If

114 z/OS: z/OS MVS Assembler Services Guide

the resource is owned by another task, you will be put in a wait condition until the resource becomes
available.

Use REQUEST(CHANGE) to change a previous request from shared to exclusive control.

Avoiding interlock
An interlock condition happens when two tasks are waiting for each other's completion, but neither task
can get the resource it needs to complete. Figure 50 on page 115 shows an example of an interlock.
Task A has exclusive access to resource M, and task B has exclusive access to resource N. When task B
requests exclusive access to resource M, B is placed in a wait state because task A has exclusive control
of resource M.

The interlock becomes complete when task A requests exclusive control of resource N. The same
interlock would have occurred if task B issued a single request for multiple resources M and N prior
to task A's second request. The interlock would not have occurred if both tasks had issued single requests
for multiple resources. Other tasks requiring either of the resources are also in a wait condition because of
the interlock, although in this case they did not contribute to the conditions that caused the interlock.

 Task A Task B
ENQ (M,A,E,8,SYSTEM)
 ENQ (N,B,E,8,SYSTEM)
 ENQ (M,A,E,8,SYSTEM)
ENQ (N,B,E,8,SYSTEM)

Figure 50. Interlock Condition

This example involving two tasks and two resources is a simple example of an interlock. The example
could be expanded to cover many tasks and many resources. It is imperative that you avoid interlock. The
following procedures indicate some ways of preventing interlocks.

• Do not request resources that you do not need immediately. If you can use the serially reusable
resources one at a time, request them one at a time and release one before requesting the next.

• Share resources as much as possible. If the requests in the lists shown in Figure 50 on page 115 had
been for shared control, there would have been no interlock. This does not mean you should share a
resource that you will modify. It does mean that you should analyze your requirements for the resources
carefully, and not request exclusive control when shared control is enough.

• If you need concurrent use of more than one resource, use the ENQ macro to request control of all
such resources at the same time. The requesting program is placed in a wait condition until all of the
requested resources are available. Those resources not being used by any other program immediately
become exclusively available to the waiting program. For example, instead of coding the two ENQ
macros shown in Figure 51 on page 115, you could code the one ENQ macro shown in Figure 52 on page
115. If all requests were made in this manner, the interlock shown in Figure 50 on page 115 could not
occur. All of the requests from one task would be processed before any of the requests from the second
task. The DEQ macro can release a resource as soon as it is no longer needed; multiple resources
requested in a single ENQ invocation can be released individually through separate DEQ instructions.

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 51. Two Requests For Two Resources

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM,NAME3ADD,NAME4ADD,E,10,SYSTEM)

Figure 52. One Request For Two Resources

• If the use of one resource always depends on the use of a second resource, then you can define
the pair of resources as one resource. On the ENQ and DEQ macros, define the pair with a single
rname and qname. You can use this procedure for any number of resources that are always used

Chapter 6. Resource control 115

in combination. However, the control program cannot then protect these resources if they are also
requested independently. Any requests must always be for the set of resources.

• If there are many users of a group of resources and some of the users require control of a second
resource while retaining control of the first resource, it is still possible to avoid interlocks. In this case,
each user should request control of the resources in the same order. For instance, if resources A, B, and
C are required by many tasks, the requests should always be made in the order of A, B, and then C.
An interlock situation will not develop, since requests for resource A will always precede requests for
resource B.

• When multiple resources are ENQed, all users must acquire the resources in the same manner. If one
user gets resources individually, all users must acquire the resources individually. If one user gets the
resources through a single list, all users must acquire the resources in a single list, but the sequence of
resource names within the lists can be different.

Serializing access to resources through the ISGENQ macro
IBM recommends using ISGENQ RESERVEVOLUME=NO, but you can also use ISGENQ
RESERVEVOLUME=YES or the RESERVE macro to serialize access when the following is true:

• The resource needs to be shared outside of the GRS complex. See z/OS MVS Planning: Global Resource
Serialization for more information about GRS Complexes and the use of RESERVE.

• Your installation is not using SMS to manage the shared data sets.

Obtaining a reserve increases the probability of contention for resources and the possibility of interlocks.
If you use a reserve to serialize access to data sets on shared DASD, use ISGENQ REQUEST=RELEASE or
the DEQ macro to release the resource.

When different systems in your installation access data sets on shared DASD, you can specify the keyword
RESERVEVOLUME=YES with a scope of SYSTEMS or SYSPLEX on the ISGENQ macro to serialize access
to those resources. That is, RESERVEVOLUME=YES is used when a hardware reserve is required to allow
global resource serialization to share a DASD volume outside of the complex.

Collecting information about resources and their requestors
(ISGQUERY and GQSCAN macros)

ISGQUERY is the IBM recommended replacement for the GQSCAN service.

Global resource serialization enables an installation to share symbolically named resources. Programs
issue the ENQ and RESERVE macros to request access to resources; global resource serialization adds
information about each requestor to the appropriate resource queue. The only way you can extract
information from the resource queues is by using the ISGQUERY or GQSCAN macro.

The ISGQUERY macro allows you to obtain information about the status of each resource identified
to global resource serialization, which includes information about the tasks that have requested the
resource. ISGQUERY fully supports 64-bit callers.

How ISGQUERY returns resource information
Using ISGQUERY the system returns information you request about the status of each resource identified
to global resource serialization, which includes information about the tasks that have requested the
resource. ISGQUERY fully supports 64-bit callers. Use the ISGQUERY service to inquire about:

• A particular scope of resources (such as STEP, SYSTEM, or SYSTEMS).
• A specific resource by name.
• A specific system or systems resource.
• A specific address space resource.
• Resources that are requested through the RESERVE macro.

116 z/OS: z/OS MVS Assembler Services Guide

The system collects the information you request from the resource queues and consolidates that
information before returning it. The ISGQUERY service returns the following types of global resource
serialization information:

• REQINFO=RNLSEARCH: To determine if a given resource name is in the current Resource Name Lists
(RNL).

• REQINFO=ENQSTATS: To obtain information related to ENQ counts.
• REQTYPE=QSCAN: To obtain information on resources and requesters of outstanding ENQ requests.
• REQINFO=LATCHECA: To obtain enhanced contention analysis data for latch waiters that might

indicate contention issues.
• REQINFO=USAGESTATS: To obtain information for address space level contention information related

to ENQs (all scopes) and latches (all latch sets).

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for additional information.

How GQSCAN returns resource information
Using GQSCAN, you can inquire about a particular scope of resources (such as STEP, SYSTEM, or
SYSTEMS), a specific resource by name, a specific system's resources, a specific address space's
resources, or resources requested through the RESERVE macro. The system collects the information you
request from the resource queues and consolidates that information before returning it. The information
returned might not reflect changes in the resource queue that occur while the system collects the
information.

The system returns the information you request in an area whose location and size you specify using
the AREA parameter. The size of the area, the scope of the resource, and whether you code the TOKEN
parameter determine the information you receive from GQSCAN. Use the TOKEN parameter when you
design your program to issue repeated calls to GQSCAN for the same request. For example, if you request
information about a resource that is shared across systems, the amount of information might be more
than will fit in the area that you provide. Using the TOKEN parameter allows you to issue subsequent calls
to receive additional information about that resource.

GQSCAN returns the information in the form of resource information blocks (RIB) and resource
information block extensions (RIBE), as shown in the following figure. The RIB and the RIBE are described
in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosInternetLibrary).

In the RIB, the following fields contain information on RIBEs:

• RIBTRIBE contains the total number of RIBEs associated with this RIB.

Chapter 6. Resource control 117

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

• RIBNRIBE contains the total number of RIBEs associated with this RIB that GQSCAN could fit into the
area specified on the AREA parameter.

• RIBEDEVN contains a 4-digit EBCDIC device number for RESERVEs issued on the system. For RESERVEs
issued on other systems, RIBEDEVN contains zero.

If the value in RIBNRIBE is less than the value in RIBTRIBE, you may need to specify a larger area with
the AREA parameter.

The number of RIBs and RIBEs you receive for a particular resource depends on the size of the area you
provide, and the scope and token values you specify on the GQSCAN macro.

How area size determines the information GQSCAN returns
The size of the area you provide must be large enough to hold one RIB and at least one of its associated
RIBEs; otherwise, you might lose information about resource requestors, or you might have to call
GQSCAN repeatedly to receive all of the information you requested. To determine whether you have
received all RIBEs for a particular RIB, check the values in the RIBTRIBE and RIBNRIBE fields. To
determine whether you have received all of the information on the resource queue, check the return code
from GQSCAN.

IBM recommends that you use a minimum area size of 1024 bytes.

The information that GQSCAN returns in the area also depends on what values you specify for the SCOPE
and TOKEN parameters.

How scope and token values determine the information GQSCAN returns
Table 7 on page 118 summarizes the possible values and the information returned for a GQSCAN request.

Table 7. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or ALL

GQSCAN Invocation TOKEN Parameter
Coded?

Information Returned

Initial call No At least the first RIB that represents the first requestor
on the resource queue, and as many of that RIB's
associated RIBEs as will fit. Any RIBEs that do not fit
are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next RIB on
the resource queue, as long as the remaining area is
large enough to hold that RIB and at least one of its
RIBEs.

Initial call Yes; value is zero At least the first RIB that represents the first requestor
on the resource queue, and as many of that RIB's
associated RIBEs as will fit. Any RIBEs that do not fit
are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next RIB on
the resource queue, as long as the remaining area is
large enough to hold that RIB and all of its RIBEs.

Subsequent call No At least the first RIB that represents the first requestor
on the resource queue, and as many of that RIB's
associated RIBEs as will fit. Any RIBEs that do not fit
are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next RIB on
the resource queue, as long as the remaining area is
large enough to hold that RIB and at least one of its
RIBEs.

118 z/OS: z/OS MVS Assembler Services Guide

Table 7. GQSCAN Results with a Scope of STEP, SYSTEM, SYSTEMS, or ALL (continued)

GQSCAN Invocation TOKEN Parameter
Coded?

Information Returned

Subsequent call Yes; value is the
token value returned
by GQSCAN on the
preceding call

At least the next RIB on the resource queue, with as
many of that RIB's associated RIBEs as will fit. Any
RIBEs that do not fit are not returned to the caller.

If all of the RIBEs fit, GQSCAN returns the next RIB on
the resource queue, as long as the remaining area is
large enough to hold that RIB and all of its RIBEs.

The example in Figure 53 on page 119 shows the area contents for three requests. For each request,
the caller specified the TOKEN parameter and one of the following for the scope value: STEP, SYSTEM,
SYSTEMS, or ALL. Assume that the resource queue contains information about four resources: A, which
has three requestors; B, which has six; C, which has two; and D, which has one.

Figure 53. Work Area Contents for GQSCAN with a Scope of STEP, SYSTEM, SYSTEMS, or ALL

Note that, because the specified area is not large enough, the caller cannot receive all of the RIBEs
associated with resource B, even though the caller coded the TOKEN parameter. To receive all of those
RIBEs, the caller has to specify a larger area and reissue the GQSCAN request.

When scanning the information returned, you must use the size of the fixed portion of the RIB and the
RIBE that is returned in register 0. The size of the fixed portion of the RIB (RIBLEN) is in the high-order
half of register 0, and the size of the RIBE (RIBELEN) is in the low-order half.

The first RIB starts at the beginning of the workarea you specify on the AREA parameter. To find the first
RIBE, add the value of RIBLEN and the variable portion of RIB (as found in the RIBVLEN field of the RIB)
to the address of the workarea. To find the second RIBE, add the value of RIBELEN to the address of the
first RIBE.

To find the second RIB, add the following to the location of the first RIB:

RIBLEN + RIBVLEN + (the number of RIBEs × RIBELEN)

How GRS determines the scope of an ENQ or RESERVE request
Global resource serialization may change the scope of an ENQ or RESERVE request that was issued with a
SCOPE of SYSTEM or SYSTEMS (unless the request specified RNL=NO).

If an ENQ is issued with a scope of SYSTEM, and matches an entry in the SYSTEM inclusion RNL but does
not match an entry in the SYSTEMS exclusion RNL, then global resource serialization changes the scope of

Chapter 6. Resource control 119

the request from SYSTEM to SYSTEMS (and processes the resource as a global resource). A GQSCAN with
SCOPE=SYSTEM will not find a match on such a request.

If an ENQ or RESERVE is issued with a scope of SYSTEMS, and either it matches an entry in the SYSTEMS
exclusion RNL, or the system is running with GRSRNL=EXCLUDE, then GRS changes the scope of the
request from SYSTEMS to SYSTEM (and processes the resource as a local resource). A GQSCAN with
SCOPE=SYSTEMS will not find a match on such a request.

When issuing a GQSCAN for a resource whose scope might have been changed, you might find it desirable
to specify SCOPE=ALL in order to match requests whether or not they have been changed.

120 z/OS: z/OS MVS Assembler Services Guide

Chapter 7. Program interruption services

Some conditions encountered in a program cause a program interruption. These conditions include
incorrect parameters and parameter specifications, as well as exceptional results, and are known
generally as program exceptions. The program status word's (PSW) program mask provide bits to control
certain program exceptions. When MVS gives control to programs, these bits are usually off, disabling
the program exceptions. However, MVS also provides the ESPIE and SPIE services to enable program
exceptions and to allow a user exit routine to receive control when those exceptions occur. This chapter
describes the use of ESPIE and SPIE services.

Specifying user exit routines
By issuing the SPIE1 or ESPIE macro, you can specify your own exit routine to be given control for one
or more types of program exceptions. If you issue an ESPIE macro, you can also pass the address of a
parameter list to the exit routine. When one of the specified program exceptions occurs in a problem state
program being executed in the performance of a task, the exit routine receives control in the key of the
active task and in the addressing mode in effect when the SPIE or ESPIE was issued. (If a SPIE macro was
issued, this is 24-bit addressing mode.)

For other program interruptions, the recovery termination manager (RTM), gets control.

If the SPIE or ESPIE macro specifies an exception for which the interruption has been disabled, the
system enables the interruption when the macro is issued.

If a program interruption occurs, the exit routine receives control on interrupt codes 0 through F. For the
SPIE macro, the exit routine receives control only if the interrupted program is in primary address space
control (ASC) mode. For the ESPIE macro, the exit routine receives control if the interrupted program is
in either primary or access register (AR) ASC mode. For both the SPIE and ESPIE macros, the exit routine
receives control only for interrupts that occur when the primary, home, and secondary address spaces are
the same.

The environment established by an ESPIE macro exists for the entire task, until the environment is
changed by another SPIE/ESPIE macro, or until the program creating the ESPIE returns. Each succeeding
SPIE or ESPIE macro completely overrides specifications in the previous SPIE or ESPIE macro. You can
intermix SPIE and ESPIE macros in one program. Only one SPIE or ESPIE environment is active at a time.
If an exit routine issues an ESPIE macro, the new ESPIE environment does not take effect until the exit
routine completes.

The system automatically deletes the SPIE/ESPIE exit routine when the request block (RB) that
established the exit terminates. If a caller attempts to delete a specific SPIE/ESPIE environment
established under a previous RB, the caller is abended with a system completion code of X'46D'. A
caller can delete all previous SPIE and ESPIE environments (regardless of the RB under which they were
established) by specifying a token of zero with the RESET option of the ESPIE macro or an exit address of
zero with the SPIE macro.

A program, executing in either 24-bit or 31-bit addressing mode in the performance of a task, can
issue the ESPIE macro. If your program is executing in 31-bit addressing mode, you cannot issue the
SPIE macro. The SPIE macro is restricted in use to callers executing in 24-bit addressing mode in the
performance of a task. The following topics describe how to use the SPIE and ESPIE macros.

Using the SPIE macro
The program interruption control area (PICA) and the program interruption element (PIE) contain the
information that enables the system to intercept user-specified program interruptions established using
the SPIE macro. You can modify the contents of the active PICA to change the active SPIE environment.
The PICA and the PIE are described in the following topics.

1 The ESPIE macro is the preferred programming interface.

© Copyright IBM Corp. 1988, 2022 121

Program interruption control area
The expansion of each standard or list form of the SPIE macro contains a system parameter list called the
program interruption control area (PICA). The PICA contains the new program mask for the interruption
types that can be disabled in the PSW, the address of the exit routine to be given control when one of the
specified interruptions occurs, and a code for interruption types (exceptions) specified in the SPIE macro.
For the mapping provided by the IHAPICA mapping macro, see PICA in z/OS MVS Data Areas in the z/OS
Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

The system maintains a pointer (in the PIE) to the PICA referred to by the last SPIE macro executed. This
PICA might have been created by the last SPIE or might have been created previously and referred to
by the last SPIE. Before returning control to the calling program or passing control to another program
through an XCTL or XCTLX macro, each program that issues a SPIE macro must cause the system to
adjust the SPIE environment to the condition that existed previously or to eliminate the SPIE environment
if one did not exist on entry to the program. When you issue the standard or execute form of the SPIE
macro to establish a new SPIE environment, the system returns the address of the previous PICA in
register 1. If no SPIE/ESPIE environment existed when the program was entered, the system returns
zeroes in register 1.

You can cancel the effect of the last SPIE macro by issuing a SPIE macro with no parameters. This action
does not reestablish the effect of the previous SPIE; it does create a new PICA that contains zeroes, thus
indicating that you do not want an exit routine to process interruptions. You can reestablish any previous
SPIE environment, regardless of the number or type of subsequent SPIE macros issued, by using the
execute form of the SPIE specifying the PICA address that the system returned in register 1. The PICA
whose address you specify must still be valid (not overlaid). If you specify zeroes as the PICA address, the
SPIE environment is eliminated.

Figure 54 on page 122 shows how to restore a previous PICA. The first SPIE macro designates an exit
routine called FIXUP that is to be given control if fixed-point overflow occurs. The address returned in
register 1 is stored in the fullword called HOLD. At the end of the program, the execute form of the SPIE
macro is used to restore the previous PICA.

 .
 .
 SPIE FIXUP,(8) Provide exit routine for fixed-point overflow
 ST 1,HOLD Save address returned in register 1
 .
 .
 L 5,HOLD Reload returned address
 SPIE MF=(E,(5)) Use execute form and old PICA address
 .
 .
HOLD DC F'0'

Figure 54. Using the SPIE Macro

Program interruption element
The first time you issue a SPIE macro during the performance of a task, the system creates a program
interruption element (PIE) in the virtual storage area assigned to your job step. The system also creates
a PIE whenever you issue a SPIE macro and no PIE exists. For the format of the PIE, see z/OS
MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary).

The PICA address in the PIE is the address of the program interruption control area used in the last
execution of the SPIE macro for the task. When control is passed to the routine indicated in the PICA, the
ESA/390 (basic control) mode old program status word contains the interruption code in bits 16-31 (the
first byte is the exception extension code and the second is the exception code); you can test these bits to
determine the cause of the program interruption. See z/Architecture Principles of Operations SA22–7832
for an explanation of the format of the old program status word. The system stores the contents of
registers 14, 15, 0, 1, and 2 at the time of the interruption as indicated.

122 z/OS: z/OS MVS Assembler Services Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Using the ESPIE macro
The ESPIE macro extends the functions of the SPIE macro to callers in 31-bit addressing mode. The
options that you can specify using the ESPIE macro are:

• SET to establish an ESPIE environment (that is, specify the interruptions for which the user-exit routine
will receive control)

• RESET to delete the current ESPIE environment and restore the SPIE/ESPIE environment specified
• TEST to determine the active SPIE/ESPIE environment

If you specify ESPIE SET, you pass the following information to the system:

• A list of the program interruptions to be handled by the exit routine
• The location of the exit routine
• The location of a user-defined parameter list

The system returns either a token representing the previously active SPIE or ESPIE environment, or a
token of zeroes if there was none.

If you code ESPIE RESET, you pass the token, which was returned when the ESPIE environment was
established, back to the system. The SPIE or ESPIE environment corresponding to the token is restored.
If you pass a token of zero with RESET, all SPIE and ESPIE environments are deleted. ESPIE RESET must
not be issued from an ESPIE exit. To remove the current ESPIE exit, set the EPIEPERC bit and specify
the RESET token in EPIETOK. See “Requesting percolation from an ESPIE exit” on page 124 for more
information.

If you specify ESPIE TEST, you will be able to determine the active SPIE or ESPIE environment. ESPIE
TEST sets return codes to indicate which type of exit is active, if any, and if one or the other is active,
provides information about the exit in a parameter list. Refer to the TEST parameter on the ESPIE macro
for a description of the return codes, and the information that is returned in the parameter list.

If an ESPIE environment is active and you issue a SPIE macro to specify interruptions for which a SPIE
exit routine is to receive control, the system returns the address of a system-generated PICA in register 1.
Do not modify the contents of the system-generated PICA; use the address to restore the previous ESPIE
environment.

For a data exception,an ESPIE routine will receive the DXC value in its parameter area, and should use this
value rather than the value in the Floating Point Control (FPC) register.

If a retry is to be done, an ESPIE routine can manually change the value(s) of the FPR(s) and FPC register.
Changes to the non-volatile fields (i.e., the IEEE settings) in the FPC register must be made carefully since
this could affect the processing of the rest of the current program, and possibly subsequent programs.

The extended program interruption element (EPIE)
The system creates an EPIE the first time you issue an ESPIE macro during the performance of a task or
whenever you issue an ESPIE macro and no EPIE exists. The EPIE is freed when you eliminate the ESPIE
environment.

The EPIE contains the information that the system passes to the ESPIE exit routine when it receives
control after a program interrupt. When the exit routine receives control, register 1 contains the address
of the EPIE. (See the topic “Environment upon entry to user's exit routine” on page 123 for the contents of
the other registers.) The format of the EPIE is shown in z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

Environment upon entry to user's exit routine
When control is passed to your routine, the register contents are as follows:
Register 0:

Used as a work register by the system.

Chapter 7. Program interruption services 123

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Register 1:
Address of the PIE or EPIE for the task that caused the interruption.

Registers 2-13:
Unchanged.

Register 14:
Return address.

Register 15:
Address of the exit routine.

The access registers and linkage stack have the values that were current at the time of the program
interruption. Both SPIE and ESPIE exits always receive control in primary ASC mode.

The SPIE or ESPIE routine must maintain the return address supplied in GPR 14. The routine does not
have to place any information in any of the return registers for use by the system.

Functions performed in user exit routines
An ESPIE routine can turn on bit EPIERM64 to indicate that the system is to use information within
EPIEPS16 (and not EPIEPSW) for the retry information.

For a SPIE, or when the ESPIE exit routine does not turn on bit EPIERM64, the exit routine can alter
the last 4 bytes of the old PSW in the PIE (PIEPSW) or EPIE (EPIEPSW) to select any return point in the
interrupted program. In addition, for ESPIE exits, the routine must set the AMODE 31 bit (bit 0) of this
4-byte address and can set the AMODE 64 bit (EPIEPSW bit 31) to indicate the addressing mode of the
interrupted program. For ESPIE exits, the exit routine can alter the condition code and program mask
starting at the third byte in EPIEPSW.

For an ESPIE when the EXIT routine does turn on bit EPIERM64, the exit routine can alter the last 8 bytes
of the old 16-byte PSW in the EPIE (EPIEPS16) to select any return point in the interrupted program.
In addition, the routine must set the AMODE 31 bit (EPIEPS16 bit 32) and can set the AMODE 64 bit
(EPIEPS16 bit 31) to indicate the addressing mode of the interrupted program. The exit routine can alter
the condition code and program mask starting at the third byte in EPIEPS16

ESPIE exit routines can alter the ASC mode when control is returned to the interrupted program. To alter
the ASC mode of the interrupted program, the exit must do the following:

• When the exit routine does not turn on bit EPIERM64, set bit 17 of the EPIEPSW field in the EPIE. When
the exit routine does turn on bit EPIERM64, set bit 17 of the EPIEPS16 field in the EPIE.

• Set the EPIERCTL bit in the EPIE to indicate that the ASC mode for the interrupted program has been set
by the exit routine.

Requesting percolation from an ESPIE exit
ESPIE exits can request percolation of a program exception to the recovery termination manager (RTM)
instead of returning control to the interrupted program.

If an ESPIE exit determines that a program exception must be handled by RTM, the ESPIE exit can turn on
the EPIEPERC bit to request that the exception be passed to RTM for normal recovery processing. When
an ESPIE exit requests percolation, RTM converts the program exception to an abend code (for example,
PIC 1 becomes abend 0C1) and passes control to ESTAE-type recovery routines.

Note: When the EPIEPERC bit is set, the ESPIE exit routine must not modify the PSW and registers in the
EPIE.

When functional recovery routines (FRR) and ESTAE-type recovery routines percolate, the system deletes
the exit routines. When an ESPIE exit percolates, the ESPIE exit remains active and is not deleted. To
request that the ESPIE exit is deleted when it percolates, set the EPIERSET bit and optionally specify a
RESET TOKEN in the EPIERTOK field.

Note: ESPIE exits must not issue ESPIE RESET.

124 z/OS: z/OS MVS Assembler Services Guide

Chapter 8. Providing recovery

In an ideal world, the programs you write would run perfectly, and never encounter an error, either
software or hardware. In the real world, programs do encounter errors that can result in the premature
end of the program's processing. These errors could be caused by something your program does, or they
could be beyond your program's control.

MVS allows you to provide something called recovery for your programs; that means you can anticipate
and possibly recover from software errors that could prematurely end a program. To recover from these
errors, you must have one or more user-written routines called recovery routines. The general idea is
that, when something goes wrong, you have a recovery routine standing by to take over, fix the problem,
and return control to your program so that processing can complete normally; if the problem cannot be
fixed, the recovery routine would provide information about what went wrong. If correctly set up, your
recovery should, at the very least, provide you with more information about what went wrong with your
program than you would have had otherwise.

Part of recovery is also the "cleaning up" of any resources your program might have acquired. By "clean
up" of resources, we mean that programs might need to release storage that was obtained, release ENQs,
close data sets, and so on. If your program encounters an error before it has the opportunity to clean up
resources, your recovery routine can do the clean up.

MVS provides the recovery termination manager (RTM) to handle the process by which recovery routines
and resource managers receive control.

This chapter is devoted to explaining why you might want to provide recovery for your programs in
anticipation of encountering one or more errors, and how you go about doing that. An important point to
note is that providing recovery is something to be considered at the design stage of your program. You
should make the decision about whether to provide recovery before you begin designing the program.
Trying to provide recovery for an existing program is much more difficult because recovery must be an
integral part of your program.

The following table provides a roadmap to the information in this chapter. If you already understand
recovery concepts, you might want to skip directly to those topics of specific interest to you.

To find out about: Consult the following topic:

General recovery concepts, including:

• Why you would want to provide recovery.
• What software errors result in your recovery

getting control.
• What we mean when we say a program

abnormally ends.
• The different states for a recovery routine.
• The different types of routines in a recovery

environment, and how to choose, define, and
activate the right recovery routine.

• The basic options available to a recovery routine.
• How routines in a recovery environment interact.

“Understanding general recovery concepts” on
page 126.

© Copyright IBM Corp. 1988, 2022 125

To find out about: Consult the following topic:

How to write a recovery routine, including:

• What recovery routines do.
• How recovery routines communicate with other

routines and with the system.
• Special considerations when writing different

types of recovery routines.

“Writing recovery routines” on page 133.

The recovery environment, including:

• Register contents at various times during
recovery processing.

• Other environmental factors such as program
authorization, dispatchable unit mode, ASC
mode, and so on.

“Understanding the recovery environment” on
page 150.

Coding the various routines in a typical recovery
environment.

“Understanding recovery through a coded
example” on page 162.

Advanced recovery topics, including:

• Intentionally invoking RTM.
• Providing multiple recovery routines.
• Providing recovery for recovery routines.
• Providing recovery for multitasking programs

“Understanding advanced recovery topics” on page
164.

Understanding general recovery concepts
This information provides a general overview of recovery concepts. After reading this information, you
should understand the following:

• Why you would want to provide recovery for your programs.
• What software errors result in your recovery getting control, if you provide recovery.
• What we mean when we say a program abnormally ends.
• The different states for a recovery routine.
• The difference between a mainline routine, a recovery routine, and a retry routine.
• What an extended specify task abnormal exit (ESTAE-type)recovery routine is and how to choose,
define, and activate the appropriate one.

• The difference between what it means to retry and what it means to percolate.
• How routines in a recovery environment interact.

Deciding whether to provide recovery
MVS does all that it can to ensure the availability of programs, and to protect the integrity of system
resources. However, MVS cannot provide effective recovery for every individual application program, so
programs need recovery routines of their own.

To decide whether you need to provide recovery for a particular program, and the amount of recovery to
provide, you should:

• Determine what the consequences will be if the program encounters an error and ends.
• Compare the cost of tolerating those consequences to the cost of providing recovery.

In general, if you have a large, complex program upon which a great number of users depend, such as
a subsystem, a database manager, or any application that provides an important service to many other

126 z/OS: z/OS MVS Assembler Services Guide

programs or end users, you will almost certainly want to provide recovery. For small, simple programs
upon which very few users depend, you might not get enough return on your investment. Between these
two extremes is a whole spectrum of possibilities.

Consider the following points in making your decision. Providing recovery:

• Increases your program's availability.

Depending on the nature of the error, your recovery routine might successfully correct the error and
allow your program to continue processing normally. Maintaining maximum availability is one of the
major objectives of providing recovery.

• Is a way to protect both system and application resources.

In general, recovery routines should clean up any resources your program is holding that might be
requested by another program, or another user of your program. The purpose of clean up is to:

– Allow your program to run again successfully without requiring a re-IPL
– Allow the system to continue to run other work (consider especially other work related to the failing

program).

Virtual storage and ENQs are examples of important resources shared by other programs. A program
should provide for the release of these resources if an error occurs so that other programs can access
them.

Note: ENQs are used for serialization. See Chapter 6, “Resource control,” on page 101 for more
information about serialization.

Recovery routines should also ensure the integrity of any data being accessed. Consider the case of
a database application that is responsible for protecting its database resources. The application must
ensure the integrity and consistency of the data in the event an error occurs. Data changes that were
made prior to the error might have to be backed out from the database.

• Provides for communication between different processes.

An example of this would be a task that sends a request to another task. If the second task encounters
an error, a recovery routine could inform the first task that its request will not be fulfilled.

When dealing with a multi-tasking environment, you must plan your recovery in terms of the multiple
tasks involved. You must have a cohesive scheme that provides recovery for the set of tasks rather than
thinking only in terms of a single task.

• Is a way to help you determine what went wrong when an error occurs in your program.

Recovery routines can do such things as save serviceability data and request dumps to help determine
what went wrong in your program. These actions are explained in greater detail later in this chapter.

• Facilitates validity checking of user parameters.

Consider the case of a program that must verify input from its callers. The program does parameter
validation, but might not catch all variations. For example, the caller might pass the address of an input
data area that appears to be valid; however, the caller did not have access to that storage. When the
program attempts to update the data area, a protection exception occurs. A recovery routine could
intercept this error, and allow the program to pass back a return code to the caller indicating the input
was not valid.

Providing recovery in a case like this improves the reliability of your program.

If you do not provide recovery for your program, and your program encounters an error, MVS handles
the problem to some extent, but the result is that your program ends before you expected it to, and
application resources might not be cleaned up.

Understanding errors in MVS
Certain errors, which your program or the system can detect, trigger the system to interrupt your program
and pass control to your recovery routine (or routines) if you have any; if you do not have any recovery

Chapter 8. Providing recovery 127

routines, the system abnormally ends your program. This chapter uses the term abnormal end when your
program ends for either of the following reasons:

• Your program encounters an error for which it has no recovery routines
• Your program encounters an error for which its recovery routines are not successful.

The errors for which you, or the system, might want to interrupt your program are generally those that
might degrade the system or destroy data.

The following are some examples of errors that would cause your recovery routine (if you have one) to get
control:

• Unanticipated program checks (except those resolved by SPIE or ESPIE routines; see Chapter 7,
“Program interruption services,” on page 121 for information about SPIE and ESPIE routines.)

• Machine checks (such as a storage error that occurs while your program is running)
• Various types of CANCEL (such as operator or time out)
• An error when issuing an MVS macro or callable service (for example, specifying parameters that are not

valid)

Each of the preceding errors has associated with it one or more system completion codes. All system
completion codes are described in z/OS MVS System Codes. You can write your recovery routine to
specifically handle one or more of these system completion codes, or define your own user completion
codes and handle one or more of them. Completion codes associated with errors are also referred to as
abend codes.

As stated earlier, the system can detect errors, but your program also can detect errors and request that
the system pass control to recovery routines. To do so, your program can issue the ABEND macro.

Use the ABEND macro to request recovery processing on behalf of the current unit of work. Your program
might choose to issue the ABEND macro if it detects an impossible or illogical situation and cannot
proceed further. For example, your program might be passed parameters that are not valid, or might
detect something in the environment that is not valid. Your program might also choose to issue the
ABEND macro so that its recovery routine can get control to save serviceability information.

Understanding recovery routine states
In this chapter we talk about recovery routines being in one of the following states:

• Defined

A recovery routine is defined when you make it known to the system. For example, you might issue
a macro on which you specify a particular recovery routine. At the point of issuing that macro, the
recovery routine is defined to the system.

• Activated

A recovery routine is activated when it is available to receive control; if an error occurs, the system can
pass control to an activated recovery routine. Depending on the type of recovery routine, it might be
defined to the system but not yet activated. Some recovery routines are both defined and activated by
issuing a single macro.

• In control

A recovery routine is in control when it is running; an error has occurred and the system passed control
to the recovery routine.

• No longer in control

A recovery routine is no longer in control when it returns control to the system. The recovery routine
returns control either by requesting to percolate or retry (terms defined later in this chapter) and issuing
a BR 14 instruction, or by encountering an error itself.

• Deactivated

128 z/OS: z/OS MVS Assembler Services Guide

A recovery routine is deactivated when it is no longer available to receive control; if an error occurs,
the system will not pass control to a deactivated recovery routine. Depending on the type of recovery
routine, it might be deactivated but still defined to the system. For some recovery routines, issuing a
single macro results in the routine becoming both deactivated and no longer defined.

• No longer defined

A recovery routine is no longer defined when it is no longer known to the system. The routine might still
exist and be in virtual storage, but the system no longer recognizes it as a recovery routine.

Understanding the various routines in a recovery environment
This chapter discusses the following different types of routines that interact in a recovery environment:

• Mainline routine
• Recovery routine
• Retry routine (also known as a retry point)

All of these routines are user-written routines.

Mainline routine
The mainline routine is that portion of your program that does the work, or provides the required function.
In general, the mainline routine defines and activates the recovery routine. Before returning to its caller,
the mainline should also deactivate the recovery routine and request that it be no longer defined. When
an error occurs in the mainline routine, the system passes control to the recovery routine.

Recovery routine
A recovery routine is the routine to which the system passes control when an error occurs in the mainline
routine. The recovery routine's objective is to intercept the error and potentially perform one or more of
the following tasks:

• Eliminate or minimize the effects of the error
• Allow the mainline routine to resume normal processing
• Clean up resources
• Communicate with other programs as appropriate
• Provide serviceability data
• Request a dump
• Validate user parameters
• Provide one or more recovery routines for itself.

The recovery routine can be an entry point in your program that processes only when an error occurs, or it
can be a separate routine that gets control when the error occurs.

Retry routine
A retry routine is essentially an extension of the mainline routine. When an error occurs, the system
passes control to your recovery routine, which can then request the system to pass control back to the
mainline routine to resume processing. That portion of the mainline that gets control back is referred to as
the retry routine. When the retry routine gets control, it is as if the mainline routine branched there after
encountering the error; to the mainline routine, it appears as though the error never occurred.

The retry routine does whatever processing your mainline routine would continue doing at that point.

Once the retry routine is running, if another error occurs, the system again passes control to your recovery
routine, just as it did when the mainline routine encountered an error.

Chapter 8. Providing recovery 129

Choosing the appropriate recovery routine
The recovery routines you can provide are called ESTAE-type recovery routines. This information
describes the different types of ESTAE-type recovery routines, and for each type, describes how you
define it, activate it, deactivate it, and request that it no longer be defined. A summary of this information
is in Table 8 on page 131.

When you provide one or more recovery routines for your program, you have the opportunity to identify
a user parameter area for the system to pass from the mainline routine to the recovery routine. Creating
such a parameter area with information for the recovery routine is a very important part of providing
recovery. See “Setting up, passing, and accessing the parameter area” on page 139 for more information
about what this parameter area should contain, and how to pass it.

Define ESTAE-type recovery routines in the following ways:

• STAE, ESTAE, and ESTAEX macros
• ATTACH and ATTACHX macros with STAI and ESTAI parameters
• IEAARR macro

The following describes the recovery routines you can define with these macros:

• STAE, ESTAE, and ESTAEX macros

To provide recovery to protect itself and any other programs running under the same task, a program
can issue either the STAE, ESTAE, or ESTAEX macro with the CT parameter. Each of these macros both
defines and activates the recovery routine. The recovery routine is defined and activated until one of the
following events occurs:

– You deactivate it and request that it be no longer defined (issue STAE 0, ESTAE 0, or ESTAEX 0).
– The recovery routine fails to or chooses not to retry (explained under “Understanding recovery

routine options” on page 131).
– The request block (RB) under which the caller of the macro is running terminates.

A program cannot protect other tasks with recovery routines defined through these macros.

IBM recommends you always use ESTAEX unless your program and your recovery routine are in 24-bit
addressing mode, in which case, you should use ESTAE. ESTAE and ESTAEX provide the same function,
except that ESTAEX can be issued in AR ASC mode.

The remainder of this chapter refers to the recovery routines you define and activate through the ESTAE
and ESTAEX macros as ESTAE routines or ESTAEX routines, respectively.

• ATTACH and ATTACHX macros with STAI and ESTAI parameters

To attach a task and provide recovery to protect the attached task and all of its subtasks, a program can
issue either the ATTACH or the ATTACHX macro with either the STAI or the ESTAI parameter. You define
the recovery routine when you issue the macro. The recovery routine is not activated until the attached
task gets control. The recovery routine remains activated as long as the attached task is still running, or
until the recovery routine fails to or chooses not to retry. The system deactivates the recovery routine
when the attached task ends. At that point, the recovery routine is no longer defined.

The program attaching the task is not protected by the recovery defined in this manner. Only the
attached task and its subtasks are protected.

IBM recommends you always use the ESTAI, rather than the STAI, parameter on ATTACHX, rather than
ATTACH. ATTACH and ATTACHX provide the same function, except that ATTACHX can be issued in AR
ASC mode.

The remainder of this chapter refers to the recovery routines you define through ATTACHX with ESTAI as
ESTAI routines. All references to the ATTACHX macro apply also to the ATTACH macro.

• IEAARR macro

130 z/OS: z/OS MVS Assembler Services Guide

Use the IEAARR macro to define and activate an associated recovery routine (ARR) to protect the
currently running program and any programs it calls running under the same task. ARRs provide
recovery for stacking PC routines.

IEAARR is a higher performance alternative to ESTAEX. When IEAARR is issued, a system-defined
stacking non-space switching PC is used to give control to a target program (such as your program's
mainline). That program and any programs that it calls are protected by the recovery routine that
you specify on the IEAARR macro. The recovery routine is deactivated and undefined when the target
program returns and the system issues a PR instruction to return to the issuer of IEAARR. The recovery
routine is also deactivated and undefined if it fails to or chooses not to retry, or if the RB that your
program is running under is terminated.

Note: Authorized programs can also establish ARRs for stacking PC routines that they define via the
ETDEF macro.

In summary, ESTAE-type recovery routines include ESTAE and ESTAEX routines, ESTAI routines and
ARRs.

Floating point implications
When working under the FRR recovery routine state, the first recovery routine will normally see the
time-of-error Floating Point Registers (FPRs) and the Floating Point Control (FPC) register. The DXC value
is provided in the SDWA. It is this value that should be used rather than the copy in the Floating Point
Control register.

If control can pass to other recovery routines, and the first recovery routine modifies any of the FPRs or
FPC register, it is responsible to save and restore the time-of-error FPRs and FPC register.

If retry is to be done, a recovery routine can (manually) change the value(s) of the FPR(s) and FPC register.
Changes to the non-volatile fields (i.e., the IEEE settings) in the FPC register must be made carefully since
this could affect the processing of the rest of the current program, and possibly subsequent programs.

Summary of recovery routine states
The following table summarizes, for each type of recovery routine, when the recovery routine is defined,
activated, deactivated, and no longer defined.

Table 8. Summary of Recovery Routine States

Recovery routine Defined Activated Deactivated No longer defined

ESTAE ESTAE CT ESTAE CT ESTAE 0 ESTAE 0

ESTAEX ESTAEX CT ESTAEX CT ESTAEX 0 ESTAEX 0

ESTAI ATTACHX ESTAI Attached task gets
control

Attached task ends Attached task ends

ARR IEAARR System-issued PC
instruction

System PR instruction System PR instruction

Understanding recovery routine options
A recovery routine has two basic options: the routine can either retry or it can percolate.

Retry is the attempt to resume processing at some point in the unit of work that encountered the error.
The recovery routine does something to circumvent or repair the error, and requests that the system pass
control to a retry routine to attempt to continue with normal processing.

Percolate is the opposite of retry. To percolate means to continue with error processing. A recovery
routine percolates under one of the following circumstances:

• The system does not allow a retry

Chapter 8. Providing recovery 131

• The recovery routine chooses not to retry, perhaps because the environment is so damaged that the
routine cannot circumvent or repair the error, or perhaps because the recovery routine was designed
only to capture serviceability data, and is not intended to retry.

When a recovery routine percolates, the system checks to see if any other recovery routines are activated.
If so, the system passes control to that recovery routine, which then has the option to either retry or
percolate. Think of the process of percolation, then, as the system passing control to one recovery routine
after another.

The system gives control to ESTAE-type recovery routines in the following order:

1. ESTAE-type recovery routines that are not ESTAI routines, in last-in-first-out (LIFO) order, which
means the most recently activated routine gets control first

2. ESTAI routines, in LIFO order.

Once all routines have percolated, the system proceeds to abnormally end your program. See “Providing
multiple recovery routines” on page 165 for more information about having multiple recovery routines.

Understanding how routines in a recovery environment interact
Figure 55 on page 132 is a very simplified illustration of how routines in a recovery environment interact.
In this figure, only one recovery routine exists, and it is an ESTAE-type recovery routine. The following
sequence of events might occur:

1. The mainline routine encounters an error.
2. The system gets control.
3. The system looks for recovery routines and finds an ESTAE-type recovery routine called ESTAEX.
4. The ESTAEX routine either retries or percolates.

a. If the ESTAEX routine retries, it returns control to a retry point in the mainline routine. The mainline
routine continues processing.

b. If the ESTAEX routine percolates, the system gets control and abnormally ends the mainline
routine.

Figure 55. Mainline Routine with One Recovery Routine

Figure 56 on page 133 shows a more complex situation. Several recovery routines exist, and each one
that is entered has the opportunity to retry or to percolate. The following sequence of events might occur
if all recovery routines percolate:

132 z/OS: z/OS MVS Assembler Services Guide

1. The mainline routine encounters an error.
2. The system looks for recovery routines, and finds that ESTAEX(3) was the last one created.
3. The system gives control to ESTAEX(3) first.
4. ESTAEX(3) percolates to ESTAE(2), which percolates to ESTAI(1).
5. ESTAI(1) also percolates, and no other recovery routines are activated, so the system abnormally ends

the mainline routine.

Had any of the recovery routines decided to retry, the system would have returned control to the retry
point, and the mainline routine might have ended normally.

Figure 56. Mainline Routine with Several Recovery Routines

Writing recovery routines
So far, this chapter has discussed general recovery concepts, including how to decide what type of
recovery you need, and how to provide that recovery. But you have to write the recovery routines that you
provide. To do so, you must understand all of the following items:

• What a recovery routine is supposed to do.

So far we talked about how recovery routines can either retry or percolate. But, they do a lot more than
that. We also talked about recovery routines correcting or repairing errors, but we have not said how
exactly they go about doing that.

• How the recovery routine communicates with the mainline routine, the retry routine, and the
system.

The means of communication available to a recovery routine are:

– A user parameter area, built by the mainline routine and passed to the recovery routine.
– A data area called the system diagnostic work area (SDWA), which is provided by the system. The

recovery routine communicates with the system, with other recovery routines, and with the retry
routine through the SDWA. The recovery routine uses the SETRP macro to update information in the
SDWA.

– Registers, when no SDWA is provided.

Chapter 8. Providing recovery 133

• The special considerations you must make when writing an ESTAE-type recovery routine.

One important consideration is the presence of an SDWA. The case where an SDWA is not provided is
rare; nevertheless, when you design an ESTAE-type recovery routine, you must allow for the possibility
of not receiving an SDWA.

Special considerations for ESTAE-type recovery routines also include RB considerations, linkage stack
considerations, and outstanding I/Os at time of failure.

Note: When an error occurs for which the system passes control to your recovery routine, the recovery
routine must be in virtual storage. It can either be an entry point in your program, or a separate routine.
You are responsible for ensuring that the recovery routine is in virtual storage when needed.

Understanding what recovery routines do
The following is a list of some of the things a recovery routine should do if the recovery is to be effective.
The items are arranged in a way that suggests the order in which you might do them; however, you must
decide yourself the order that would work best for your particular routine.

• Preserve the return address to the system.
• Check for the presence of an SDWA.
• Establish addressability to the parameter area passed by the mainline routine. How you do that

depends on whether an SDWA is present.
• Check the contents of important fields in the SDWA.

– Determine the location of the parameter area.
– Determine why the routine was entered.
– Determine if this is the first recovery routine to get control.

• Check the contents of the parameter area passed by the mainline.

– Determine if this is a repeated error (to avoid recursion).
– Determine when and where the error occurred.

• Provide information to help determine the cause of the error:

– Save serviceability data in the SDWA.
– Request a dump of storage.

• Try to correct or minimize the effects of the error.
• Determine whether the recovery routine can retry, decide whether to retry or percolate, and take the

appropriate actions (such as cleaning up resources).

Saving the return address to the system
When writing a recovery routine, you must save the return address to the system, which you find in
general purpose register (GPR) 14. The system sets up the return address so that the recovery routine can
return, at the appropriate time, using a BR 14 instruction.

Checking for the SDWA
For an ESTAE-type recovery routine, if the system cannot obtain storage for an SDWA, the system does
not provide one. The case where an SDWA is not provided is rare. Nevertheless, when you design an
ESTAE-type recovery routine, you must allow for the possibility of not receiving an SDWA; almost every
action an ESTAE-type recovery routine takes must be set up differently to handle the two possibilities.

To check for the presence of the SDWA, the recovery routine checks the contents of GPR 0. If GPR 0
contains 12 (X'0C') the system could not obtain an SDWA. When GPR 0 contains any value other than 12,
an SDWA is present, and its address is in GPR 1. When the system provides an SDWA, the system also
provides a register save area whose address is in GPR 13.

134 z/OS: z/OS MVS Assembler Services Guide

If an SDWA was not provided GPR 13 does not point to a save area, and your routine must not use the
area pointed to by GPR 13.

Establishing addressability to the parameter area
The recovery routine also must establish addressability to the parameter area passed by the mainline
routine. To determine the location of the parameter area:

• If an SDWA is present, the recovery routine checks either the contents of SDWAPARM or the contents of
GPR/AR 2. GPR 2 contains the address of the parameter area, and for AR-mode callers, AR 2 contains
the ALET.

• If no SDWA is present, the recovery routine checks the contents of GPR/AR 2. GPR 2 contains the
address of the parameter area, and for AR-mode callers, AR 2 contains the ALET.

Refer to “Setting up, passing, and accessing the parameter area” on page 139 for further detail on
accessing the parameter area.

The following are examples of information a mainline routine can pass to a recovery routine through the
parameter area:

• A dynamic storage area
• An input parameter list (that is, a parameter list that might have been passed to the mainline routine)
• The addresses of important data areas.

Checking important fields in the SDWA
Assuming an SDWA is present, your routine can obtain a great deal of information from this data area.
Some of the key information a recovery routine can check for in the SDWA includes:

• Why the routine was entered.

The routine can check the SDWACMPC field, which contains the completion code that existed when the
system gave control to the routine, and the SDWACRC field, which contains the reason code associated
with the completion code. SDWACRC contains a reason code only if the SDWARCF bit is on.

• The location of the parameter area that was passed by the mainline.

The routine can check the SDWAPARM field, which provides the information the routine needs to locate
the parameter area. The contents of this field vary depending on the way in which the recovery was
defined.

• Whether this is the first recovery routine to get control.

If the SDWAPERC bit is off, this recovery routine is the first to get control. If the SDWAPERC bit is on,
percolation has occurred.

The first recovery routine to get control usually has a more direct relationship with the error; being
the first recovery routine to get control for an error can be an indication that the error occurred in
the mainline routine that activated this particular recovery routine, rather than in a routine that was
subsequently called.

This information can be useful in determining what action the recovery routine should take. A recovery
routine is more likely to take corrective action or capture serviceability data if it is the first to get control
for an error. Subsequent recovery routines are further removed from the error, and might limit their
activities to releasing resources, or attempting a retry if possible.

See “Important fields in the SDWA” on page 143 for a list of some of the fields in the SDWA, and an
explanation of their contents.

Checking the contents of the parameter area
Generally the mainline routine sets up a parameter area containing information for use by the recovery
routine. Key information that a recovery routine might determine from the parameter area includes:

Chapter 8. Providing recovery 135

• When and where the error occurred
• Whether this is a repeated error.

The recovery routine can tell when and where the error occurred through “footprints,” a technique
explained under “Deciding what to include in the parameter area” on page 140. Footprints can help the
recovery routine to avoid getting into a loop in which the routine requests a retry, and the same error
occurs again (recursion). For example, if the recovery routine supplies a bad retry address to the system,
and the processing of the first instruction at the given address causes a program check, the first recovery
routine to get control is the one that just requested the retry. If the recovery routine requests another
retry at the same address, the loop is created.

See “Setting up, passing, and accessing the parameter area” on page 139 for more information about
what the parameter area can contain, and the techniques you can use to provide the most useful
information to the recovery routine.

Saving serviceability data
One of the objectives of providing recovery is to obtain as much information as possible to help you
determine what went wrong. The SDWA has certain areas where the recovery routine can save such
information. Your recovery routine can update the SDWA with serviceability information in three different
ways:

• By issuing the SETRP macro with the RECPARM parameter. Use the RECPARM parameter to supply
the load module name, the active CSECT name, and the recovery routine CSECT name. See “Using the
SETRP macro to update the SDWA” on page 142 for more information about using SETRP.

• By issuing the VRADATA macro to update the SDWA variable recording area. See the VRADATA macro in
z/OS MVS Programming: Assembler Services Reference IAR-XCT for more information.

• By directly manipulating other fields in the SDWA. Important fields to fill in are SDWACID, SDWASC,
SDWAMLVL, and SDWARRL. See “Important fields in the SDWA” on page 143 for a description of each of
these fields.

Part of saving serviceability data includes providing information for dump analysis and elimination (DAE).
DAE depends on information that users provide in recovery routines to construct symptom strings needed
to describe software failures. DAE uses these symptom strings to analyze dumps and suppress duplicate
dumps as requested. You should provide information for DAE prior to requesting a dump of storage. See
“Suppressing dumps that duplicate previous dumps” on page 172 for more information about DAE and
dump suppression.

Requesting a dump
Your recovery routine can also request a dump of storage to help determine the cause of the error. In
most cases, the system does not automatically request dumps on behalf of your program. To request an
ABEND dump, the recovery routine can issue the SETRP macro with the DUMP=YES parameter.

For more information about requesting dumps, see Chapter 9, “Dumping virtual storage (ABEND, SNAPX,
SNAP, and IEATDUMP macros),” on page 171.

Before requesting a dump of storage, the recovery routine should check the SDWAEAS bit. The SDWAEAS
bit is on when a previous recovery routine has provided sufficient diagnostic data related to this error.
The recovery routine that analyzes the problem and captures sufficient diagnostic data is responsible for
setting the SDWAEAS bit so that subsequent recovery routines know they do not have to capture any
further data.

Note that if your program calls a system service (by issuing a macro or callable service), that system
service might encounter a user-induced error and end abnormally. Generally, the system does not take
dumps for user-induced errors. If you require such a dump, then it is your responsibility to request one in
your recovery routine.

136 z/OS: z/OS MVS Assembler Services Guide

Correcting or minimizing the error
Another important activity for a recovery routine is to attempt to correct or minimize the error. What the
recovery routine actually does to correct or minimize the error depends on what the mainline routine is
doing and what the error is. Some examples of possible situations where the recovery routine could take
action are the following:

• The mainline routine might be working with a queue of data areas. The recovery routine might be able to
scan the queue and determine if one or more of the data areas contains information that is not valid.

For example, one of the data areas might contain an address that is not valid. Or, the mainline routine
might have set up the data areas with some sort of validating information that could be checked, and
possibly corrected. Certain data areas might have to be deleted from the queue, or the entire queue
might have to be deleted and rebuilt.

• The mainline routine might be running under a task that is communicating with another task when an
error occurs. The recovery routine might then take the action of alerting the other task that a problem
exists, so the other task does not wait for any further communication.

• The mainline routine might have initiated I/O, and the recovery routine might have to ensure that the
I/O completes to protect the integrity of the I/O resources.

• The recovery routine might back out changes made to a database to ensure its integrity.

Deciding to retry or percolate
Under certain circumstances (such as CANCEL), the system does not allow a retry. The SDWACLUP bit is
on when the system prohibits a retry, and off when the system allows a retry.

If a recovery routine requests retry when it is not allowed, the system ignores the request and continues
with percolation.

A recovery routine must determine whether it will attempt a retry. The determination might be very
simple: if the SDWACLUP bit is on, retry is not even an option. But if retry is an option, the routine must
make the decision based on the information it has gathered in the preceding steps.

By no means is a recovery routine required to attempt a retry, even when one is permitted. The recovery
routine might decide not to retry if no SDWA is present, going on the assumption that serious problems
probably exist. The routine might make the decision based on the particular completion code it finds in
SDWACMPC, or based on information in the parameter area, or based on how successful the routine was
in determining the cause of the error and fixing it. Perhaps the environment is so badly damaged that
repair is beyond the scope of the recovery routine.

Once the decision is made, the recovery routine now does different things depending on whether it will
retry or percolate.

Note: If the recovery routine does not specify retry or percolate, the default is to percolate.

Recovery routines that retry
When a recovery routine decides to retry, it should do the following:

• Eliminate or minimize the cause of the error with complete or partial repair, as explained in “Correcting
or minimizing the error” on page 137.

• Ensure that the retry routine's environment is restored. For example, restore registers and re-establish
addressability to mainline resources. See “Register contents” on page 154 for details about how a
recovery routine can control the register contents on entry to the retry routine.

• Know the condition of resources being held by the mainline. For example, the routine might have to
repair data structures, back out changes to data sets, and so on.

• Indicate to the system that a retry is to be attempted. If an SDWA is present, the recovery routine issues
the SETRP macro with the RC=4 parameter to indicate retry, and the RETADDR parameter to specify the
address of the retry routine. You can specify RC=4 even when the SDWACLUP bit is on, indicating that
retry is not allowed. If you do so, however, the system ignores the retry request.

Chapter 8. Providing recovery 137

If no SDWA is present, the recovery routine has to set a return code of 4 in GPR 15, and place the
address of the retry routine in GPR 0.

• Decide whether to pass the SDWA to the retry routine, and so indicate on the SETRP macro with the
FRESDWA parameter.

What the retry routine does
Once the retry routine gets control, it continues with mainline processing, and can free resources,
deactivate recovery routines, and so on. As stated earlier, the retry routine is really an extension of the
mainline routine, and its purpose is to re-establish the mainline environment.

When the retry routine gets control, the following are true:

• The retry routine runs under the same unit of work that activated the recovery routine. See “Special
considerations for ESTAE-type recovery routines” on page 147 for further details related to ESTAE-type
recovery routines.

• The retry routine might or might not have access to the SDWA, and the recovery routine might or might
not have directed that register contents be restored for the retry routine.

For ESTAE-type recovery routines that specify FRESDWA=YES on SETRP, the system frees the SDWA
before entering the retry routine. For ESTAE-type recovery routines that specify RETREGS=YES, the
system restores the registers from the SDWA.

For ESTAE-type recovery routines that specify FRESDWA=NO on SETRP, the system does not free the
SDWA, and the retry routine can access it. In that case, the retry routine also has the responsibility of
freeing the storage for the SDWA when it is no longer needed. The subpool number and length to use
to free the storage are in the SDWA, in fields SDWASPID and SDWALNTH, respectively.

Note: IBM recommends that the recovery routine use FRESDWA=YES on the SETRP macro, thus
alleviating the retry routine's responsibility to free the SDWA. If your recovery routine retries multiple
times and the SDWA is not freed, out-of-storage failures can result.

The retry routine can determine what action the recovery routine took in regard to freeing the SDWA and
restoring registers by examining the contents of GPR 0:

Table 9. Contents of GPR 0 on Entry to a Retry Routine

GPR 0 Contents Meaning

0 The system provided an SDWA. The recovery routine specified RETREGS=NO and
FRESDWA=NO. Registers are not restored from the SDWA, and the retry routine must free
the SDWA. GPR 1 contains the address of the SDWA.

12 (X'0C') The system did not provide an SDWA.

20 (X'14') The system provided an SDWA. The recovery routine specified RETREGS=NO and
FRESDWA=YES. Registers are not restored from the SDWA, and the retry routine does not
have to free the SDWA.

Value restored from SDWA
(field SDWASR00)

The system provided an SDWA. The recovery routine specified RETREGS=YES, and either
FRESDWA=NO or FRESDWA=YES. If the recovery routine specifies FRESDWA=NO, the recovery
routine must alert the retry routine to free the SDWA. Some sort of protocol must be
established between the recovery routine and the retry routine. For example, the recovery
routine can set a unique value in SDWASR00 (the field that represents GPR 0 in SDWASRSV)
to distinguish this case from the previous cases where GPR 0 contains either 0, 12, or 20. The
recovery routine can pass the address of the SDWA to the retry routine in a parameter area (use
the parameter area pointed to by SDWAPARM) or in a register (consider using register 0).

For complete details about register contents see “Understanding the recovery environment” on page
150.

• The recovery routine that requested the retry is still activated and can be entered again, so be aware
of the possibility of looping back to the same recovery routine. That recovery routine remains activated
and can be entered again unless the recovery routine issued SETRP with REMREC=YES. If the recovery
routine specified REMREC=YES, the system deactivated that recovery routine before giving control to
the retry routine.

138 z/OS: z/OS MVS Assembler Services Guide

• Any previous recovery routines (those that percolated to the recovery routine that requested the retry)
are deactivated.

Note:

1. You can have as many retry points in your program as needed, and you can change the designated
retry point as your mainline processing continues.

2. The retry routine can be a separate routine. The only requirement is that it must be in virtual storage.
You are responsible for ensuring that the retry routine is in virtual storage when needed.

Recovery routines that percolate
When a recovery routine decides to percolate (or takes the default), it should do the following:

• Release resources that were acquired by the mainline, such as ENQs.
• Repair the cause of the error, if possible.
• Indicate the percolate option to the system. If an SDWA is present, the recovery routine issues the

SETRP macro with the RC=0 parameter to indicate percolation. If no SDWA is present, the recovery
routine has to set a return code of 0 in register 15.

Note:

1. Once a recovery routine percolates, it is no longer activated; it cannot receive control again for this
error.

2. An ESTAI routine can request that the system not give control to any further ESTAI routines by
specifying RC=16 on the SETRP macro. The system then abnormally ends the task.

Understanding the means of communication
An important aspect of writing a recovery routine is understanding how the recovery routine
communicates with the mainline routine, the retry routine, and the system. This information discusses
the following means of communication:

• Parameter area

The parameter area is set up by the mainline routine and passed to the recovery routine. See “Setting
up, passing, and accessing the parameter area” on page 139.

• SDWA

The SDWA provides information to the recovery routine, and the recovery routine can communicate with
the system, and with subsequent recovery routines, by placing information into the SDWA. See “Using
the SDWA” on page 142.

• Registers

When a recovery routine gets control, GPR 0 indicates whether an SDWA is available. When an SDWA
is not available, the recovery routine can communicate its recovery options to the system only through
registers. Aside from this circumstance, the recovery routine cannot use registers to communicate with
the system; the routine must use the SDWA. Also, the mainline routine should not place information
in registers and expect that information to be in the registers when the recovery routine gets control.
Complete details about registers are in “Understanding the recovery environment” on page 150.

You should understand that communications are handled differently depending on the following
circumstances:

• Whether your recovery routine received an SDWA
• Whether the communication is with the recovery routine or with the retry routine.

Setting up, passing, and accessing the parameter area
The primary means of communication between the mainline routine and the recovery routine is the
parameter area that the mainline sets up and passes to the recovery routine. This information discusses:

Chapter 8. Providing recovery 139

• What your mainline routine should put into the parameter area
• How your mainline passes the parameter area to the recovery routine
• How your recovery routine accesses the parameter area.

Deciding what to include in the parameter area
Your mainline routine can put whatever information it wants in the parameter area. Remember that the
object is to provide the recovery routine with as much useful information as possible so the recovery
routine can be effective. Here are some suggestions for important information to place in the parameter
area:

• The base registers for the mainline. The recovery routine must be able to establish addressability to
whatever resources the mainline is holding.

• The addresses of all dynamically acquired storage.
• The location of a workarea for use by the recovery routine.
• Indications of what resources are held or serialized, such as ENQs, data sets, and so on.
• Footprints indicating the processing being performed by the mainline when the error occurred. Using

footprints is a technique whereby the mainline sets bits as it goes through its processing. When the
recovery routine gets control, it can check the parameter area to see which bits have been turned on,
and thus can tell how far along the mainline was. The recovery routine can pinpoint what the mainline
was doing at the time of error. If the mainline was done with its processing when the error occurred, the
recovery routine might not need to retry, but might just clean up resources.

• An indication of whether a retry is desired.
• The input parameter list to the mainline. When the mainline received control, it might have received

an input parameter list. The mainline can preserve this in the parameter area intended for use by the
recovery routine. The recovery routine can then inspect the input parameter list to determine if the
mainline received input that was not valid.

• Whatever register contents (both GPRs and ARs) the mainline wants to save (they might need to be
restored upon retry).

• The location of important data areas used by the mainline. Errors often occur because of damage to
information in a data area. The recovery routine might need to repair one or more of these data areas,
and so must be able to access them. The recovery routine might also want to include these data areas
when it specifies the areas of storage to dump.

• The addresses of any user-written routines available to repair damage. You might have separate
routines designed to scan and repair queues, repair data areas, and so on. The recovery routine might
want to call these other routines for assistance.

Passing the parameter area
When you provide a recovery routine, you have the opportunity to identify to the system the parameter
area you want passed to the recovery routine. Here are the ways to accomplish that:

• ESTAE and ESTAEX routines

Use the PARAM parameter on the ESTAE or ESTAEX macro to specify the address of the parameter area
you have constructed.

• ESTAI routines

Use the ESTAI parameter on the ATTACHX macro to specify both the address of the recovery routine to
get control, and the address of the parameter area you have constructed.

• IEAARR routines

Use the ARRPARAMPTR parameter on the IEAARR macro to specify the 31-bit address of the parameter
area you constructed, or use the ARRPARAMPTR64 parameter to specify the 64-bit address of the
parameter area you constructed.

140 z/OS: z/OS MVS Assembler Services Guide

Accessing the parameter area
Once the recovery routine gets control, the routine must know how to access the parameter area. That
varies according to whether the system provided an SDWA, and according to how the recovery routine
was defined:

• SDWA is present

– ESTAE macro

SDWAPARM and GPR 2 contain the address of the parameter area you specified on the PARAM
parameter on ESTAE.

– ESTAEX macro

SDWAPARM contains the address of an 8-byte field, which contains the address and ALET of the
parameter area you specified on the PARAM parameter on ESTAEX, and GPR 2 contains the address
of the parameter area you specified on the PARAM parameter on ESTAEX. AR 2 contains the ALET
qualifying the address in GPR 2.

– ESTAEX macro issued in AMODE 64

SDWAPARM contains the address of an 8-byte area, which contains the address of the parameter
area you specified on the PARAM parameter of ESTAEX. GPR 2 contains the 64-bit address of the
parameter area.

– ATTACHX macro with ESTAI parameter

SDWAPARM and GPR 2 contain the address of the parameter area you specified on the ESTAI
parameter on ATTACHX. When ATTACHX is issued in AMODE 64 the parameter list address is still
treated as a 31-bit address. The parameter area specified on ATTACHX is always assumed to be in
the primary address space, so for AR-mode callers, the ALET is always zero.

– IEAARR macro

SDWAPARM contains the address of an 8-byte area. The first word of this area contains the address
of the parameter area you specified on the ARRPARAMPTR parameter of IEAARR and the second
word does not contain interface information. GPR 2 contains the address of the parameter area.

– IEAARR macro issued in AMODE 64

SDWAPARM contains the address of an 8-byte area, which contains the address of the parameter
area you specified on the ARRPARAMPTR64 parameter of IEAARR. GPR 2 contains the 64-bit address
of the parameter area.

• SDWA is not present

– ESTAE macro

GPR 2 contains the address of the parameter area you specified on the PARAM parameter on ESTAE.
– ESTAEX macro

GPR 2 contains the address of the parameter area you specified on the PARAM parameter on ESTAEX.
AR 2 contains the ALET qualifying the address in GPR 2.

– ESTAEX macro issued in AMODE 64

GPR2 contains the 64-bit address of the parameter area you specified on the PARAM parameter of
ESTAEX.

– ATTACHX macro with ESTAI parameter

SDWAPARM and GPR 2 contain the address of the parameter area you specified on the ESTAI
parameter on ATTACHX. When ATTACHX is issued in AMODE 64 the parameter list address is still
treated as a 31-bit address. The parameter area specified on ATTACHX is always assumed to be in
the primary address space, so for AR-mode callers, the ALET is always zero.

– IEAARR macro

Chapter 8. Providing recovery 141

GPR 2 contains the address of the parameter area you specified on the ARRPARAMPTR parameter of
IEAARR.

– IEAARR macro issued in AMODE 64

GPR 2 contains the 64-bit address of the parameter area you specified on the ARRPARAMPTR64
parameter of IEAARR.

Using the SDWA
The SDWA is both a means by which the recovery routine can provide information to the system and
to subsequent recovery routines, and a provider of information to the recovery routine. To access
and update the SDWA, the recovery routine must include the IHASDWA mapping macro as a DSECT.
For complete information about the SDWA, see z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).The SDWA is always in
the primary address space.

Updating the SDWA
A recovery routine can update the SDWA in various ways:

• By issuing the SETRP macro (See “Using the SETRP macro to update the SDWA” on page 142.)
• By issuing the VRADATA macro (See the VRADATA macro in z/OS MVS Programming: Assembler Services

Reference IAR-XCT and use of the VRADATA macro in “Symptoms provided by a recovery routine” on
page 175.)

• By directly updating specific fields (see “Important fields in the SDWA” on page 143).

Using the SETRP macro to update the SDWA
Recovery routines issue the SETRP macro to communicate recovery options to the system, and to save
serviceability data. The routine must have an SDWA to issue SETRP. The following are some of the things a
recovery routine can do using the SETRP macro:

• Indicate retry or percolate

Use the RC parameter on SETRP to let the system know whether the recovery routine wants to percolate
(RC=0) or retry (RC=4). If attempting a retry, the routine must also specify a retry address on the
RETADDR parameter.

For ESTAI routines, you can also specify RC=16 to ask the system not to give control to any further
ESTAI routines.

• Specify register contents for the retry routine and free the SDWA

ESTAE-type recovery routines can use parameters on the SETRP macro to restore registers from
the SDWA (RETREGS=YES), and to free the SDWA before control is given to the retry routine
(FRESDWA=YES). See “Register contents” on page 154 for information about using the RETREGS and
FRESDWA parameters.

• Save serviceability data

Use the RECPARM parameter to supply the load module name, the active CSECT name, and the recovery
routine CSECT name.

• Change the completion and reason codes

You can specify both completion and reason code values on the ABEND macro. The system passes
these values to recovery routines in the SDWA. Recovery routines can change the values of the
completion code and the reason code by using the SETRP macro. The COMPCOD parameter allows
you to specify a new completion code; the REASON parameter allows you to specify a new reason code.

The reason code has no meaning by itself, but must be used together with a completion code. To
maintain meaningful completion and reason codes, the system propagates changes to these values
according to the following rules:

142 z/OS: z/OS MVS Assembler Services Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

– If a user changes both the completion code and the reason code, the system accepts both new
values.

– If a user changes the reason code but not the completion code, the system accepts the new reason
code and uses the unchanged completion code.

– If a user changes the completion code but not the reason code, the system accepts the new
completion code and uses a zero for the reason code.

Symptom data required in the SDWA for dump suppression
If the installation is using DAE to suppress duplicate dumps, the recovery routine must provide the
following minimum data to enable dump suppression. See “Suppressing dumps that duplicate previous
dumps” on page 172 for more information about dump suppression.

SDWA Field Data Example

SDWAMODN Failing module name IEAVTCXX

SDWACSCT Failing CSECT name IEAVTC22

SDWACID Product or component identifier SCDMP

SDWACIDB Component identifier base 5655

SDWAREXN Recovery routine name IEAVTC2R

SDWASC Subcomponent or module subfunction RSM-PGFIX

Important fields in the SDWA
The following table summarizes some of the key fields in the SDWA. Note that certain fields are in an
extension of the SDWA called SDWARC1, which is a different DSECT. Here is how to access SDWARC1:

• SDWAXPAD in the SDWA contains the address of SDWAPTRS.
• SDWAPTRS is a DSECT which contains SDWASRVP.
• SDWASRVP contains the address of SDWARC1.

The following fields described in Table 10 on page 144 are in SDWARC1:

• SDWACRC
• SDWAARER
• SDWAARSV
• SDWACID
• SDWASC
• SDWAMLVL
• SDWARRL

Chapter 8. Providing recovery 143

Table 10. Key fields in the SDWA

Field Name Use

SDWAPARM For routines defined by the ESTAEX macro, this field contains the address of an
8-byte area. If the ESTAEX was established by a routine running in AMODE 64,
the area contains the address of the parameter area you specified on the PARAM
parameter of ESTAEX. Otherwise, the first four bytes of this 8-byte area contain the
address of the parameter area and the next four bytes contain the ALET for the
parameter area.

For routines defined by the IEAARR macro, if the IEAARR was issued in AMODE 64,
the 8-byte area contains the 64-bit address of the parameter area specified on the
ARRPARMPTR64 parameter of IEAARR. Otherwise, this field contains the address
of an 8-byte area. The first word of this areacontains the address of the parameter
area you specified on the ARRPARAMPTR parameter of IEAARR, and the second
word does not contain interface information.

Refer to “Setting up, passing, and accessing the parameter area” on page 139 for
details on the parameter area passed by recovery routines.

SDWACMPC This 3-byte field contains the completion code that existed when the system gave
control to the recovery routine. The recovery routine can change the completion
code by issuing the SETRP macro with the COMPCOD parameter. The system
completion code appears in the first twelve bits, and the user completion code
appears in the second twelve bits.

SDWARPIV This bit tells the recovery routine that the registers and PSW at the time of error
are not available. When this bit is on, the contents of SDWAGRSV, SDWAG64,
SDWAARER, and SDWAEC1 are unpredictable.

SDWACRC This 4-byte field contains the reason code associated with the completion code in
SDWACMPC. The reason code is set through the REASON parameter of the ABEND
macro, and is valid only when bit SDWARCF is on. The recovery routine may change
this reason code by specifying a new value for the REASON parameter of the
SETRP macro.

Note: This reason code is not the same as the return code that programs may set
in GPR 15 before they issue the ABEND macro.

SDWARCF If on, this bit indicates that SDWACRC contains a reason code.

SDWAGRSV This field contains the contents of the general purpose registers (GPRs) 0-15 as
they were at the time of the error.

SDWAG64 This field contains the contents of the general purpose registers (GPRs) 0-15 as
they were at the time of the error for AMODE 64 recovery routines. It is also used
for retry instead of SDWASRSV when RETREGS=64 is specified with SETRP.

SDWAARER This field contains the contents of the access registers (ARs) 0-15 as they were at
the time of the error.

SDWAEC1 This field contains the PSW that existed at the time of the error.

144 z/OS: z/OS MVS Assembler Services Guide

Table 10. Key fields in the SDWA (continued)

Field Name Use

SDWAEC2 The contents of this field vary according to the type of recovery routine:

• For ESTAE-type recovery routines (except for ESTAI routines): If a program
establishes an ESTAE routine, and subsequently performs a stacking operation
while running under the same RB as when it established the ESTAE routine,
SDWAEC2 contains the PSW from the linkage stack entry immediately following
the entry that was current when the ESTAE routine was established. Otherwise,
SDWAEC2 contains the current RBOPSW from the RB that activated the recovery
routine, and the PSW is the one from the time of the last interruption of that
RB that occurred while the RB was unlocked and enabled. Bit SDWAINTF in
SDWAXFLG indicates whether the contents of SDWAEC2 are from the linkage
stack (SDWAINTF is 1) or from an RB (SDWAINTF is 0).

• For an ESTAI routine, this field contains zero.

SDWASRSV The contents of this field vary according to the type of recovery routine:

• For ESTAE-type recovery routines (except for ESTAI routines): If a program
establishes an ESTAE routine, and subsequently performs a stacking operation
while running under the same RB as when it established the ESTAE routine,
SDWASRSV contains GPRs 0-15 from the linkage stack entry immediately
following the entry that was current when the ESTAE routine was established.
Otherwise, SDWASRSV contains GPRs 0-15 from the RB that activated the
recovery routine, and the GPRs are the same as they were at the time of the last
interruption of that RB that occurred while the RB was unlocked and enabled. Bit
SDWAINTF in SDWAXFLG indicates whether the contents of SDWASRSV are from
the linkage stack (SDWAINTF is 1) or from an RB (SDWAINTF is 0).

Note: SDWASRSV is not available for ESTAE-type recovery routines running in
AMODE 64. SDWAG64 is used for retry instead of SDWASRSV when RETREGS=64
is specified with SETRP.

• For an ESTAI routine, this field contains zeros.

If the recovery routine requests a retry, the system might use the contents of
this field to load the GPRs for the retry routine. See the RETREGS parameter
description in the SETRP macro in z/OS MVS Programming: Assembler Services
Reference IAR-XCT for details. To change the contents of the GPRs for the retry
routine, you must make the changes to SDWASRSV and then issue SETRP with
RETREGS=YES. You can update the registers directly or with the RUB parameter on
SETRP.

Chapter 8. Providing recovery 145

Table 10. Key fields in the SDWA (continued)

Field Name Use

SDWAARSV The contents of this field depend on the type of recovery routine:

• For ESTAE-type recovery routines (except for ESTAI routines): If a program
establishes an ESTAE routine, and subsequently performs a stacking operation
while running under the same RB as when it established the ESTAE routine,
SDWAARSV contains ARs 0-15 from the linkage stack entry immediately
following the entry that was current when the ESTAE routine was established.
Otherwise, SDWAARSV contains ARs 0-15 from the RB that activated the
recovery routine, and the ARs are the same as they were at the time of the last
interruption of that RB that occurred while the RB was unlocked and enabled. Bit
SDWAINTF in SDWAXFLG indicates whether the contents of SDWAARSV are from
the linkage stack (SDWAINTF is 1) or from an RB (SDWAINTF is 0).

• For an ESTAI routine, this field contains zeros.

If the recovery routine requests a retry, the system might use the contents of this
field to load the ARs for the retry routine. See the RETREGS parameter description
in the SETRP macro in z/OS MVS Programming: Assembler Services Reference IAR-
XCT for details. To change the contents of the ARs for the retry routine, you must
make the changes in SDWAARSV, and then issue SETRP with RETREGS=YES.

SDWASPID This field contains the subpool ID of the storage used to obtain the SDWA, for use
whenever the retry routine is responsible for freeing the SDWA.

SDWALNTH This field contains the length, in bytes, of this SDWA, the SDWA extensions, and
the variable recording area, for use whenever the retry routine is responsible for
freeing the SDWA. (This allows the retry routine to free the extensions along with
the SDWA.)

SDWACOMU The recovery routines can use this 8-byte field to communicate with each other
when percolation occurs. The system copies this field from one SDWA to the next
on all percolations. When the field contains all zeros, either no information is
passed or the system has not been able to pass the information.

SDWATRAN This field contains one of the following if a translation exception occurred:

• The valid translation exception address if the SDWATEAV bit is 1.
• The ASID of the address space in which the translation exception occurred if the

SDWATEIV bit is 1.

If both the SDWATEAV and SDWATEIV bits are 0, ignore the SDWATRAN field.

SDWATEAR For translation exceptions that occur in AR mode, this 1-byte field identifies the
number of the AR that the program was using when the translation exception
occurred.

SDWACLUP If on, this bit indicates that the recovery routine cannot retry.

SDWAPERC If on, this bit indicates that a recovery routine has already percolated for this error.

SDWAEAS If on, this bit indicates that a previous recovery routine provided sufficient
diagnostic information pertaining to this error. The recovery routine providing the
information is responsible for setting the bit.

SDWACID The recovery routine can use this 5-byte field to provide the component ID of the
component involved in the error.

SDWASC The recovery routine can use this 23-byte field to provide the name of the
component and a description of the function or subfunction involved in the error.

146 z/OS: z/OS MVS Assembler Services Guide

Table 10. Key fields in the SDWA (continued)

Field Name Use

SDWAMLVL The recovery routine can use this 16-byte field to indicate the level of the module
involved in the error. The first 8 bytes contains the date (SDWAMDAT) and the
second 8 bytes contains the version (SDWAMVRS).

SDWARRL The recovery routine can use this 8-byte field to indicate the recovery routine's
entry point label.

SDWALSLV The recovery routine can use this 2-byte field to control the linkage stack state
upon retry. See “Linkage stack at time of retry” on page 161 for additional
information.

SDWAG64 When running in z/Architecture mode, this field contains the full 64–bit contents
of the general purpose registers at the time of error. It also contains the 64–bit
registers to be used for retry if you specify RETREGS=64 on the SETRP macro or
turn on the SDWAUPRG and SDWAUP 64 bits.

SDWATXG64 When bits SDWAPCHK and SDWAPTX2 are on, indicating that the program
interrupt occurred while within transactional execution, this field contains the full
64-bit contents of the general purpose registers that result from the transaction
abort. For more information about transactional execution, see Chapter 29,
“Transactional execution,” on page 459.

SDWATXPSW16 When bits SDWAPCHK and SDWAPTX2 are on, this field contains the 16-byte PSW
that results from the transaction abort. For more information about transactional
execution, see Chapter 29, “Transactional execution,” on page 459.

Special considerations for ESTAE-type recovery routines
This information discusses some special considerations for writing ESTAE-type recovery routines:

• RB considerations
• Linkage stack considerations
• Outstanding I/Os at time of failure
• Other considerations for ESTAE-type recovery routines
• Using ARRs

RB considerations
A program must activate and deactivate ESTAE-type recovery routines under the same RB level. If you try
to deactivate an ESTAE-type recovery routine that is not associated with your RB, you get a return code
that indicates your request is not valid.

ESTAE-type recovery routines are deactivated when their associated RBs terminate. This is important
because a program expects one of its own ESTAE-type recovery routines to get control rather than
one left behind by a called program. A program might, however, invoke a service routine that does not
create an RB. If that routine then issues an ESTAEX or ESTAE macro and fails to deactivate the resulting
ESTAE-type recovery routine, a problem could develop if the original program encounters an error. The
ESTAE-type recovery routine left behind by the service routine would receive control rather than the
ESTAE-type recovery routine associated with the program, because the recovery routine specified by the
most recently issued ESTAE or ESTAEX macro gets control.

IBM recommends that every program that activates an ESTAE-type recovery routine also deactivate it.

For retry from an ESTAE-type recovery routine, the retry routine runs as a continuation of the code
that activated the recovery routine. That is, the retry routine runs under the same RB that defined the
ESTAE-type recovery routine, and the system purges all RBs created after the retry RB before giving
control to the retry routine.

Chapter 8. Providing recovery 147

Note that ESTAI is an exception; a retry request from a recovery routine defined by the ESTAI parameter
of the ATTACHX macro must run under a program request block (PRB). The retry routine cannot run under
the PRB of the routine that defined the ESTAI routine, because that PRB is associated with a different
task. The system scans the RB queue associated with the task under which the retry is to occur, starting
with the RB that was interrupted (the newest RB). The system then uses the following rules to select a
PRB for the retry routine:

• If one or more PRBs exist that represent an ESTAE-type recovery routine, use the newest one.
• If no PRBs exist that represent ESTAE-type recovery routines, use the newest PRB that does not have

any non-PRBs (such as SVRBs) that are older.

If the RB queue contains no PRBs at all, retry is suppressed.

Linkage stack considerations
Consider the following information about the linkage stack when writing an ESTAE-type recovery routine
or a retry routine, or when deactivating an ESTAE-type recovery routine:

Recovery routine
IBM recommends that your recovery routine not modify or extract from the linkage stack entry that is
current when the routine is entered. In some cases, the system might prevent an ESTAE-type recovery
routine from modifying or extracting from that linkage stack entry. If your recovery routine attempts to
modify or extract from the linkage stack entry when the system does not allow it, the result is a linkage
stack exception.

IBM recommends that if your recovery routine adds entries to the linkage stack, through a stacking PC
or BAKR instruction, it should also remove them. If the recovery routine adds entries to the stack and
does not remove them, the system recognizes an error when the recovery routine returns control. If the
recovery routine retries, the additional entries are not given to the retry routine. If the recovery routine
percolates, subsequent recovery routines receive a linkage stack with entries more recent than the entry
that was current at the time of error.

Retry routine
When the system gives control to your retry routine, the linkage stack level is set to the level that
was current when your program activated the recovery routine, unless the recovery routine sets the
SDWALSLV field.

Deactivating an ESTAE-type recovery routine
A program may deactivate an ESTAE-type recovery routine only under the same linkage stack level as the
level that existed when the program activated the recovery routine. This rule affects programs that add
entries to the linkage stack either through the BAKR or PC instruction. Failure to follow this rule results in
an error return code of 36 from the ESTAE or ESTAEX macro.

When you issue a PR, the system automatically deactivates all ESTAE-type recovery routines that were
previously activated under that current linkage stack entry.

Outstanding I/Os at the time of failure
Before the most recently activated ESTAE-type recovery routine receives control, the system can handle
outstanding I/Os at the time of the failure. You request this through the macro that defines the routine
(that is, through the PURGE parameter on ESTAE, ESTAEX, or ATTACHX). The system performs the
requested I/O processing only for the first ESTAE-type recovery routine that gets control. Subsequent
routines that get control receive an indication of the I/O processing previously done, but no additional
processing is performed.

Note: You should understand PURGE processing before using this parameter. PURGE processing is
documented in z/OS DFSMSdfp Advanced Services.

148 z/OS: z/OS MVS Assembler Services Guide

If there are quiesced restorable I/O operations (because you specified PURGE=QUIESCE on the macro for
the most recently defined ESTAE-type recovery routine), the retry routine can restore them as follows:

• If the recovery routine specified FRESDWA=YES and RETREGS=NO on the SETRP macro, or the system
did not provide an SDWA, the system supplies the address of the purged I/O restore list in GPR 2 on
entry to the retry routine.

• If the recovery routine specified FRESDWA=NO and RETREGS=NO on the SETRP macro, GPR 1 contains
the address of the SDWA, and the address of the purged I/O restore list is in the SDWAFIOB field on
entry to the retry routine.

• If the recovery routine specified FRESDWA=NO and RETREGS=YES on the SETRP macro, the recovery
routine must pass the address of the SDWA to the retry routine (in the user parameter area, or in GPR
0). The address of the purged I/O restore list is in the SDWAFIOB field on entry to the retry routine.

• If the recovery routine specified FRESDWA=YES and RETREGS=YES on the SETRP macro, the retry
routine cannot access the purged I/O restore list.

The following table provides a summary of how the retry routine can access quiesced restorable I/O
operations:

Table 11. Restoring quiesced restorable I/O operations

Parameter on SETRP Macro RETREGS=NO RETREGS=YES

FRESDWA=YES GPR 2 contains the address of the purged
I/O restore list

Retry routine cannot access the purged
I/O restore list.

FRESDWA=NO GPR 1 contains the address of the SDWA;
SDWAFIOB contains the address of the
purged I/O restore list

The recovery routine must pass the
address of the SDWA to the retry routine;
SDWAFIOB contains the address of the
purged I/O restore list.

Note: If the system did not provide an SDWA and RETREGS=NO, then GPR 2 contains the address of the
purged I/O restore list.

You can use the RESTORE macro to have the system restore all I/O requests on the list. For information
about the RESTORE macro, see z/OS DFSMSdfp Advanced Services.

Additional considerations specific to ESTAE-type recovery routines
Consider the following points that are specific to ESTAE-type recovery routines:

• During processing of the first and all subsequent recovery routines, the system allows or disallows
asynchronous processing (such as a timer exit) depending on how you specify the ASYNCH parameter
when you define the routine (that is, through the ASYNCH parameter on ESTAE, ESTAEX, and ATTACHX).

• The following list describes what the system does when it is done processing a particular recovery
routine (either because the recovery routine percolates, or because the recovery routine itself
encounters an error and has no recovery routine of its own that retries):

– Accumulates dump options
– Resets the asynchronous exit indicator according to the request of the next recovery routine
– Ignores the I/O options for the next recovery routine
– Initializes a new SDWA
– Gives control to the next recovery routine.

If all recovery routines fail or percolate, the task is terminated.
• If a non-job step task issues an ABEND macro with the STEP parameter, the system gives control to

recovery routines for the non-job step task. If the recovery routines do not request a retry, the job step
is terminated with the specified completion code. Subsequent recovery routines for the job step task get
control only when you specify TERM=YES on the macros that defined those recovery routines. You can
specify TERM=YES on ESTAE, ESTAEX, and ATTACHX.

Chapter 8. Providing recovery 149

If the recovery routines for the job step task do not retry, subsequent recovery routines for any other
non-job step tasks get control in the same way they would if the job step task itself encountered the
error and then did not retry.

• For some situations, the system gives control to ESTAE-type recovery routines only when the
TERM=YES parameter was specified. The situations are:

– System-initiated logoff
– Job step timer expiration
– Wait time limit for job step exceeded
– DETACH macro was issued from a higher level task (possibly by the system if the higher level task

encountered an error)
– Operator cancel
– Error occurred on a higher level task
– Error in the job step task when a non-job step task issued the ABEND macro with the STEP parameter
– z/OS UNIX is canceled and the user's task is in a wait in the z/OS UNIX kernel.

When the system gives control to the recovery routines defined with the TERM=YES parameter as a
result of these errors, the system takes the following actions:

– Sets the SDWACLUP bit
– Gives control to all such routines in LIFO order
– Does not enter any ESTAI routine previously suppressed by a return code of 16, or any previously

entered recovery routine that requested percolation
– Ignores any request for retry.

Using ARRs
An ARR is an ESTAE-type recovery routine that provides recovery for a stacking PC routine and receives
control if the stacking PC routine encounters an error. Unauthorized programs can define an ARR using a
system-provided PC via the IEAARR macro. An ARR receives all of the defaults of the ESTAEX macro, with
the exception of the TERM parameter. For ARRs, the system uses TERM=YES.

To define an ARR, Issue the IEAARR macro to establish an ARR to cover a target routine, as described in
z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

An ARR receives control in 31-bit or 64-bit addressing mode depending on the mode at the time that
IEAARR was issued. If it is passed an SDWA, the SDWA is in 31-bit addressable storage.

The system does not give control to an ARR established with the IEAARR macro if the caller of the
program using the IEAARR macro has established any FRRs.

Understanding the recovery environment
When you write a recovery routine, you must take into consideration a number of environmental factors
that are present when the recovery routine gets control, and that are present when a retry routine gets
control. This information discusses environmental factors in two broad categories, distinguishing register
contents from all other environmental factors:

• Register contents.

Recovery routines are interested in register contents at the following times:

– When the error occurs

When the recovery routine gets control, certain fields in the SDWA contain the register contents at
the time the error occurs. SDWAGRSV contains the contents of the GPRs; SDWAARER contains the
contents of the ARs.

– On entry to and return from the recovery routine

150 z/OS: z/OS MVS Assembler Services Guide

See “Register contents on entry to a recovery routine” on page 151 and “Register contents on return
from a recovery routine” on page 153 for details.

– On entry to the retry routine

See “Register contents” on page 154 for details.
• All other environmental factors.

The other environmental factors important in a recovery environment are:

– Authorization: problem state or supervisor state, PSW key, and PSW key mask (PKM)
– SDWA storage key
– Dispatchable unit mode
– AMODE
– ASC mode
– Interrupt status
– DU-AL
– Program mask
– Condition of the linkage stack

This information discusses each of the environmental factors, and makes distinctions, where necessary,
that depend on the following:

• Whether the system provided an SDWA
• Whether you are dealing with the recovery routine or the retry routine.

Register contents
This information describes register contents for the following:

• On entry to a recovery routine
• On return from a recovery routine (see “Register contents on return from a recovery routine” on page

153)
• On entry to a retry routine.

The following table provides a roadmap to all the tables containing register content information on entry
to a recovery routine or on entry to a retry routine:

Table 12. Where to Find Register Content Information

Registers Described For: Table Number:

ESTAE-type recovery routine with an SDWA Table 13 on page 152

ESTAE-type recovery routine without an SDWA Table 14 on page 153

Retry from an ESTAE-type recovery routine without an SDWA Table 15 on page 154

Retry from an ESTAE-type recovery routine with an SDWA, RETREGS=NO, and
FRESDWA=NO

Table 16 on page 155

Retry from an ESTAE-type recovery routine with an SDWA, RETREGS=NO, and
FRESDWA=YES

Table 17 on page 156

Retry from an ESTAE-type recovery routine with an SDWA and RETREGS=YES Table 18 on page 156

Register contents on entry to a recovery routine
The register contents on entry to an ESTAE-type recovery routine are different depending on whether the
system supplied and SDWA. The following tables describe the register contents on entry to the recovery
routine for both situations.

Chapter 8. Providing recovery 151

Table 13. Register Contents—ESTAE-Type Recovery Routine With an SDWA

Register Contents

General
Purpose
Registers

GPR 0 A code indicating the type of I/O processing performed:
0

Active I/O has been quiesced and is restorable.
4

Active I/O has been halted and is not restorable.
8

No I/O was active when the abend occurred.
16 (X'10')

No I/O processing was performed.

GPR 1 Address of the SDWA.

GPR 2 One of the following:

• If you specified the PARM parameter on ESTAE or ESTAEX, the address of the user-
supplied parameter area.

• For ESTAI issued via ATTACHX, the address of the user-supplied parameter area.
Note this is a 31-bit address for ESTAI issued in either AMODE31 or AMODE64.

• If you issued FESTAE without the PARAM parameter, the address of the 24-byte
parameter area in the SVRB (RBFEPARM).

• If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM parameter, zero.
• For IEAARR issued in AMODE 31, the 31-bit address of the parameter area specified

on the ARRPARAMPTR parameter of IEAARR.
• For IEAARR issued in AMODE 64, the 64-bit address of the parameter area specified

on the ARRPARAMPTR64 parameter of IEAARR.

GPRs 3 - 12 Do not contain any information for use by the routine.

GPR 13 Address of a 144-byte register save area.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine, except for ESTAEX issued in
AMODE 64, in which case the low order bit will be on.

Access
registers

ARs 0 - 1 Zero

AR 2 One of the following:

• If you issued the ESTAEX macro in AR ASC mode, an ALET that qualifies the address
in GPR 2.

• Otherwise, this register does not contain any information for use by the routine.

ARs 3 - 15 Zero.

152 z/OS: z/OS MVS Assembler Services Guide

Table 14. Register Contents—ESTAE-Type Recovery Routine Without an SDWA

Register Contents

General
Purpose
Registers

GPR 0 12 (X'0C'). The system could not obtain an SDWA.

GPR 1 Completion code in bytes 1-3. The system completion code appears in the first 12 bits,
and the user completion code appears in the second 12 bits.

GPR 2 One of the following:

• If you specified the PARAM parameter on ESTAE, ESTAEX, or FESTAE, the address of
the user-supplied parameter area.

• For ESTAI issued via ATTACHX, the address of the user-supplied parameter area.
Note this is a 31-bit address for ESTAI issued in either AMODE31 or AMODE64.

• If you issued FESTAE without the PARM parameter, the address of the 24-byte
parameter area in the SVRB (RBFEPARM).

• If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM parameter, zero.
• For IEAARR issued in AMODE 31, the 31-bit address of the parameter area specified

on the ARRPARAMPTR parameter of IEAARR.
• For IEAARR issued in AMODE 64, the 64-bit address of the parameter area specified

on the ARRPARAMPTR64 parameter of IEAARR.

GPRs 3 - 13 Do not contain any information for use by the routine.

Note: When the system does not provide an SDWA, GPR 13 does not contain the
address of a 144-byte save area. In this case, your ESTAE-type recovery routine must
save the address from GPR 14 and use it as the return address to the system.

GPR 14 Return address to the system.

GPR 15 Entry point address of the ESTAE-type recovery routine except for ESTAEX issued in
AMODE 64 in which the low order bit is set on.

Access
registers

ARs 0 - 1 Zero

AR 2 One of the following:

• If you issued the ESTAEX macro in AR ASC mode and not AMODE 64, an ALET that
qualifies the address in GPR 2.

• Otherwise, this register does not contain any information for use by the routine.

ARs 3 - 15 Zero.

Register contents on return from a recovery routine
The register contents on return from a recovery routine depend on whether the system provided an
SDWA. ESTAE-type recovery routines that receive an SDWA can use any register without saving its
contents, except GPR 14. The routines must maintain the return address supplied in GPR 14. The routines
do not have to place any information in the registers for use by the system.

ESTAE-type recovery routines that do not receive an SDWA must set one of the following return codes in
GPR 15:

Chapter 8. Providing recovery 153

Return Code
Meaning

0
The recovery routine requests percolation.

4
The recovery routine requests a retry. The recovery routine must then place the address of the retry
routine in GPR 0.

16 (X'10')
Valid only for an ESTAI recovery routine. The system should not give control to any further ESTAI
routines, and should abnormally end the task.

Register contents
The register contents on entry to a retry routine vary according to the following:

• Whether an SDWA is present.
• If an SDWA is present, what the recovery routine specifies on the SETRP macro.

The parameters on SETRP that affect register contents on entry to the retry routine from an ESTAE-type
recovery routine are the following:

• The RETREGS parameter controls whether registers are restored from the SDWA. If you specify
RETREGS=NO, registers are not restored from the SDWA.

If you specify RETREGS=YES, GPRs are restored from SDWASRSV, and ARs are restored from
SDWAARSV. If you specify RETREGS=YES,RUB, you can manipulate the contents of SDWASRSV to
whatever you wish the GPRs to be before they are restored. Or, you can directly manipulate the contents
of both SDWASRSV and SDWAARSV. When you specify RETREGS=YES and are running in z/Architecture
mode, the upper halves of the 64–bit registers at retry will contain the upper halves of the 64–bit
registers from the time of error.

If you are running in z/Architecture mode and specify RETREGS=64, the 64–bit GPRs at retry are
restored from SDWAG64 and the ARs are restored from SDWAARSV.

See the description of the SETRP macro in z/OS MVS Programming: Assembler Services Reference
IAR-XCT for complete details.

• The FRESDWA parameter controls whether the system frees the SDWA before giving control to the retry
routine. FRESDWA=YES instructs the system to free the SDWA; FRESDWA=NO instructs the system not
to free the SDWA. This has an affect on the register contents on entry to the retry routine.

The following tables describe the register contents under various circumstances on entry to a retry
routine from an ESTAE-type recovery routine:

Table 15. Register Contents—Retry from an ESTAE-Type Recovery Routine Without an SDWA

Register Contents

General
Purpose
Registers

GPR 0 12 (X'0C').

154 z/OS: z/OS MVS Assembler Services Guide

Table 15. Register Contents—Retry from an ESTAE-Type Recovery Routine Without an SDWA (continued)

Register Contents

GPR 1 If you specified the PARAM parameter on ESTAE, ESTAEX, or ATTACHX, the address of
the user-supplied parameter area. Note that when ESTAEX was issued in AMODE 64,
GPR 1 contains a 64-bit value.

If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM parameter, zero.

For IEAARR issued in AMODE 31, the 31-bit address of the parameter area specified
on the ARRPARAMPTR parameter of IEAARR.

For IEAARR issued in AMODE 64, the 64-bit address of the parameter area specified
on the ARRPARAMPTR64 parameter of IEAARR.

GPR 2 Address of the purged I/O restore list if I/O was quiesced and is restorable; otherwise,
zero.

GPRs 3 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was issued in AMODE
64, in which case the low order bit is set on.

Access
Registers

AR 0 Zero.

AR 1 One of the following:

• If you issued the ESTAEX macro in AR ASC mode and not AMODE 64, an ALET that
qualifies the address in GPR 1.

• Otherwise, this register does not contain any information for use by the routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

Table 16. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA, RETREGS=NO,
and FRESDWA=NO

Register Contents

General
Purpose
Registers

GPR 0 Zero.

GPR 1 Address of the SDWA.

GPRs 2 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was issued in AMODE
64, in which case the low order bit is set on.

Access
Registers

ARs 0 - 1 Zero.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

Chapter 8. Providing recovery 155

Table 17. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA, RETREGS=NO,
and FRESDWA=YES

Register Contents

General
Purpose
Registers

GPR 0 20 (X'14').

GPR 1 If you specified the PARAM parameter on ESTAE, ESTAEX, or ATTACHX, the address of
the user-supplied parameter area. Note that when ESTAEX was issued in AMODE 64,
GPR 1 contains a 64-bit value.

If you issued ESTAE, ESTAEX, or ATTACHX without the PARAM parameter, zero.

For IEAARR issued in AMODE 31, the 31-bit address of the parameter area specified
on the ARRPARAMPTR parameter of IEAARR.

For IEAARR issued in AMODE 64, the 64-bit address of the parameter area specified
on the ARRPARAMPTR64 parameter of IEAARR.

GPR 2 Address of the purged I/O restore list, if I/O was quiesced and is restorable; otherwise,
zero.

GPRs 3 - 14 Do not contain any information for use by the routine.

GPR 15 Entry point address of the retry routine, except for when ESTAEX was issued in AMODE
64, in which case the low order bit is set on.

Access
Registers

AR 0 Zero.

AR 1 One of the following:

• If you issued the ESTAEX macro in AR ASC mode and not AMODE 64, an ALET that
qualifies the address in GPR 1.

• Otherwise, this register does not contain any information for use by the routine.

ARs 2 - 13 Do not contain any information for use by the routine.

ARs 14 - 15 Zero.

Table 18. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA and
RETREGS=YES

Register Contents

General
Purpose
Registers

GPRs 0 - 15 Restored from SDWASRSV, regardless of whether the recovery routine specified
FRESDWA=NO or FRESDWA=YES.

Note that register 15 does not contain the entry point address of the retry routine
unless the recovery routine sets it up that way.

Access
Registers

156 z/OS: z/OS MVS Assembler Services Guide

Table 18. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA and
RETREGS=YES (continued)

Register Contents

ARs 0 - 15 Restored from SDWAARSV, regardless of whether the recovery routine specified
FRESDWA=NO or FRESDWA=YES.

Table 19. Register Contents—Retry from an ESTAE-Type Recovery Routine With an SDWA and
RETREGS=64 in z/Architecture mode

Register Contents

General
Purpose
Registers

GPRs 0 - 15 Restored from SDWAG64, regardless of whether the recovery routine specified
FRESDWA=NO or FRESDWA=YES.

Note that register 15 does not contain the entry point address of the retry routine
unless the recovery routine sets it up that way.

Access
Registers

ARs 0 - 15 Restored from SDWAARSV, regardless of whether the recovery routine specified
FRESDWA=NO or FRESDWA=YES.

Other environmental factors in recovery
As mentioned previously, the other environmental factors to be concerned about in a recovery
environment are:

• Authorization: problem state or supervisor state, PSW key, and PKM
• SDWA storage key
• Dispatchable unit mode
• AMODE
• ASC mode
• Interrupt status
• DU-AL
• Program mask
• Condition of the linkage stack

These environmental factors differ depending on whether you are dealing with the recovery routine or the
retry routine.

Environment on entry to an ESTAE-type recovery routine
The following is a description of each environmental factor on entry to an ESTAE-type recovery routine.

Authorization
Problem or supervisor state

The ESTAE-type recovery routines you can write are entered in problem state.
PSW key

An ESTAE-type recovery routine is entered with the PSW key that existed at the time the recovery
routine was defined.

Chapter 8. Providing recovery 157

PKM
An ESTAE-type recovery routine is entered with the PKM that existed at the time the recovery routine
was defined.

SDWA storage key
An ESTAE-type recovery routine receives an SDWA in the same storage key as the TCB key at the time the
related task made the first storage request from subpool 0.

Dispatchable unit mode
All ESTAE-type recovery routines receive control in task mode.

AMODE
ESTAE-type recovery exits receive control in the AMODE that was current at the time-of-set (time-of-PC
AMODE for ARRs) with the following exceptions:

• ARR, IEAARR, and ESTAEX exits receive control in AMODE 31 instead of AMODE 24 when established
for AMODE 24 programs

ASC mode
A recovery routine defined through the ESTAE macro is entered in primary ASC mode. A recovery routine
defined through the ESTAEX macro, the IEAARR macro, or the ESTAI parameter on ATTACHX is entered in
the ASC mode that existed at the time the macro was issued.

Interrupt status
All ESTAE-type recovery routines are entered enabled for I/O and external interrupts.

DU-AL
ESTAE-type recovery routines receive control with the DU-AL that was current at the time of the error,
as modified by any previous recovery routines, with the following exception. For an ESTAE-type recovery
routine activated by an IRB, or activated by an IRB's ESTAE-type recovery routine, the ESTAE-type
recovery routine receives the IRB's DU-AL (IRBs get control with their own DU-AL). The system does not
modify the contents of the DU-AL during recovery processing.

Program mask
The program mask on entry to an ESTAE-type recovery routine is the same as the program mask at the
time of error.

Condition of the linkage stack
On entry to an ESTAE-type recovery routine, the current linkage stack entry is the same as it was at the
time of the error, unless a previous recovery routine added entries to the linkage stack through a PC or
BAKR instruction and did not remove them. In such a case, when percolation occurs and the recovery
routine gets control, the linkage stack contains additional entries beyond what was the current entry at
the time of the error for which the recovery routine received control. IBM recommends that any recovery
routines that add entries to the linkage stack also remove them.

Restricted environments
During normal task termination, a resource manager might end abnormally; its own recovery routines, if
any exist, will receive control. If they do not retry, or if the resource manager has no recovery routines,
the system now considers this situation to be an abnormal termination, and passes control to the newest
ESTAI routine. Because the abending resource manager, and any previous resource managers, might have
completed some processing, the ESTAI routine will run in an unpredictable environment. In this situation,
IBM recommends that you restrict the ESTAI routine's processing. For the ESTAI routine to run in this
environment, design it to:

158 z/OS: z/OS MVS Assembler Services Guide

1. Check the STCBRMET field in the STCB; if the bit is on, the ESTAI routine is running after a resource
manager has ended abnormally and its recovery routines have not retried. In this situation, the ESTAI
routine does not need to hold a lock to check the STCBRMET field. For the mapping of the STCB, see
z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosInternetLibrary).

2. Do as little processing as possible, and nothing that might depend on a resource that might have been
cleaned up already.

3. Do not request to retry. The system will not allow a retry in this situation.

Note that no other ESTAE-type routines receive control in this situation; only those established through
the ATTACHX macro still exist at this point in termination processing.

Environment on entry to a retry routine from an ESTAE-type recovery routine
The following is a description of each environmental factor on entry to a retry routine that was specified
by an ESTAE-type recovery routine.

Authorization
Problem or supervisor state

The retry routine from an ESTAE-type recovery routine that you can write is entered in problem state.
PSW key

If the recovery routine was defined through the ESTAE, ESTAEX, or IEAARR macro, the retry routine is
entered with the same PSW key that existed when the macro was issued.

If the recovery routine was defined through the ESTAI parameter of the ATTACHX macro, the retry
routine is entered with the same PSW key as the one in RBOPSW of the retry RB, if the RBOPSW of the
retry RB has a key greater than or equal to 8 and is in problem state, and the PKM of that RB does not
have authority to keys less than 8. Otherwise, the PSW key of the retry routine is that of the task in
error.

PKM
If the recovery routine was defined through the ESTAE, ESTAEX, or IEAARR macro, the retry routine is
entered with the PKM that existed when the macro was issued.

If the recovery routine was defined through the ESTAI parameter of the ATTACHX macro, the retry
routine is entered with the PKM from the retry RB if the RBOPSW of the retry RB has a key greater that
or equal to 8 and is in problem state, and the PKM of that RB does not have authority to keys less than
8. Otherwise, the PKM of the retry routine has authority that is equivalent to that of the task in error.

SDWA storage key
If the recovery routine does not request that the system free the SDWA, the retry routine receives the
SDWA in the same storage key as that which the recovery routine received.

Dispatchable unit mode
The retry routine is always entered in task mode.

AMODE
Retry routines are entered in the same addressing mode that existed when the recovery routine was
entered, unless the SETRP RETRYAMODE= parmeter is used by the recovery routine. See the description
of RETRYAMODE= on the SETRP section of the z/OS MVS Programming: Assembler Services Reference
IAR-XCT.

ASC mode
For recovery routines defined through the ESTAE macro, the retry routine is entered in primary ASC mode.
For recovery routines defined through the ESTAEX macro or through the ESTAI parameter on ATTACHX,
the retry routine is entered with the ASC mode of the caller when the macro was issued.

Chapter 8. Providing recovery 159

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Interrupt status
The retry routine is always entered enabled for I/O and external interrupts.

DU-AL
The retry routine is entered with the same DU-AL that the ESTAE-type recovery routine received, as
modified by the ESTAE-type recovery routine. The system does not modify the contents of the DU-AL
during recovery processing.

Program mask
When the retry routine receives control, the program mask is the one in the RBOPSW for the retry RB,
either saved at the time of the last interruption of the RB that occurs while the RB was unlocked and
enabled or updated due to an ESPIE routine setting the EPIERSET bit.

Condition of the linkage stack
For recovery routines defined through the ESTAE, ESTAEX or IEAARR macro, on entry to the retry routine,
the current linkage stack entry is the same as it was at the time the macro was issued, unless the recovery
routine has set the SDWALSLV field.

For recovery routines defined through the ESTAI parameter on ATTACHX, on entry to the retry routine, the
current linkage stack entry is the same as it was at the time the selected retry RB was entered, unless the
recovery routine has set the SDWALSLV field.

Summary of environment on entry to an ESTAE-type recovery routine and its
retry routine
Table 20 on page 160 summarizes some of the environmental factors for ESTAE-type recovery routines
under different conditions. Specifically, the table lists the status information of:

• The caller at the time of issuing the macro
• The recovery routine at entry
• The retry routine at entry.

Table 20. Environments of ESTAE-type Recovery Routines and their Retry Routines

Type of
Recovery When macro was issued At entry to recovery routine At entry to retry routine

ESTAE ASC mode=primary ASC mode=primary

Linkage stack at time of error (see Note
“1” on page 161)

PKM at time macro was issued

ASC mode=primary

Linkage stack at time macro was
issued (see Note “2” on page 161)

PKM at time macro was issued

ESTAEX or
IEAARR

ASC mode=primary or AR ASC mode at time macro was issued

Linkage stack at time of error (see Note
“1” on page 161)

PKM at time macro was issued

ASC mode at time macro was issued

Linkage stack at time macro was
issued (see Note “2” on page 161)

PKM at time macro was issued

ESTAI
(through
ATTACHX)

ASC mode=primary or AR ASC mode at time macro was issued

Linkage stack at time of error (see Note
“1” on page 161)

PKM at time macro was issued

For possible environment restrictions,
see “Restricted environments” on page
158.

ASC mode at time macro was issued

Linkage stack at time the retry RB was
entered (see Note “2” on page 161)

Note:

160 z/OS: z/OS MVS Assembler Services Guide

1. The linkage stack presented to the recovery routine might have additional entries, beyond what was
the current entry at the time of the error, if a previous recovery routine added entries through a PC or
BAKR instruction and did not remove them.

2. The linkage stack presented to the retry routine might have additional entries, beyond what was
current at the time that the routine was activated, when the recovery routine set the SDWALSLV field.

3. At time of entry to the recovery routine, the AMODE will be the same as the time of invocation, except
for ESTAEX and IEAARR routines. ESTAEX and IEAARR routines that were established in AMODE
64 receive control in AMODE 64; otherwise, ESTAEX and IEAARR routines always receive control in
AMODE 31.

4. The AMODE at the retry point is the same as the AMODE on entry to the recovery routine, unless the
SETRP RETRYAMODE= parameter specifies a specific retry AMODE.

5. An ESTAE-type recovery routine is entered with the PSW key that existed at the time it was defined.

Linkage stack at time of retry
There is one retry situation you must avoid: the situation where the retry routine runs with a linkage stack
entry that is inappropriate. Consider the following example, where PGM1 activates an ESTAEX routine that
handles recovery for PGM1, PGM2, and PGM3.

 caller ---> PGM1
 BAKR
 :
 ESTAEX
 :
 BALR --------> PGM2
 BAKR
 :
 BALR --------> PGM3
 BAKR
 abend
 :
 retry point
 :
 <-------- PR

Both PGM2 and PGM3 use the BAKR instruction to save status; each BAKR adds an entry to the linkage
stack. Within PGM3, "retry point" indicates the location where the ESTAEX routine is to retry. After PGM3
issues the BAKR instruction, the last entries in the linkage stack are:

• Entry 1 -- caused by PGM1's BAKR
• Entry 2 -- caused by PGM2's BAKR
• Entry 3 -- caused by PGM3's BAKR

When the abend occurs in PGM3, unless you take special measures, the linkage stack level is reset to the
level that was current when PGM1 activated the ESTAEX recovery routine. However, retry from the abend
in PGM3 occurs within PGM3. The linkage stack level and the retry routine are not "in synch". Measures
you take to avoid this situation involve:

1. Passing the recovery routine a value that represents the difference between the level of the linkage
stack that the retry routine in PGM3 needs and the level of the stack at the time PGM1 activated the
ESTAEX routine. (In our example, the difference is 2 entries.)

2. Having the recovery routine set the value "2" in the SDWALSLV field in the SDWA.

At a retry, the system uses the value in SDWALSLV to adjust the linkage stack. In this way, the retry
routine has the appropriate current linkage stack entry.

Two ways your program can track the entries in the linkage stack are:

• Count the number of entries added to the stack through BAKRs since PGM1 activated the ESTAEX
routine. Subtract from that total the number of entries taken from the stack through corresponding PRs.

• Issue the IEALSQRY macro, which returns the number as output.

Chapter 8. Providing recovery 161

In either case, the recovery routine must receive the value and must place it in SDWALSLV. In summary,
the value in SDWALSLV is the difference between the number of linkage stack entries present when the
retry routine gets control and the number that were present when the recovery routine was activated. The
system preserves the additional entries on the linkage stack for use by the retry routine. These linkage
stack entries must exist at the time of the error; the system does not create any new entries.

The following rules apply to the value in SDWALSLV, as it pertains to linkage stack entries:

• The system ignores the SDWALSLV field when retry is from a STAE or STAI recovery routine.
• The value must not reflect entries that were placed on the linkage stack through a PC instruction.
• The value must reflect only those entries associated with programs that are problem state and running

with the same PSW key as the program that activated the ESTAE-type recovery routine.
• For ESTAE-type routines, the value must reflect only those entries associated with programs that have

been established by a program running under the RB of the retry routine. See “RB considerations” on
page 147.

If any of these rules are broken, retry still occurs but the system ignores the entry that did not conform
and all subsequent entries.

Understanding recovery through a coded example
This information provides a coded example illustrating a mainline routine with both a recovery routine and
a retry routine as entry points in the mainline code.

The code in this example does not contain any real function. The mainline code does little more than save
status, establish addressability, obtain a dynamic area (making the code reentrant), define a recovery
routine, and issue the ABEND macro to pass control to the system.

The purpose of the example is just to illustrate how you might code a program that contains both a
recovery routine and a retry routine, and how the three routines interact. The example also illustrates how
you design an ESTAE-type recovery routine to allow for the possibility that the system might not provide
an SDWA.

EXAMPLE CSECT * SAMPLE PROGRAM THAT USES ESTAEX
EXAMPLE AMODE 31
EXAMPLE RMODE ANY
 USING EXAMPLE,15 * ESTABLISH TEMPORARY ADDRESSABILITY
 B @PROLOG * BRANCH AROUND EYE CATCHER
 DC CL24'EXAMPLE 04/10/92.01' * EYE CATCHER
*
* USE THE LINKAGE STACK TO SAVE STATUS ON ENTRY TO THE PROGRAM.
*
@PROLOG BAKR 14,0 * SAVE REGISTER/PSW STATUS
*
* ESTABLISH ADDRESSABILITY FOR THIS PROGRAM.
*
 LR 12,15 * REG 12 BECOMES BASE REGISTER
 DROP 15 *
 USING EXAMPLE,12 * ESTABLISH ADDRESSABILITY
*
* OBTAIN DYNAMIC STORAGE AREA FOR THIS REENTRANT PROGRAM.
*
 L 2,DYNSIZE * LENGTH TO OBTAIN
 STORAGE OBTAIN,ADDR=(1),SP=0,LENGTH=(2)
 LR 13,1 * SAVE DYNAMIC AREA ADDRESS
 USING DYNAREA,13 * ADDRESSABILITY TO DYNAMIC AREA
*
* SET UP THE REMOTE PARAMETER LIST FOR THE ESTAEX MACRO.
*
 MVC RMTESTAEX(@LSTSIZE),LSTESTAEX
*
* DEFINE AND ACTIVATE AN ESTAEX RECOVERY ROUTINE AT LABEL 'RECOVERY'.
*
 ESTAEX RECOVERY,PARAM=DYNAREA,MF=(E,RMTESTAEX)

*
* CODE FOR THE MAINLINE ROUTINE FUNCTION CAN BE INSERTED HERE
*
* IF AN ERROR OCCURS IN THE MAINLINE ROUTINE, THEN THE SYSTEM WILL
* PASS CONTROL TO RECOVERY.

162 z/OS: z/OS MVS Assembler Services Guide

*

*
RETRYPT DS 0H

*
* CODE FOR THE RETRY ROUTINE FUNCTION CAN BE INSERTED HERE
*

 ESTAEX 0 * DELETE THE ESTAEX
 LR 1,13 * FREE DYNAMIC AREA, ADDRESS TO FREE
 L 2,DYNSIZE * LENGTH TO FREE
 STORAGE RELEASE,ADDR=(1),SP=0,LENGTH=(2)
 PR * RESTORE STATUS & RETURN TO CALLER

*
* RECOVERY ROUTINE
*

RECOVERY DS 0H * ENTRY POINT FOR ESTAEX RECOVERY ROUTINE
*
* HANDLE INPUT FROM THE SYSTEM AND RE-ESTABLISH ADDRESSABILITY FOR
* BASE REGISTER (12) AND DYNAMIC AREA REGISTER (13)
*
 PUSH USING
 DROP , * ENSURE NO SPURIOUS USING REFERENCES
 USING RECOVERY,15 * TEMPORARY ADDRESSABILITY
 L 12,#BASE * RELOAD THE BASE REGISTER
 DROP 15 * RELEASE TEMPORARY ADDRESSABILITY
 USING EXAMPLE,12 * USE THE BASE REGISTER
 USING DYNAREA,13 * DYNAMIC AREA ADDRESSABILITY
 C 0,TESTNOSDWA * IS THERE AN SDWA PRESENT?
 BE NOSDWA * NO, DO NOT USE THE SDWA
HAVESDWA DS 0H
 USING SDWA,1 * ADDRESSABILITY TO SDWA
 L 13,SDWAPARM * ADDRESS OF PARAMETER ADDRESS
 L 13,0(13) * PARAMETER ADDRESS (DYNAREA)
 MVC SAVE_ABCC,SDWAABCC * SAVE THE COMPLETION CODE
 B RECOV1 * CONTINUE WITH COMMON RECOVERY
NOSDWA LR 13,2 * PARAMETER ADDRESS (DYNAREA)
 ST 1,SAVE_ABCC * SAVE THE COMPLETION CODE
 SR 1,1 * NO SDWA IS AVAILABLE, CLEAR REGISTER
*
* COMMON RECOVERY PROCESSING
*
RECOV1 DS 0H * COMMON RECOVERY PROCESSING
 ST 1,SAVE_SDWA * SAVE THE SDWA ADDRESS
 ST 14,SAVE_RETURNR14 * RETURN ADDRESS TO THE SYSTEM
*

*
* CODE FOR THE RECOVERY ROUTINE FUNCTION SHOULD BE INSERTED HERE
*

*
* IF THERE IS NO SDWA, THEN SET UP FOR PERCOLATION
*
 L 1,SAVE_SDWA * RESTORE SDWA REGISTER (1)
 LTR 1,1 * IS THERE AN SDWA?
 BZ NORETRY * NO, DO NOT ATTEMPT TO RETRY
*
* CHECK SDWACLUP TO SEE IF RETRY IS ALLOWED
*
 TM SDWAERRD,SDWACLUP * IS RETRY ALLOWED?
 BNZ NORETRY * NO, DO NOT ATTEMPT TO RETRY
*
* SET UP THE RETURN PARAMETERS TO THE SYSTEM. THE SETRP MACRO UPDATES
* THE SDWA. NOTE: THE WKAREA PARAMETER DEFAULTS TO REGISTER 1, WHICH
* HAS THE ADDRESS OF THE SDWA. ALSO NOTE THAT OTHER REGISTERS MIGHT
* NEED TO BE UPDATED TO MEET THE NEEDS OF DIFFERENT PROGRAMS.
*
 ST 12,SDWASR12 * BASE REGISTER 12 FOR RETRY
 ST 13,SDWASR13 * DYNAMIC AREA REGISTER 13 FOR RETRY
 SETRP RETREGS=YES,RC=4,RETADDR=RETRYPT,FRESDWA=YES
 B RECOV2 * CONTINUE WITH COMMON RECOVERY
NORETRY DS 0H * BRANCH HERE WHEN NOT GOING TO RETRY
 LA 15,0 * RETURN CODE TO INDICATE PERCOLATION
RECOV2 DS 0H * COMPLETE THE RETURN TO THE SYSTEM
 L 14,SAVE_RETURNR14 * SET THE RETURN ADDRESS TO THE SYSTEM
 BR 14 * RETURN TO THE SYSTEM
*
* STATIC STORAGE AREA

Chapter 8. Providing recovery 163

*
TESTNOSDWA DC F'12' * TEST FOR NO SDWA CONDITION
#BASE DC A(EXAMPLE) * BASE REGISTER VALUE
DYNSIZE DC AL4(@DYNSIZE) * DYNAMIC AREA SIZE
LSTESTAEX ESTAEX RECOVERY,MF=L * LIST FORM OF ESTAEX PARAMETER LIST
@LSTSIZE EQU *-LSTESTAEX * SIZE OF ESTAEX PARAMETER LIST
*
* DYNAMIC AREA STORAGE FOR REENTRANT PROGRAM
*
DYNAREA DSECT * DYNAMIC STORAGE
SAVEAREA DS 18F * REGISTER SAVE AREA
SAVE_SDWA DS F * SDWA ADDRESS ON ENTRY TO RECOVERY
SAVE_ABCC DS F * COMPLETION CODE
SAVE_RETURNR14 DS F * RETURN ADDR. TO SYSTEM FROM RECOVERY
RMTESTAEX DS CL(@LSTSIZE) * REMOTE ESTAEX PARAMETER LIST
STATUS DS F * MAINLINE STATUS INDICATOR
@ENDDYN DS 0X * USED TO CALCULATE DYNAMIC AREA SIZE
@DYNSIZE EQU ((@ENDDYN-DYNAREA+7)/8)*8 * DYNAMIC AREA SIZE
*
* INCLUDE MACROS
*
 IHASDWA
 END

Understanding advanced recovery topics
This information contains information about the following advanced recovery topics:

• “Invoking RTM (ABEND macro)” on page 164
• “Providing multiple recovery routines” on page 165
• “Providing recovery for recovery routines” on page 165
• “Providing recovery for multitasking programs” on page 166.

Invoking RTM (ABEND macro)
Any routine can issue the ABEND macro to direct the recovery termination services to itself (cause entry
into its recovery routine) or to its callers. The issuer of ABEND should remove its own recovery routine if it
wishes its caller to be ended abnormally or to enter recovery. Control does not return to the issuer of the
macro (except as a result of a retry).

The position within the job step hierarchy of the task for which the ABEND macro is issued determines
the exact function of the abnormal termination routine. If an ABEND macro is issued when the job step
task (the highest level or only task) is active, or if the STEP parameter is coded in an ABEND macro
issued during the performance of any task in the job step, all the tasks in the job step are terminated. For
example, if the STEP parameter is coded in an ABEND macro under TSO/E, the TSO/E job is terminated.
An ABEND macro (without a STEP parameter) that is issued in performance of any task in the job step
task usually causes only that task and its subtasks to be abnormally terminated. However, if the abnormal
termination cannot be fulfilled as requested, it might be necessary for the system to end the job step task
abnormally.

If you have provided a recovery routine for your program, the system passes control to your routine. If
you have not provided a recovery routine, the system handles the problem. The action the system takes
depends on whether the job step is going to be terminated.

If the job step is not going to be terminated, the system:

• Releases the resources owned by the terminating task and all of its subtasks, starting with the lowest
level task.

• Places the system or user completion code specified in the ABEND macro in the task control block (TCB)
of the active task (the task for which the ABEND macro was issued).

• Posts the event control block (ECB) with the completion code specified in the ABEND macro, if the ECB
parameter was coded in the ATTACHX macro issued to create the active task.

• Schedules the end-of-task exit routine to be given control when the originating task becomes active, if
the ETXR parameter was coded in the ATTACHX macro issued to create the active task.

164 z/OS: z/OS MVS Assembler Services Guide

• Calls a routine to free the storage of the terminating task's TCB, if neither the ECB nor ETXR parameter
were specified by the ATTACHX macro.

If the job step is to be terminated, the system:

• Releases the resources owned by each task, starting with the lowest level task, for all tasks in the job
step. The system does not give control to any end-of-task exit.

• Writes the system or user completion code specified in the ABEND macro on the system output device.

The remaining steps in the job are skipped unless you can define your own recovery routine to perform
similar functions and any other functions that your program requires. Use either the ESTAE or ESTAEX
macro, or the ATTACHX macro with the ESTAI option to provide a recovery routine that gets control
whenever your program issues an ABEND macro. If your program is running in AR ASC mode, use the
ESTAEX or ATTACHX macro.

Providing multiple recovery routines
A single program can activate more than one ESTAE-type recovery routine by issuing the ESTAE or ESTAEX
macro more than once with the CT parameter. The program can also overlay recovery routines by issuing
ESTAE or ESTAEX with the OV parameter, or deactivate recovery routines by issuing ESTAE or ESTAEX with
an address of zero.

ESTAE-type recovery routines get control in LIFO order, so the last ESTAE-type recovery routine activated
is the first to get control. Remember that ESTAE-type recovery routines include ESTAE and ESTAEX
routines, and ESTAI routines. ESTAI routines are entered after all other ESTAE-type recovery routines that
exist for a given task have received control and have either failed or percolated.

MVS functions provide their own recovery routines; thus, percolation can pass control to both installation-
written and system-provided recovery routines. If all recovery routines percolate -- that is, no recovery
routine can recover from the error -- then the task is terminated.

When a recovery routine gets control and cannot recover from the error (that is, it does not retry),
it must free the resources held by the mainline routine and request that the system continue with
error processing (percolate). Note that a recovery routine entered with the SDWACLUP bit set to one,
indicating that retry is not permitted, has no choice but to percolate. When the recovery routine requests
percolation, the previously activated recovery routine gets control. When a retry is not requested and the
system has entered all possible recovery routines, the task ends abnormally.

When a recovery routine requests percolation, it is deactivated; that is, it can no longer get control for this
error. A deactivated recovery routine is not entered again unless that recovery routine is activated again
after a retry.

Providing recovery for recovery routines
In some situations, the function a recovery routine performs is so essential that you should provide a
recovery routine to recover from errors in the recovery routine. Two examples of such situations are:

1. The availability of some resources can be so critical to continued system or subsystem operation that it
might be necessary to provide a recovery routine for the recovery routine, thus ensuring the availability
of the critical resources.

2. A recovery routine might perform a function that is, in effect, an extension of the mainline routine's
processing. For example, a system service might elect to check a caller's parameter list for fetch or
store protection. The service references the user's data in the user's key and, as a result of protection,
suffers a program check. The recovery routine gets control and requests a retry to pass a particular
return code to the mainline routine. If this recovery routine ends abnormally and does not provide
its own recovery, then the caller's recovery routine gets control, and the caller does not get an
opportunity to check the return code that it was expecting.

You can activate an ESTAE-type recovery routine from another ESTAE-type recovery routine. Any recovery
routine activated from a recovery routine is called a nested recovery routine. Nested ESTAE or ESTAEX
routines can retry; the retry routine runs under the RB of the ESTAE-type recovery routine that activated
the nested recovery routine.

Chapter 8. Providing recovery 165

Providing recovery for multitasking programs
There are situations where the system does not provide serialization between recovery routines for
different TCBs in an address space. When possible you should write your recovery routines so that
serialization is not required.

When a recovery routine requires serialization with other TCBs in the address space then the recovery
routine must provide its own serialization. Serialization must be carefully designed to avoid causing
deadlock situations.

One serialization technique to ensure the order of termination processing is to use the DETACH macro.
Issuing DETACH ensures that the detached task and its recovery routines complete before processing for
the issuing task proceeds. DETACH can only be used for tasks that were directly attached by the recovery
routine's TCB.

Another important aspect of recovery is releasing resources. Releasing serialization resources (locks,
ENQs, latches) in ESTAE-type recovery routines, rather than leaving them to be released by a resource
manager, helps avoid deadlocks in recovery processing.

Using STAE/STAI routines
Note to reader

• IBM recommends that you use the ESTAEX or ESTAE macro, or the ESTAI parameter on ATTACHX.
• Under certain circumstances, STAE or STAI routines might receive control in a restricted environment.

See “Restricted environments” on page 158 for more information.

End of Note to reader

The STAE macro causes a recovery routine address to be made known to the system. This recovery
routine is associated with the task and the RB that issued STAE. Use of the STAI option on the ATTACH
macro also causes a recovery routine to be made known to the system, but the routine is associated
with the subtask created through ATTACH. Furthermore, STAI recovery routines are propagated to all
lower-level subtasks of the subtask created with ATTACH that specified the STAI parameter.

If a task is scheduled for abnormal termination, the recovery routine specified by the most recently issued
STAE macro gets control and runs under a program request block created by the SYNCH service routine.
Only one STAE routine receives control. The STAE routine must specify, by a return code in register 15,
whether a retry routine is to be scheduled. If no retry routine is to be scheduled (return code = 0) and
this is a subtask with STAI recovery routines, the STAI recovery routine is given control. If there is no STAI
recovery routine, abnormal termination continues.

If there is more than one STAI recovery routine existing for a task, the newest one receives control first.
If it requests that termination continue (return code = 0), the next STAI routine receives control. This
continues until either all STAI routines have received control and requested that the termination continue,
a STAI routine requests retry (return code = 4 or 12), or a STAI routine requests that the termination
continue but no further STAI routines receive control (return code = 16).

Programs running under a single TCB can issue more than one STAE macro with the CT parameter to
define more than one STAE routine. Each issuance temporarily deactivates the previous STAE routine. The
previous STAE routine becomes active when the current STAE routine is deactivated.

A STAE routine is deactivated (it cannot receive control again for this error) under any of the following
circumstances:

• When the RB that activated it goes away (unless it issued XCTL and specified the XCTL=YES parameter
on the STAE macro)

• When the STAE macro is issued with an address of 0
• When the STAE routine receives control.

If a STAE routine receives control and requests retry, the retry routine reissues the STAE macro if it wants
continued STAE protection.

166 z/OS: z/OS MVS Assembler Services Guide

A STAI routine is deactivated if the task completes or if the STAI routine requests that termination
continue and no further STAI processing be done. In the latter case, all STAI recovery routines for the task
are deactivated.

STAE and STAI routine environment:

Prior to entering a STAE or STAI recovery routine, the system attempts to obtain and initialize a work area
that contains information about the error. The first 4 bytes of the SDWA contains the address of the user
parameter area specified on the STAE macro or the STAI parameter on the ATTACH macro.

Upon entry to the STAE or STAI routine, the GPRs contain the following:

If an SDWA was obtained:
GPR

Contents
0

A code indicating the type of I/O processing performed:

0
Active I/O has been quiesced and is restorable.

4
Active I/O has been halted and is not restorable.

8
No active I/O at abend time.

16 (X'10')
Active I/O, if any, was allowed to continue.

1
Address of the SDWA.

2
Address of the parameter area you specified on the PARAM parameter.

3 - 12
Do not contain any information for use by the routine.

13
Save area address.

14
Return address.

15
Address of STAE recovery routine.

If no SDWA was available:
GPR

Contents
0

12 (X'0C') to indicate that no SDWA was obtained.
1

Completion code.
2

Address of user-supplied parameter list.
3 - 13

Do not contain any information for use by the routine.
14

Return address.

Chapter 8. Providing recovery 167

15
Address of STAE recovery routine.

When the STAE or STAI routine has completed, it should return to the system through the contents of GPR
14. GPR 15 should contain one of the following return codes:
Return Code

Action
0

Continue the termination. The next STAI, ESTAI, or ESTAE routine will be given control. No other STAE
routines will receive control.

4,8,12
A retry routine is to be scheduled.

Note: These values are not valid for STAI/ESTAI routines that receive control when a resource
manager fails during normal termination of a task. See “Restricted environments” on page 158 for
more information.

16
No further STAI/ESTAI processing is to occur. This code may be issued only by a STAI/ESTAI routine

For the following situations, STAE/STAI routines are not entered:

• If the abnormal termination is caused by an operator's CANCEL command, job step timer expiration, or
the detaching of an incomplete task without the STAE=YES option.

• If the failing task has been in a wait state for more than 30 minutes.
• If the STAE macro was issued by a subtask and the attaching task abnormally terminates.
• If the recovery routine was specified for a subtask, through the STAI parameter of the ATTACH macro,

and the attaching task abnormally terminates.
• If a problem other than those already described arises while the system is preparing to give control to

the STAE routine.
• If another task in the job step terminates without the step option.

STAE and STAI retry routines:

If the STAE retry routine is scheduled, the system automatically deactivates the active STAE routine; the
preceding STAE routine, if one exists, then becomes activated. Users wanting to maintain STAE protection
during retry must reactivate a STAE routine within the retry routine, or must issue multiple STAE requests
prior to the time that the retry routine gains control.

Like the STAE/STAI recovery routine, the STAE/STAI retry routine must be in storage when the recovery
routine determines that retry is to be attempted. If not already resident in your program, the retry routine
may be brought into storage through the LOAD macro by either the mainline routine or the recovery
routine.

If the STAE/STAI routine indicates that a retry routine has been provided (return code = 4, 8, or 12),
register 0 must contain the address of the retry routine. The STAE routine that requested retry is
deactivated and the request block queue is purged up to, but not including, the RB of the program that
issued the STAE macro. In addition, open DCBs that can be associated with the purged RBs are closed and
queued I/O requests associated with the DCBs being closed are purged.

The RB purge is an attempt to cancel the effects of partially run programs that are at a lower level in the
program hierarchy than the program under which the retry occurs. However, certain effects on the system
are not canceled by this RB purge. Generally, these effects are TCB-related and are not identifiable at the
RB level. Examples of these effects are as follows:

• Subtasks created by a program to be purged. Subtasks cannot be associated with an RB; the structure is
defined through TCBs.

• Resources allocated by the ENQ macro. ENQ resources are associated with the TCB and are not
identifiable at the RB level.

168 z/OS: z/OS MVS Assembler Services Guide

• DCBs that exist in dynamically acquired virtual storage. Only DCBs in the program, as defined by the RB
through the CDE itself, are closed.

If there are quiesced restorable input/output operations (as specified by PURGE=QUIESCE on the macro
invocation), the retry routine can restore them in the same manner as the retry routine from an ESTAE
routine. See “Outstanding I/Os at the time of failure” on page 148.

If an SDWA was obtained upon entry to the STAE/STAI retry routine, the contents of the GPRs are as
follows:
GPR

Contents
0

0
1

Address of the first 104 bytes of the SDWA.
2 - 14

Do not contain any information for use by the routine.
15

Address of the STAE/STAI retry routine.

When the storage is no longer needed, the retry routine should use the FREEMAIN macro with the default
subpool to free the first 104 bytes of the SDWA.

If the system was not able to obtain storage for the work area, GPR contents are as follows:
GPR

Contents
0

12 (X'0C')
1

Completion code.
2

Address of purged I/O restore list or 0 if I/O is not restorable.
3 - 14

Do not contain any information for use by the routine.
15

Address of the STAE/STAI retry routine.

The retry routine is entered with the same PSW key as the one in the RBOPSW of the retry RB if the
RBOPSW of the retry RB has a key greater than or equal to 8 and is in problem program state, and the
PKM of that RB does not have authority to keys less than 8.

Otherwise, the PSW key of the retry routine is that of the task in error.

Chapter 8. Providing recovery 169

170 z/OS: z/OS MVS Assembler Services Guide

Chapter 9. Dumping virtual storage (ABEND, SNAPX,
SNAP, and IEATDUMP macros)

A problem-state and PSW key 8-15 program can request three types of storage dumps:

• An ABEND dump obtained through the DUMP parameter in the ABEND macro, or the DUMP=YES
parameter on the SETRP macro in a recovery exit

• A SNAP dump obtained through the SNAPX macro.
• A Transaction dump obtained througfh the IEATDUMP macro.

Table 21 on page 171 summarizes reasons for selecting an ABEND, SNAP, or Transaction dump.

Table 21. Reasons for Selecting the Type of Dump

Type of Dump Reasons for Selecting the Type of Dump

ABEND dumps Use an ABEND dump when abnormally ending a program because of an unpredictable
error. The DD statement in the program's job step determines the type of ABEND dump
and the dump contents, as follows:

• SYSUDUMP ABEND dumps

These are the smallest of the ABEND dumps, containing data and areas only about the
failing program. You can either print or view the dump if it's in a SYSOUT data set or on
a tape or direct access data set (DASD).

• SYSABEND ABEND dumps

These are the largest of the ABEND dumps, containing all the areas in a SYSUDUMP
dump and system areas that are used to analyze the processing in the failing program.
You can either print or view the dump if it's in a SYSOUT data set or on a tape or DASD.

• SYSMDUMP ABEND dumps

These contain data and areas in the failing program, plus some system areas. The
SYSMDUMP dumps can be more useful for diagnosis than other ABEND dumps
because you can use IPCS to gather diagnostic information. Use IPCS to format, view,
and print dumps.

SNAP dumps Use a SNAP dump to show one or more user-specified areas in the problem-state
program while it is running. A series of SNAP dumps can show a storage area at different
stages to display a program's processing. For example, you can use SNAP dumps to
show fields holding calculations and the counter in a loop to check processing in the
loop.

Transaction dumps
(IEATDUMP)

Use Transaction dumps to request unformatted dumps of virtual storage, similar to what
SDUMPX offers for authorized programs. IPCS is used to analyze, view and print the
dump information. This enables more program analysis possibilities than a formatted
SNAP dump. Plus, by adding symptoms using the SYMREC parameter, duplicate dumps
can be suppressed by DAE.

z/OS MVS Diagnosis: Tools and Service Aids shows, in detail, the contents of dumps. z/OS MVS IPCS User's
Guide describes how to use IPCS. z/OS MVS Programming: Authorized Assembler Services Guide describes
macros that authorized programs can use to dump virtual storage.

© Copyright IBM Corp. 1988, 2022 171

ABEND dumps
An ABEND macro initiates error processing for a task. The DUMP option of ABEND requests a dump of
storage and the DUMPOPT or DUMPOPX option may be used to specify the areas to be displayed. These
dump options may be expanded by an ESTAE or ESTAI routine. The system usually requests a dump for
you when it issues an ABEND macro. However, the system can provide an ABEND dump only if you include
a DD statement (SYSABEND, SYSMDUMP, or SYSUDUMP) in the job step. The DD statement determines
the type of dump provided and the system dump options that are used. When the dump is taken, the
dump options that you requested (specified in the ABEND macro or by recovery routines) are added to the
installation-selected options.

When writing an ESTAE-type recovery routine, note that the system accumulates the SYSABEND/
SYSUDUMP/SYSMDUMP dump options specified by means of the SETRP macro and places them in the
SDWA. During percolation, these options are merged with any dump options specified on an ABEND or
CALLRTM macro or by other recovery routines. Also, the CHNGDUMP operator command can add to or
override the options. The system takes one dump as specified by the accumulated options. If the recovery
routine requests a retry, the system processes the dump before the retry. If the recovery routine does not
request a retry, the system percolates through all recovery routines before processing the dump.

Note: If your program calls a system service (by issuing a macro or callable service), that system service
might encounter a user-induced error and end abnormally. Generally, the system does not take dumps
for user-induced errors. If you require such a dump, then it is your responsibility to request one in your
recovery routine. See Chapter 8, “Providing recovery,” on page 125 for information about writing recovery
routines.

Obtaining a symptom dump
With all ABEND dumps, you will automatically receive a symptom dump through message IEA995I.
This symptom dump provides a summary of error information, which will help you to identify duplicate
problems.

You will receive this dump even without a DD statement unless your installation changes the default via
the CHNGDUMP operator command or the dump parmlib member for SYSUDUMP.

Suppressing dumps that duplicate previous dumps
If your installation is using dump analysis and elimination (DAE), code your program to provide symptom
data that DAE can compare with the symptom data from previous dumps. Through this comparison, DAE
can reduce the number of duplicate dumps. Another benefit is that the symptom data, which is stored in
the DAE data set, provides a consistent set of data for identifying a failure.

DAE suppresses dumps that match a dump you already have. Each time DAE suppresses a duplicate
dump, the system does not collect data for the duplicate or write the duplicate to a data set. In this way,
DAE can improve dump management by only dumping unique situations and by minimizing the number of
dumps.

To perform dump suppression, DAE builds a symptom string, if the data for it is available. If the symptom
string contains the minimum problem data, DAE uses the symptom string to recognize a duplicate
SVC dump, SYSMDUMP dump, or Transaction dump requested for a software error. When installation
parameters request suppression, DAE suppresses the duplicate dump. The following describes DAE
processing.

1. DAE obtains problem data. DAE receives the data in the system diagnostic work area (SDWA) or from
values in a SYMREC parameter on the SDUMP, SDUMPX or IEATDUMP macro that requested the dump.

• The system supplies system-level data, such as the abend and reason codes, the failing instruction,
and the register/PSW difference.

• The ESTAE routine or the functional recovery routine (FRR) of the failing program supplies module-
level information, such as the failing load module name and the failing CSECT name.

172 z/OS: z/OS MVS Assembler Services Guide

2. DAE forms a symptom string. DAE adds a descriptive keyword to each field of problem data to form a
symptom. DAE forms MVS symptoms, rather than RETAIN symptoms. DAE combines the symptoms for
a requested dump into a symptom string.

The following tables show the required and optional symptoms. SDWA field names are given for the
symptoms the failing program must provide to enable dump suppression. The tables have both MVS
and RETAIN symptoms so that you can relate the MVS symptoms DAE uses to the RETAIN symptoms
you might use to search the RETAIN data base. An MVS symptom string must contain at least five
symptoms that are not null. DAE places symptoms into strings in the order shown in the tables.

Required symptoms are first and must be present.

Symptom SDWA Field MVS Keyword RETAIN
Keyword

Name of the failing load module SDWAMODN MOD/name RIDS/name#L

Name of the failing CSECT SDWACSCT CSECT/name RIDS/name

Optional symptoms must follow the required symptoms. DAE needs at least three of these optional
symptoms to make a useful symptom string.

Symptom SDWA Field MVS Keyword RETAIN
Keyword

Product/component identifier with the component
identifier base

SDWACID,
SDWACIDB

PIDS/name PIDS/name

System completion (abend) code AB/S0hhh AB/S0hhh

User completion (abend) code AB/Udddd AB/Udddd

Recovery routine name SDWAREXN REXN/name RIDS/name#R

Failing instruction area FI/area VALU/Harea

PSW/register difference REGS/hhhhh REGS/hhhhh

Reason code, accompanying the abend code or from
the REASON parameter of the macro that requests the
dump

HRC1/nnnn PRCS/nnnn

Subcomponent or module subfunction SDWASC SUB1/name VALU/Cname

3. DAE tries to match the symptom string from the dump to a symptom string for a previous dump
of the same type, that is, SVC dumps, with SVC dumps and SYSMDUMP, or Transaction dumps with a
previous SYSMDUMP or Transaction dump. When DAE finds a match, DAE considers the dump to be a
duplicate.

When DAE is started, usually during IPL, DAE selects from the symptom strings (stored in the DAE data
set) that were active in the last 60 days: either the string was created for a unique dump within the
last 60 days, or its dump count was updated within the last 60 days. The selected symptom strings are
placed in virtual storage.

The systems in a sysplex can share the DAE data set to suppress duplicate dumps across the sysplex.
While each system in a sysplex can use its own DAE data set, IBM recommends that systems in a
sysplex share a DAE data set so that:

• DAE can write a dump on one system and suppress duplicates on other systems in the sysplex.
• Only one DAE data set is required, rather than a data set for each system.

4. DAE updates the symptom strings in storage and, later, in the DAE data set, if updating is
requested.

Chapter 9. Dumping virtual storage (ABEND, SNAPX, SNAP, and IEATDUMP macros) 173

• For a unique symptom string, DAE adds a new record. The record contains the symptom string, the
dates of the first and last occurrences, the incidence count for the number of occurrences, and the
name of the system that provided the string.

• For a duplicate symptom string, DAE updates the incidence count for the string, the last-occurrence
date, and the name of the last system that found the string.

In a sysplex, changes to the in-storage strings are propagated to the in-storage strings throughout the
sysplex.

5. DAE suppresses a duplicate dump, if DAE is enabled for dump suppression.

Note that, if you specify an ACTION of SVCD, TRDUMP, NOSUP, or RECOVERY on a SLIP command, the
command overrides DAE suppression and the system writes the dump. Also, dumps requested by the
DUMP operator command are not eligible for suppression.

When DAE does not suppress a dump, the symptom string is in the dump header; you can view it with
the IPCS VERBEXIT DAEDATA subcommand. DAE also issues informational messages to indicate why
the dump was not suppressed.

DAE suppresses a dump when all of the following are true:

• DAE located in the dump the minimum set of symptoms.
• The symptom string for the dump matches a symptom string for a previous dump of the same type.
• Either of the following is true:

– The current ADYSETxx parmlib member specifies SUPPRESS for the type of dump being requested
and the VRADAE key is present in the SDWA. To set the VRADAE key, a recovery routine issues the
following macro:

VRADATA KEY=VRADAE

– A VRADATA VRAINIT must be done prior to any VRADATA KEY= request in order for the VRA data
to be properly processed by both DAE and the SDWA formatter.

– The current ADYSETxx parmlib member specifies SUPPRESSALL for the type of dump being
requested and the VRANODAE key is absent from the SDWA. The VRANODAE key specifies that
the dump is not to be suppressed.

The following table shows the effect of the VRADAE and VRANODAE keys on dump suppression
when SUPPRESS and SUPPRESSALL keywords are specified in the ADYSETxx parmlib member. For
SUPPRESS, the VRANODAE key can be present or absent; the system does not check it. The table
assumes that the symptom string from the dump has matched a previous symptom string.

ADYSETxx Option VRADAE Key in SDWA VRANODAE Key in
SDWA

Dump Suppressed?

SUPPRESS Yes N/A Yes

SUPPRESS No N/A No

SUPPRESSALL Yes No Yes

SUPPRESSALL No Yes No

SUPPRESSALL No No Yes

SUPPRESSALL Yes Yes No

The only way to ensure that a dump is not suppressed, regardless of the contents of the ADYSETxx
parmlib member, is to specify the VRANODAE key in the SDWA, or DAE=NO on SYMRBLD used to build
a symptom record passed to the SDUMPX or IEATDUMP macro with the SYMREC keyword.

References:

• See z/OS MVS Diagnosis: Reference for symptoms and symptom strings.

174 z/OS: z/OS MVS Assembler Services Guide

• See z/OS MVS Initialization and Tuning Reference for the ADYSETxx and IEACMD00 parmlib members.
• See z/OS MVS IPCS Commands for the VERBEXIT DAEDATA subcommand.

Symptoms provided by a recovery routine
DAE attempts to construct a unique symptom string using specific data that your recovery routine can
provide in the SDWA or through a symptom record. For an SVC dump, or a Transaction dump, the
symptom record is passed in the SDUMPX or IEATDUMP macro. For a SYSMDUMP, place the symptom
record in the ABDUMP symptom area.

To provide symptoms for an SVC dump, do one or more of the following in a recovery routine:

• Place data in the SDWA, which is mapped by the IHASDWA mapping macro.
• In an authorized program, provide a symptom record through a SYMREC parameter on the SDUMPX or

SDUMP macro. The symptom record is built using SYMRBLD and mapped by the ADSR mapping macro.
• In an authorized or unauthorized program, provide a symptom record through a SYMREC parameter on

the IEATDUMP macro. The symptom record is built using SYMRBLD and mapped by the ADSR mapping
macro.

• Use a VRADATA macro to place information in the SDWA variable recording area (VRA), which is mapped
by the IHAVRA mapping macro. The VRA is used:

– To supply additional symptoms for the symptom string.
– To provide secondary symptoms that give problem data not given in the SDWA; for example, the

identity of the caller of a service.

Use VRADATA when the standard symptom data is insufficient to determine if a dump for the program is
a duplicate.

For information about coding the VRADATA macro to add data to the SDWA, see z/OS MVS Programming:
Assembler Services Reference IAR-XCT. For more information about symptom records, see Chapter 10,
“Reporting symptom records (SYMRBLD and SYMREC macros),” on page 179. For more information about
recovery routines, see “Writing recovery routines” on page 133.

VRADATA macro: Use the VRAREQ key to tell DAE that the symptom is required and the VRAOPT key to
tell DAE that the symptom is optional.

A VRADATA macro with VRAREQ adds a symptom following the two required symptoms (see the previous
table). For example, to add a symptom, in this case the name of a data set, and to define the symptom as
required:

VRADATA KEY=VRAREQ,DATA=TAG1,LEN=L'TAG1
VRADATA KEY=VRADSN,DATA=MYDSN,LEN=L'MYDSN
⋮
TAG1 DC AL2(VRADSN)
MYDSN DC C'DEPT27.PAYROLL'

A VRADATA macro with VRAOPT adds an optional symptom following the optional symptoms (see the
previous table). For example, to add an optional symptom with the data at the address in register 5, and to
define the symptom as optional:

LA R5,VRAOPTKEY
VRADATA KEY=VRAOPT,LEN=2,DATA=(5)
VRADAYA KEY=VRACA,DATA=PGMCALLR
⋮
VRAOPTKEY DC AL2(VRACA)
PGMCALLR DS A

If the symptom is to be the caller's address, the data pointed to would consist of X'003C', which
represents the key VRACA.

See z/OS MVS Diagnosis: Reference for the VRADATA keys.

Required symptom data: The recovery routine must provide the following minimum data to enable dump
suppression by DAE:

Chapter 9. Dumping virtual storage (ABEND, SNAPX, SNAP, and IEATDUMP macros) 175

SDWA Field Data Example

SDWAMODN Failing module name IEAVTCXX

SDWACSCT Failing CSECT name IEAVTC22

SDWACID Product or component identifier SCDMP

SDWACIDB Component identifier base 5655

SDWAREXN Recovery routine name IEAVTC2R

SDWASC Subcomponent or module subfunction RSM-PGFIX

To obtain the failing module name, the failing CSECT name, and the recovery module name, the recovery
routine can set up a RECPARM parameter list and specify it on a SETRP macro. For information, see
the RECPARM parameter of the SETRP macro in z/OS MVS Programming: Authorized Assembler Services
Reference SET-WTO.

Correct module and CSECT names: Obtaining the correct module and CSECT names may be difficult,
especially when the PSW does not point within the program areas. Problems can also occur when the
program uses the following:

• User exits: When the program calls a user exit, which in turn invokes system services, such as getting a
lock, the recovery routine often cannot identify the exit as the failing module and CSECT. To avoid this
problem, the program should save the name of the user exit, so that the recovery routine can use the
saved name.

• Common recovery routines: The program should maintain footprints or require that all modules using
a common recovery routine update a common parameter list with the name of the current module,
CSECT, subfunction, and so on. The recovery routine can obtain data from the common parameter list
when filling in the SDWA.

Symptoms: When you provide symptom information, select each symptom carefully. If a symptom is too
precise, no other failure will have that symptom; if the symptom is too general, many failures will have
the same symptom. For example, do not use addresses as symptoms; instead, use names of modules and
components.

DAE accumulates up to 20 specified required and optional symptoms and up to 20 additional symptoms,
if specified. The maximum string length is 150, so that not all of the additional symptoms may appear
in the string. A recovery routine can change the minimum number of symptoms and the minimum string
lengths that DAE is to use for symptom matching for a particular dump. To make these changes, code the
following VRADATA macro keys in the recovery routine:

• The VRAMINSC key controls the minimum number of symptoms.
• The VRAMINSL key controls the minimum string length.

Control of suppression: When the ADYSETxx parmlib member being used by the installation contains
SUPPRESS, a recovery routine must indicate that enough data is available to suppress a duplicate dump.
To indicate to DAE that the SDWA contains enough data, set the VRADAE indicator in the SDWA variable
recording area by issuing the following:

VRADATA KEY=VRADAE

If the recovery routine cannot provide enough data in the SDWA suppression, the recovery routine
should indicate that its dump is not eligible for suppression, even when the ADYSETxx member contains
SUPPRESSALL. The routine should set the VRANODAE indicator by issuing the following:

VRADATA KEY=VRANODAE

The VRANODAE key is useful for error environments that generate identical symptoms but represent
different problems.

176 z/OS: z/OS MVS Assembler Services Guide

When a dump is not suppressed
When DAE is active but does not suppress a dump, DAE adds the reason that the dump is not suppressed
to the dump header record. When viewing a dump online or printing a dump, specify the IPCS VERBEXIT
DAEDATA subcommand to see the reason that a dump was not suppressed.

Some reasons for not suppressing a dump are:

• The dump is unique. DAE found no match for the symptom string.
• The current ADYSETxx member does not specify SUPPRESS or SUPPRESSALL for the type of dump

being requested.
• A SLIP operator command specifies that the dump is not to be suppressed. A SLIP command

with ACTION=SVCD, ACTION=SYNCSVCD, ACTION=STDUMP, ACTION=RECOVERY, or ACTION=TRDUMP
always produces a dump. ACTION=NOSUP stops suppression.

• DAE could not find all required symptoms.
• DAE could not find the minimum number of symptoms.
• The symptom string built by DAE was shorter than the minimum length.
• DAE found certain errors. For example, a required symptom had a key that was not valid.
• The VRADAE key in the SDWA is absent, signifying that the dump should not be suppressed, and the

DAE parameter of the ADYSETxx parmlib member does not specify SUPPRESSALL.
• The VRANODAE key is present in the SDWA, specifying that the dump should not be suppressed.

SNAP dumps
A program can request a SNAP dump at any time during its processing by issuing a SNAPX or SNAP macro.
For a SNAP dump, the DD statement can have any name except SYSABEND, SYSMDUMP, and SYSUDUMP.

If your program is in AR ASC mode, use the SNAPX macro instead of SNAP. Ensure that the SYSSTATE
ASCENV=AR macro has been issued to tell the macro to generate code and addresses appropriate for
callers in AR mode.

Like the ABEND dump, the data set containing the dump can reside on any device that is supported by
BSAM. The dump is placed in the data set described by the DD statement you provide. If you select a
printer, the dump is printed immediately. However, if you select a direct access or tape device, you must
schedule a separate job to obtain a listing of the dump, and to release the space on the device.

To obtain a dump using the SNAP macro, you must provide a data control block (DCB) and issue an OPEN
macro for the data set before issuing any SNAP macros. If the standard dump format is requested,
120 characters per line are printed. The DCB must contain the following parameters: DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=882 or 1632, and LRECL=125. (The DCB is described in z/OS DFSMS
Using Data Sets, and z/OS DFSMS Macro Instructions for Data Sets). If a high-density dump is to be printed
on a 3800 Printing Subsystem, 204 characters per line are printed. To obtain a high-density dump, code
CHARS=DUMP on the DD statement describing the dump data set. The BLKSIZE= must be either 1470 or
2724, and the LRECL= must be 209. CHARS=DUMP can also be coded on the DD statement describing a
dump data set that will not be printed immediately. If CHARS=DUMP is specified and the output device
is not a 3800, print lines are truncated and print data is lost. If your program is to be processed by the
loader, you should also issue a CLOSE macro for the SNAP DCB.

Finding information in a SNAP dump
You will obtain a dump index with each SNAP dump. The index will help you find information in the dump
more quickly. Included in the information in the dump index is an alphabetical list of the active load
modules in the dump along with the page number in the dump where each starts.

Obtaining a summary dump for an ABEND or SNAP dump
You can request a summary dump for an abending task by coding the SUM option of the SNAP macro.
You can also obtain a summary dump by coding the DUMPOPT option on the ABEND or SETRP macro and

Chapter 9. Dumping virtual storage (ABEND, SNAPX, SNAP, and IEATDUMP macros) 177

specifying a list form of SNAP that contains the SUM option. Use the DUMPOPX parameter on ABEND or
SETRP to obtain an ABEND dump that contains data space storage. When you use DUMPOPX, specify a
list form of SNAPX that contains the SUM option.

If SUM is the only option that you specify, the dump will contain a dump header, control blocks, and
certain other areas. The contents of the summary dump are described in z/OS Problem Management.

Transaction dumps
Transaction dump is a service used to request an unformatted dump of virtual storage to a data set,
similar to a SYSMDUMP. It is invoked with the IEATDUMP assembler macro which issues SVC 51. You
can either request that the dump be written to a preallocated data set or to automatically allocated data
sets. To request a preallocated data set, specify the DDNAME parameter that identifies a data set that
contains sufficient space in one or more extents for the entire dump to be written. If you don't provide a
large enough data set, you will receive a partial dump. To request automatic allocation, specify the DSN
and DSNAD parameters, which ensure a dump will not be truncated due to data set space constraints.
Automatic allocation is done to SYSALLDA. When using DSN or DSNAD, the maximum size is 2 GB, unless
the dump is split among several data sets, in which case there is no restriction. DDNAME also does not
have the 2 GB size restriction.

When a Transaction dump is written, a dump directory record describing the dump may be written.
Specify the dump directory to be used with the IDX keyword on the dump request. If you do not specify
a dump directory, the directory allocated to IPCSDDIR in the current job step will be used. If no dump
directory is specified and IPCSDDIR is not allocated, no record describing the dump will be written.

Dump suppression occurs using symptoms available in the current SDWA or a symptom string may be
provided (via the SYMREC keyword). If you provide a symptom string, and an SDWA exists, the symptom
string is used for suppression purposes. Statistics for dump suppression are contained in the DAE data set
and are not differentiated from SYSMDUMPs.

Authorized users may specify the REMOTE keyword on the IEATDUMP macro to request other address
spaces on the current or other MVS images (in the same sysplex) be dumped. When you request remote
dumps, automatic allocation must also be used.

Transaction dump uses an incident token to associate this dump with other diagnostic information.
Automatic allocation also uses this incident token for symbol substitution in the data set name pattern.
You can generate an incident token using the IEAINTKN macro and providing the INTOKEN keyword on
the dump request. If you do not provide an incident token, one will be generated and used internally.
While an incident token may always be specified, it may be especially important when remote dumps are
requested.

178 z/OS: z/OS MVS Assembler Services Guide

Chapter 10. Reporting symptom records (SYMRBLD
and SYMREC macros)

An installation's programmers can write authorized or unauthorized applications that detect and collect
information about errors in their processing. Through the SYMRBLD or SYMREC macro, the applications
can write a symptom record for each error to the logrec data set, the online repository where MVS collects
error information. Programmers can analyze the records in the logrec data set to diagnose and debug
problems in the installation's applications.

The unit of information stored in the logrec data set is called a symptom record. The data in the symptom
record is a description of some programming failure combined with a description of the environment
where the failure occurred. Some of the information in the symptom record is in a special format called
the structured data base (SDB) format.

An installation's programmers can do the following:

• Build the symptom records using the SYMRBLD macro.
• Record the symptom records on the logrec data set using SYMRBLD or SYMREC.
• Format the symptom records into various reports using EREP and IPCS.

Writing symptom records to Logrec data set
Your application can build and write symptom records to the logrec data set one of two ways:

• Through invoking the SYMRBLD macro services
• By filling in fields of the ADSR mapping macro, then invoking SYMREC.

Using the SYMRBLD macro: SYMRBLD services use both the ADSR mapping macro and SYMREC, thus
decreasing the amount of code your application requires to write symptom records. IBM recommends
that you use SYMRBLD rather than coding your application to use ADSR and SYMREC directly.

By invoking the SYMRBLD macro multiple times, you can generate code to build the symptom record.
After storing all symptoms into the symptom record by using the SYMRBLD macro, invoke the SYMRBLD
macro with the INVOKE=YES parameter one last time to write the data from the symptom record to the
logrec data set.

For more information about SYMRBLD and SYMREC, see z/OS MVS Programming: Assembler Services
Reference IAR-XCT.

Using EREP or IPCS: The Environmental Record Editing and Printing (EREP) program processes and
presents software error records in the following reports:

• Detail edit report for an abend
• Detail edit report for a symptom record
• System summary report
• Event history report
• Detail summary report

EREP User's Guide describes how to use EREP.

IPCS formats the software error records. You can use the IPCS VERBEXIT LOGDATA subcommand
to format and print or view the logrec data set records in a dump. For more information about the
subcommand, see z/OS MVS IPCS Commands.

© Copyright IBM Corp. 1988, 2022 179

The format of the symptom record
The symptom record consists of six sections that are structured according to the format of the ADSR
DSECT. These sections are numbered 1 through 5, including an additional section that is numbered
2.1. Because sections 2.1, 3, 4, and 5 of the symptom record are non-fixed, they do not need
to be sequentially ordered within the record. In section 2, the application supplies the offset and
the length of the non-fixed sections. The ADSR format is described in z/OS MVS Data Areas in the
z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary). The
purpose of each section is as follows:

Section 1 (Environmental Data): Section 1 contains the record header with basic environmental data.
The environmental data provides a system context within which the software errors can be viewed. The
SYMREC caller initializes this area to zero and stores the characters "SR" into the record header. The
environmental data of section 1 is filled in automatically when you invoke the SYMREC macro. Section 1
includes items such as:

• CPU model and serial number
• Date and time, with a time zone conversion factor
• Customer assigned system name
• Product ID of the control program

Section 2 (Control Data): Section 2 contains control information with the lengths and offsets of the
sections that follow. The application must initialize the control information before invoking SYMREC for
the first time. You can initialize the control information by using SYMRBLD with the INITIAL parameter.
Section 2 immediately follows section 1 in the symptom record structure.

Section 2.1 (Component Data): Section 2.1 contains the name of the component in which the error
occurred, as well as other specific component-related data. The application must also initialize section
2.1 before invoking SYMREC. You can initialize the control information by using SYMRBLD with the
INITIAL parameter.

Section 3 (Primary SDB Symptoms): Section 3 contains the primary string of problem symptoms, which
may be used to perform tasks such as duplicate problem recognition. When an application detects an
error, it must store a string of symptoms in section 3, and this string becomes the primary symptom
for the error. This string should be a unique and complete description of the error. All incidences of
that error should produce the same string in section 3. When problems are analyzed, problems that
have identical strings in section 3 represent the same error. Note that an application does not store any
primary symptom string or invoke SYMREC unless it detects an error in its own processing. You can invoke
SYMRBLD with the PRIMARY parameter to store symptoms into section 3.

Section 4 (Secondary SDB Symptoms): Section 4 contains an optional secondary symptom string. The
purpose of the secondary string is to provide additional symptoms that might supplement the symptoms
in section 3.

Section 5 (Free-Format Data): Section 5 contains logical segments of optional problem-related data to
aid in problem diagnosis. However, the data in section 5 is not in the SDB format, which is found in only
sections 3 and 4. Each logical segment in section 5 is structured in a key-length-data format.

Symptom strings — SDB format
The symptom strings placed in sections 3 and 4 of the symptom record must be in the SDB (structured
data base) format. In this format, the individual symptoms in sections 3 and 4 consist of a prefix and its
associated data. Examples of typical prefixes are:
Prefix

Data
PIDS/

A component name
RIDS/

A routine name

180 z/OS: z/OS MVS Assembler Services Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

AB/
An abend code

PRCS/
A return code

For more information about the prefixes and all valid SDB key names, see z/OS MVS Programming:
Assembler Services Reference IAR-XCT. For a full explanation of symptom strings and how to format and
print the four basic symptom record reports, see z/OS Problem Management and z/OS MVS Diagnosis:
Tools and Service Aids.

Building a symptom record using the SYMRBLD macro
Input to the SYMRBLD macro is a storage area for the symptom record, and the diagnostic data for
sections 2.1, 3, 4, and 5 of the symptom record. The SYMRBLD macro must be invoked several times to
build a complete symptom record. The following describes the sequence:

1. Invoke SYMRBLD with the INITIAL parameter to initialize sections 1 and 2, and provide application
data for section 2.1.

2. Invoke SYMRBLD with the PRIMARY parameter to store symptoms into section 3. You may invoke this
parameter more than once for one error.

3. Optionally invoke SYMRBLD with the SECONDARY parameter to store symptoms into section 4.
4. Optionally invoke SYMRBLD with the VARIABLE parameter to store data into section 5.
5. Invoke SYMRBLD with the COMPLETE parameter to set the lengths of sections 3, 4, and 5 in section

2.1 and optionally code SYMRBLD to invoke the SYMREC macro for recording to the logrec data set.
If you do not code SYMRBLD to invoke the SYMREC macro, your records will not be recorded to the
logrec data set.

6. Invoke SYMRBLD with the RESET parameter to rebuild the symptom record using the same storage
and application information that was specified using the INITIAL parameter. The RESET parameter is
useful when the primary, secondary, and variable sections of the symptom record are to be changed
but the application information in section 2.1 remains the same.

Building a symptom record using the ADSR and SYMREC macros
This information contains programming notes on how the various fields of the ADSR data area (symptom
record) are set. Some fields of the ADSR data area (symptom record) must be set by the caller of the
SYMREC macro, and other fields are set by the system when the application invokes the SYMREC service.
The fields that the SYMREC caller must always set are indicated by an RC code in the following sections.
The fields that are set by SYMREC are indicated by an RS code.

The RA code designates certain flag fields that need to be set only when certain kinds of alterations
and substitutions are made in the symptom record after the incident occurs. These alterations and
substitutions must be obvious to the user who interprets the data. Setting these flag fields is the
responsibility of the program that alters or substitutes the data. If a program changes a symptom record
that is already written on the repository, it should set the appropriate RA-designated flag-bit fields as an
indication of how the record has been altered.

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the caller of the SYMREC
macro. When SYMREC is invoked, it checks that all the required input fields in the symptom record are set
by the caller. If the required input fields are not set, SYMREC issues appropriate return and reason codes.

Programming notes for section 1
Notes in this section pertain to the following fields, which are in section 1 of the ADSR data area.

ADSRID Record header (RC)
ADSRGMT Local Time Conversion Factor
ADSRTIME Time stamp (RS)
ADSRTOD Time stamp (HHMMSSTH)
ADSRDATE Date (YYMMDD)

Chapter 10. Reporting symptom records (SYMRBLD and SYMREC macros) 181

ADSRSID Customer Assigned System/Node Name (RS)
ADSRSYS Product ID of Base System (BCP) (RS)
ADSRCML Feature and level of Symrec Service (RS)
ADSRTRNC Truncated flag (RS)
ADSRPMOD Section 3 modified flag (RA)
ADSRSGEN Surrogate record flag (RA)
ADSRSMOD Section 4 modified flag
ADSRNOTD ADSRTOD & ADSRDATE not computed flag (RS)
ADSRASYN Asynchronous event flag (RA)
ADSRDTP Name of dump

Note:

1. SYMREC stores the TOD clock value into ADSRTIME when the incident occurs. However, it does not
compute ADSRTOD and ADSRDATE when the incident occurs, but afterwards, when it formats the
output. When the incident occurs, SYMREC also sets ADSRNOTD to 1 as an indication that ADSRTOD
and ADSRDATE have not been computed.

2. SYMREC stores the customer-assigned system node name into ADSRSID.
3. SYMREC stores the first four digits of the base control program component id into ADSRSYS. The digits

are 5752, 5759 and 5745 respectively for MVS, VM and DOS/VSE.
4. The ADSRDTP field is not currently used by the system.
5. If some application creates the record asynchronously, that application should set ADSRASYN to 1.

1 means that the data is derived from sources outside the normal execution environment, such as
human analysis or some type of machine post-processing.

6. If SYMREC truncates the symptom record, it sets ADSRTRNC to 1. This can happen when the size of
the symptom record provided by the invoking application exceeds SYMREC's limit.

7. ADSRSGEN indicates that the symptom record was not provided as ‘first time data capture’ by the
invoking application. Another program created the symptom record. For instance, the system might
have abended the program, and created a symptom record for it because the failing program never
regained control. Setting the field to 1 means that another program surrogate created the record.
The identification of the surrogate might be included with other optional information, for example, in
section 5.

8. The application invoking SYMREC must provide the space for the entire symptom record, and initialize
that space to hex zeroes. The application must also store the value SR into ADSRID.

9. The fields ADSRCPM through ADSRFL2, which appear in the record that is written to the logrec data
set, are also written back into the input symptom record as part of the execution of SYMREC.

Programming notes for section 2
Notes in this section pertain to the following fields, which are in section 2 of the ADSR data area.

ADSRARID Architectural level designation (RS)
ADSRL Length of section 2 (RC)
ADSRCSL Length of section 2.1 (RC)
ADSRCSO Offset of section 2.1 (RC)
ADSRDBL Length of section 3 (RC)
ADSRDBO Offset of section 3 (RC)
ADSRROSL Length of section 4
ADSRROSA Offset of section 4
ADSRRONL Length of section 5
ADSRRONA Offset of section 5
ADSRRISL Length of section 6
ADSRRISA Offset of section 6
ADSRSRES Reserved for system use

Note:

1. The invoking application must ensure that the actual lengths of supplied data agree with the lengths
indicated in the ADSR data area. The application should not assume that the SYMREC service validates
these lengths and offsets.

182 z/OS: z/OS MVS Assembler Services Guide

2. The lengths and offsets in section 2 are intended to make the indicated portions of the record
indirectly addressable. Invoking applications should not program to a computed absolute offset, which
may be observed from the byte assignments in the data area.

3. The value of the ADSRARID field is the architectural level at which the SYMREC service is operating.
The architecture level is always 10.

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC, RS, or RA) will contain
zeroes when the invoking application provides no values for them.

Programming notes for section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the ADSR data area.

ADSRC C'SR21' Section 2.1 Identifier (RC)
ADSRCRL Architectural Level of Record (RC)
ADSRCID Component identifier
ADSRFLC Component Status Flags
ADSRFLC1 Non-IBM program flag (RC)
ADSRLVL Component Release Level (RC)
ADSRPTF Service Level
ADSRPID PID number (RC)
ADSRPIDL PID release level (RC)
ADSRCDSC Text description
ADSRRET Return Code (RS)
ADSRREA Reason Code (RS)
ADSRPRID Problem Identifier
ADSRID Subsystem identifier

Note:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional fields (not marked
with RC, RS, or RA) will appear as zero if no values are provided.

2. ADSRCID is the component ID of the application that incurred the error.

Under some circumstances, there can be more than one component ID involved. For ADSRCID,
select the component ID that is most indicative of the source of the error. The default is the
component ID of the detecting program. In no case should the component ID represent a program
that only administratively handles the symptom record. Additional and clarifying data (such as, other
component ID involved) is optional, and may be placed in optional entries such as ADSRCDSC of
section 2.1, section 4, or section 5.

For example: if component A receives a program check; control is taken by component B, which is the
program check handler. Component C provides a service to various programs by issuing SYMREC for
them. In this case, the component ID of A should be given. Component B is an error handler that is
unrelated to the source of the error. Component C is only an administrator. Note that, in this example,
it was possible for B to know A was the program in control and the source of the program check. This
precise definition is not always possible. B is the detector, and the true source of the symptom record.
If the identity of A was unknown, then B would supply, as a default, its own component ID.

ADSRCID is not a required field in this section, although it is required in section 3 after the PIDS/
prefix of the symptom string. Repeating this value in section 2.1 is desirable but not required. Where
the component ID is not given in section 2.1, this field must contain zeroes.

ADSRPID is the program identification number assigned to the program that incurred the error.
ADSRPID must be provided only by IBM programs that do not have an assigned component ID.
Therefore, ADSRCID contains hex zeroes if ADSRPID is provided.

3. ADSRLVL is the release level of the component indicated in ADSRCID.
4. ADSRPIDL is the release level of the program designated by ADSRPID, and it should be formatted

using the characters, V, R, and M as separators, where V, R, and M represent the version, release,
and modification level respectively. For example, V1R21bbbbb is Version 1 Release 2.1 without any
modification. No punctuation can appear in this field, and ADSRPIDL must be provided only when
ADSRPID is provided.

Chapter 10. Reporting symptom records (SYMRBLD and SYMREC macros) 183

5. ADSRPTF is the service level. It may differ from ADSRLVL because the program may be at a higher
level than the release. ADSRPTF can contain any number indicative of the service level. For example,
a PTF, FMID, APAR number, or user modification number. This field is not required, but it should be
provided if possible.

6. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the discretion of the
reporting component. It provides clarifying information.

7. ADSRREA is the reason code, and ADSRRET is the return code from the execution of SYMREC.
SYMREC places these values in registers 0 and 15 and in these two fields as part of its execution. The
fields are right justified, and identical to the contents of registers 0 and 15.

8. ADSRCRL is the architectural level of the record, which is always 10. Note that ADSRARID (section 2)
is the architectural level of the SYMREC service.

9. ADSRPRID is a value that can be used to associate the symptom record with other symptom records.
This value must be in EBCDIC, but it is not otherwise restricted.

10. ADSRNIBM is a flag indicating that a non-IBM program originated the symptom record.
11. ADSRSSID is the name of a subsystem. The primary purpose of this field is to allow subsystems to

intercept the symptom record from programs that run on the subsystem. They may then add their
own identification in this field as well as additional data in sections 4 and 5. The subsystem can then
pass the symptom record to the system via SYMREC. A zero value is interpreted as no name.

Programming notes for section 3
Section 3 of the symptom record contains the primary symptoms associated with the error, and is
provided by the application that incurred the error, or some program that acts on its behalf. The internal
format of the data in section 3 is the SDB format, with a blank separating each entry. Once this data has
been passed to SYMREC by the invoker, it may not be added to or modified without setting ADSRPMOD to
'1'. The data in this section is EBCDIC, and no hex zeros may appear. The symptoms are in the form K/D
where K is a keyword of 1 to 8 characters and D is at least 1 character. D can only be an alphanumeric or
@, $, and #.

Note:

1. The symptom K/D can have no imbedded blanks, but the '#' can be used to substitute for desired
blanks. Each symptom (K/D) must be separated by at least one blank. The first symptom may start at
ADSRRSCS with no blank, but the final symptom must have at least one trailing blank. The total length
of each symptom (K/D combination) can not exceed 15 characters.

2. This section is provided by the component that reports the failure to the system. Once a SYMREC
macro is issued, the reported information will not be added to or modified, even if the information
is wrong. It is the basis for automated searches, and even poorly chosen information will compare
correctly in such processing because the component consistently produces the same symptoms
regardless of what information was chosen.

3. The PIDS/ entry is required, with the component ID following the slash. It is required from all
programs that originate a symptom record and have component a ID assigned. Further, it must be
identical to the value in ADSRCID (section 2.1) if that is provided. (ADSRCID is not a required field.)

Programming notes for section 4
Section 4 of the symptom record contains the secondary symptoms associated with the error incident,
and it is provided by the application that incurred the error, or some program that acts in its behalf. The
internal format of the data in section 4 is the SDB format, with a single blank separating each entry. Once
this data has been passed to SYMREC by the invoker, it may not be added to or modified without setting
ADSRSMOD to 1.

Programming notes for section 5
Section 5 of the symptom record contains logical segments of data that are provided by the component or
some program that acts in its behalf. The component stores data in section 5 before SYMREC is invoked.

184 z/OS: z/OS MVS Assembler Services Guide

Note:

1. The first segment must be stored at symbolic location ADSR5ST. In each segment, the first two
characters are a hex key value, and the second two characters are the length of the data string, which
must immediately follow the two-byte length field. Adjacent segments must be packed together. The
length of section 5 is in the ADSRRONL field in section 2, and this field should be correctly updated as
a result of all additions or deletions to section 5.

2. There are 64K key values grouped in thirteen ranges representing thirteen potential SYMREC user
categories. The data type (that is, hexadecimal, EBCDIC, etc.) of section 5 is indicated by the category
of the key value. Thus, the key value indicates both the user category and the data type that are
associated with the information in section 5. Because the component ID is a higher order qualifier
of the key, it is only necessary to control the assignment of keys within each component ID or, if a
component ID is not assigned, within each PID number.

Key Value
User Category and Data Type

0001-00FF
Reserved

0100-0FFF
MVS system programs

1000-18FF
VM system programs

1900-1FFF
DOS/VSE system programs

2000-BFFF
Reserved

C000-CFFF
Product programs and non-printable hex data

D000-DFFF
Product programs and printable EBCDIC data

E000-EFFF
Reserved

F000
Any program and printable EBCDIC data

F001-F0FFN
Not assignable

F100-FEFF
Reserved

FF00
Any program and non-printable hex data

FF01-FFFF
Not assignable

Chapter 10. Reporting symptom records (SYMRBLD and SYMREC macros) 185

186 z/OS: z/OS MVS Assembler Services Guide

Chapter 11. Virtual storage management

You use the virtual storage area assigned to your job step by making implicit and explicit requests for
virtual storage. (In addition to the virtual storage requests that you make, the system also can request
virtual storage to contain the control blocks required to manage your tasks.)

Some macros represent implicit requests for storage. For example, when you invoke LINK to pass control
to another load module, the system allocates storage before bringing the load module into your job pack
area.

The GETMAIN or STORAGE macro is an explicit request for virtual storage below the 2 gigabyte address.
When you make an explicit storage request, the system allocates to your task the number of virtual
storage bytes that you request. The macros also allow you to specify where the central storage that backs
the virtual storage resides; below 16 megabytes, below 2 gigabytes, or anywhere.

The CPOOL macro and callable cell pool services are also explicit requests for storage below the 2
gigabyte address. The macro and the services provide an area called a cell pool from which you can
obtain cells of storage. “Using the CPOOL macro” on page 191 and Chapter 13, “Callable cell pool
services,” on page 215 describe how you can create and manage cell pools.

The IARV64 macro is an explicit request for virtual storage above the 2-gigabyte address. You make the
request for a chunk of storage called a “memory object”. The system creates the memory object you
request and assigns ownership to your task or a task you specify. It is expected that most programs will
continue to use virtual storage below the 2-gigabyte address, which is the topic of this chapter. If you
are interested in using virtual storage above the 2-gigabyte address, see Chapter 12, “Using the 64-bit
address space,” on page 199.

The DSPSERV macro is an explicit request for virtual storage that is not part of your address space. It is
available for storing data, but not executing code. The two kinds of data-only spaces are data spaces and
hiperspaces. For information on how to obtain and manage these virtual storage areas, see Chapter 16,
“Data spaces and hiperspaces,” on page 259.

Note: If your job step is to be executed as a non-pageable (V=R) task, the REGION parameter value
specified on the JOB or EXEC statement determines the amount of virtual (real) storage reserved for the
job step. If you run out of storage, increase the REGION parameter size.

This chapter describes techniques you can use to obtain and release virtual storage below the 2 gigabyte
address and make efficient use of the virtual storage area reserved for your job step.

Explicit requests for virtual storage
To explicitly request virtual storage below the 2 gigabyte address, issue a GETMAIN or a STORAGE macro.
When you make an explicit request, the system satisfies the request by allocating a part of the virtual
storage area reserved for the job step. The virtual storage area is usually not set to zero when allocated.
(The system sets storage to zero only when it initially assigns a frame to a virtual storage page.)

You explicitly release virtual storage by issuing a FREEMAIN macro or a STORAGE macro. For information
about using these macros, see “Releasing storage through the FREEMAIN and STORAGE macros” on page
190.

Specifying the size of the area: Virtual storage areas are always allocated to the task in multiples of eight
bytes and may begin on either a doubleword or page boundary. You request virtual storage in bytes; if
the number you specify is not a multiple of eight, the system rounds it up to the next higher multiple of
eight. You can make repeated requests for a small number of bytes as you need the area, or you can make
one large request to completely satisfy the requirements of the task. There are two reasons for making
one large request. First, it is the only way you can be sure to get contiguous virtual storage and avoid
fragmenting your address space. Second, you make only one request, and thus minimize the amount of
system overhead.

© Copyright IBM Corp. 1988, 2022 187

Obtaining storage through the GETMAIN macro
There are several methods of explicitly requesting virtual storage using the GETMAIN macro. Each
method, which you select by coding a parameter, has certain advantages.

You can specify the location, above or below 16 megabytes, of the virtual area allocated by using the LOC
parameter. (LOC is valid only with the RU, RC, VRU, and VRC parameters.)

To request virtual storage that can be above 16 megabytes, use LOC=31. To request virtual storage below
16 megabytes, use LOC=24.

If you code LOC=31 and indicate a subpool that is supported above 16 megabytes, GETMAIN tries to
allocate the virtual storage area above 16 megabytes. If it cannot, and if the subpool is supported below
16 megabytes, GETMAIN allocates the area from virtual storage below 16 megabytes.

The element, variable, and list type of methods do not produce reenterable coding unless coded in the list
and execute forms. (See “Implicit requests for virtual storage” on page 194 for additional information.)
When you use the last three types, you can allocate storage below 16 megabytes only.

The methods and the characters associated with them follow:

1. Register Type: There are several kinds of register requests. In each case the address of the area is
returned in register 1. All of the register requests produce reenterable code because the parameters
are passed to the system in registers, not in a parameter list. The register requests are as follows:
R

specifies a request for a single area of virtual storage of a specified length, located below 16
megabytes.

RU or RC
specifies a request for a single area of virtual storage of a specified length, located above or below
16 megabytes according to the LOC parameter.

VRU or VRC
specifies a request for a single area of virtual storage with length between two values that you
specify, located above or below 16 megabytes according to the LOC parameter. GETMAIN attempts
to allocate the maximum length you specify. If not enough storage is available to allocate the
maximum length, GETMAIN allocates the largest area with a length between the two values that
you specified. GETMAIN returns the length in register 0.

2. Element Type: EC or EU specifies a request for a single area of virtual storage, below 16 megabytes, of
a specified length. GETMAIN places the address of the allocated area in a fullword that you supply.

3. Variable Type: VC or VU specifies a request for a single area of virtual storage below 16 megabytes
with a length between two values you specify. GETMAIN attempts to allocate the maximum length
you specify; if not enough storage is available to allocate the maximum length, the largest area with a
length between the two values is allocated. GETMAIN places the address of the area and the length
allocated in two consecutive fullwords that you supply.

4. List Type: LC or LU specifies a request for one or more areas of virtual storage, below 16 megabytes, of
specified lengths.

The LOC parameter also allows you to indicate whether the real frames that back the virtual storage are
below 16 megabytes, below 2 gigabytes, or anywhere.

To request virtual storage at a specific address, use LOC with the EXPLICIT parameter and specify the
address desired on the INADDR parameter. When you specify EXPLICIT on a request for storage from
the same virtual page as previously requested storage, you must request it in the same key, subpool,
and central storage areas as on the previous storage request. For example, if you request virtual storage
backed with central storage below 16 megabytes, any subsequent requests for storage in that virtual page
must be specified as LOC=(EXPLICIT,24).

The virtual storage address specified on INADDR and the central storage backing specified on
LOC=EXPLICIT must be a valid combination. For example, if the address specified on INADDR is for
storage above 16 megabytes, you must specify LOC=EXPLICIT or LOC=(EXPLICIT,31). The following
combinations are valid:

188 z/OS: z/OS MVS Assembler Services Guide

• virtual 31, central 31
• virtual 31, central 64
• virtual 24, central 24
• virtual 24, central 31
• virtual 24, central 64

For more information, see the description of the GETMAIN macro in z/OS MVS Programming: Assembler
Services Reference ABE-HSP.

In combination with these methods of requesting virtual storage, you can designate the request as
conditional or unconditional. If the request is unconditional and sufficient virtual storage is not available
to fill the request, the active task is abnormally terminated. If the request is conditional, however, and
insufficient virtual storage is available, a return code of 4 is provided in register 15; a return code of 0 is
provided if the request was satisfied.

Figure 57 on page 189 shows an example of using the GETMAIN macro. The example assumes a program
that operates most efficiently with a work area of 16,000 bytes, with a fair degree of efficiency with 8,000
bytes or more, inefficiently with less than 8,000 bytes. The program uses a reentrant load module having
an entry name of REENTMOD, and will use it again later in the program; to save time, the load module was
brought into the job pack area using a LOAD macro so that it will be available when it is required.

 .
 .
 GETMAIN EC,LV=16000,A=ANSWADD Conditional request for 16,000
 bytes in central storage
 LTR 15,15 Test return code
 BZ PROCEED1 If 16,000 bytes allocated, proceed
 DELETE EP=REENTMOD If not, delete module and try
 GETMAIN VU,LA=SIZES,A=ANSWADD to get less virtual storage
 L 4,ANSWADD+4 Load and test allocated length
 CH 4,MIN If 8,000 or more, use procedure 1
 BNL PROCEED1 If less than 8,000 use procedure 2
PROCEED2 ...
PROCEED1 ...
MIN DC H'8000' Min. size for procedure 1
SIZES DC F'4000' Min. size for procedure 2
 DC F'16000' Size of area for maximum efficiency
ANSWADD DC F'0' Address of allocated area
 DC F'0' Size of allocated area

Figure 57. Example of Using the GETMAIN Macro

The code shown in Figure 57 on page 189 makes a conditional request for a single element of storage
with a length of 16,000 bytes. The return code in register 15 is tested to determine if the storage is
available; if the return code is 0 (the 16,000 bytes were allocated), control is passed to the processing
routine. If sufficient storage is not available, an attempt to obtain more virtual storage is made by issuing
a DELETE macro to free the area occupied by the load module REENTMOD. A second GETMAIN macro is
issued, this time an unconditional request for an area between 4,000 and 16,000 bytes in length. If the
minimum size is not available, the task is abnormally terminated. If at least 4,000 bytes are available, the
task can continue. The size of the area actually allocated is determined, and one of the two procedures
(efficient or inefficient) is given control.

Note: If you issue GETMAIN for less than a single page and you then issue the PGSER macro with the
PROTECT option, the entire page is made read-only, whether you have issued GETMAIN for it or not. IBM
recommends that you use PROTECT for full pages only. This usage avoids making other areas of storage
read-only unintentionally. If you update the page using real addresses after the page has been protected,
the page must be fixed until it is unprotected; otherwise data might be lost.

Obtaining storage through the STORAGE macro
There are several ways of requesting virtual storage through the STORAGE macro with the OBTAIN
parameter. In the most simple request, you issue the macro giving the length of storage you want and
accepting the defaults for the optional parameters. This request is as follows:

Chapter 11. Virtual storage management 189

STORAGE OBTAIN,LENGTH=length

When you issue this macro, the system uses certain defaults. The following list summarizes the defaults
for optional parameters and identifies the parameters that override the system defaults.

• After STORAGE completes, you will find the address of the storage in register 1 (ADDR parameter).
• The storage is located in subpool 0 (SP parameter).
• The storage is aligned on a doubleword boundary (BNDRY parameter).
• After the macro executes, you will find the return code in register 15 (RTCD parameter).
• Whether the storage is located above or below 16 megabytes depends on the location of the caller (LOC

parameter). For example, if the caller is above 16 megabytes, the virtual storage and the real frames
that back the virtual storage is also above 16 megabytes.

• Execution of code from the obtained storage (EXECUTABLE parameter) is not restricted.
• The request for storage is unconditional (COND parameter). If the request is unconditional and
sufficient virtual storage is not available to fill the request, the system abends the active task.

The SP, BNDRY, and COND parameters on STORAGE OBTAIN provide the same function as the SP, BNDRY
and COND parameters on GETMAIN.

To make a variable length request for storage, use the LENGTH=(maximum length, minimum length)
parameter. The maximum, which is limited by the REGION parameter on the JOB or EXEC JCL statement,
is the storage amount that you would prefer. The minimum is the smallest amount that you can tolerate.

The STORAGE OBTAIN PAGEFRAMESIZE1MB parameter specifies to back virtual storage by 1 MB-page
frame, if available. However, once virtual storage is successfully backed with 1 MB-page frames it is still
possible for the backing storage to be demoted to 4 KB-page frames due to real storage requirements or
application storage requirements. To optimize 1 MB-page frame backing storage, configure applications
to perform page operations (pgser) by specifying full megabyte ranges of storage. Additionally, configure
application usage of select system services, such as IARSUBSP, IARVSERV, BPX1FRK, BPX1MAT and
BPX1MMP, to avoid accessing the backing storage.

To specify where the virtual and central storage come from, use the LOC parameter. You can specify
that the storage is above or below 16 megabytes or in the same location as the caller. You can also
specify backing in central storage above 2 gigabytes using the LOC parameter. Additionally, you can use
the LOC parameter to back central storage with 1-megabyte page frames, if available.You can request
virtual storage at a specific address by using EXPLICIT on the LOC parameter and specifying the address
on the INADDR parameter. The LOC parameter on STORAGE is similar to the LOC parameter on GETMAIN
with the RU and RC parameters that are described in “Obtaining storage through the GETMAIN macro” on
page 188.

To prevent unauthorized execution of code from within the obtained storage, use EXECUTABLE=NO.
Any attempt to execute instructions causes a system abend to occur. This abend provides additional
system integrity by not allowing unexpected execution from areas such as heaps and stacks that contain
only data.

To request storage conditionally, use COND =YES. If the request is conditional and insufficient virtual
storage is available, the system returns a code of 4 in register 15 or the location you specify on the RTCD
parameter. If the system is able to satisfy the request, it returns a code of 0.

The system returns the address of the storage in the location specified by the ADDR parameter or, by
default, to register 1.

The STORAGE macro is described in z/OS MVS Programming: Assembler Services Reference IAR-XCT. The
macro description includes several examples of how to use the STORAGE macro.

Releasing storage through the FREEMAIN and STORAGE macros
You release virtual storage by issuing a FREEMAIN macro or a STORAGE macro with the RELEASE
parameter. Neither request releases the area from control of the job step but does make the area
available to satisfy the requirements of additional requests for any task in the job step. The virtual

190 z/OS: z/OS MVS Assembler Services Guide

storage assigned to a task is also released when the task terminates, except as indicated under “Subpool
handling” on page 191. Implicit releasing of virtual storage is described under “Freeing of virtual storage”
on page 196.

To release storage with the STORAGE macro, specify the amount, the address, and the subpool (SP
parameter). If you are releasing all of the storage in a subpool, you can issue the SP parameter without
specifying the length and the address. Releasing all of the storage in a subpool is called a subpool
release.

Note: FREEMAIN can free a page that has been protected through the PGSER macro with the PROTECT
option.

Using the CPOOL macro
The cell pool macro (CPOOL) provides programs with another way of obtaining virtual storage. This macro
provides centralized, high-performance cell management services.

What is a cell pool? A cell pool is a block of virtual storage that is divided into smaller, fixed-size blocks
of storage, called cells. You specify the size of the cells. You then can request cells of storage from this
cell pool as you need them. If the request for cells exceeds the storage available in the cell pool, you can
increase the size of the cell pool.

The CPOOL macro allows you to:

• Create a cell pool (BUILD), where all cells have the size you specify
• Obtain a cell from a cell pool if storage is available (GET,COND)
• Obtain a cell from a cell pool and extend the cell pool if storage is not available (GET,UNCOND)
• Return a cell to the cell pool (FREE)
• Free all storage for a cell pool (DELETE)
• Place the starting and ending addresses of the cell pool extents in a buffer (LIST)

You can also create and manage cell pools by using callable cell pool services. These services offer
advantages over using CPOOL in some cases. Chapter 13, “Callable cell pool services,” on page 215
describes these services. “Comparison of callable cell pool services and the CPOOL macro” on page 216
can help you decide whether to use the callable cell pool services or the CPOOL macro.

Subpool handling
The system provides subpools of virtual storage to help you manage virtual storage and communicate
between tasks in the same job step. Because the use of subpools requires some knowledge of how the
system manages virtual storage, a discussion of virtual storage control is presented here.

Virtual storage control: When the job step is given a region of virtual storage in the private area of an
address space, all of the storage area available for your use within that region is unassigned. Subpools are
created only when a GETMAIN, STORAGE, or CPOOL macro is issued designating a subpool number (other
than 0) not previously specified. If no subpool number is designated, the virtual storage is allocated from
subpool 0, which is created for the job step by the system when the job-step task is initiated.

For purposes of control and virtual storage protection, the system considers all virtual storage within
the region in terms of 4096-byte blocks. These blocks are assigned to a subpool, and space within the
blocks is allocated to a task by the system when requests for virtual storage are made. When there is
sufficient unallocated virtual storage within any block assigned to the designated subpool to fill a request,
the virtual storage is allocated to the active task from that block. If there is insufficient unallocated virtual
storage within any block assigned to the subpool, a new block (or blocks, depending on the size of the
request) is assigned to the subpool, and the storage is allocated to the active task. The blocks assigned to
a subpool are not necessarily contiguous unless they are assigned as a result of one request. Only blocks
within the region reserved for the associated job step can be assigned to a subpool.

Figure 58 on page 192 is a simplified view of a virtual storage region containing four 4096-byte blocks
of storage. All the requests are for virtual storage from subpool 0. The first request from some task in
the job step is for 1008 bytes; the request is satisfied from the block shown as Block A in the figure. The

Chapter 11. Virtual storage management 191

second request, for 4000 bytes, is too large to be satisfied from the unused portion of Block A, so the
system assigns the next available block, Block B, to subpool 0, and allocates 4000 bytes from Block B to
the active task. A third request is then received, this time for 2000 bytes. There is enough area in Block
A (blocks are checked in the order first in, first out), so an additional 2000 bytes are allocated to the task
from Block A. All blocks are searched for the closest fitting free area which will then be assigned. If the
request had been for 96 bytes or less, it would have been allocated from Block B. Because all tasks may
share subpool 0, Request 1 and Request 3 do not have to be made from the same task, even though the
areas are contiguous and from the same 4096 byte block. Request 4, for 6000 bytes, requires that the
system allocate the area from 2 contiguous blocks which were previously unassigned, Block D and Block
C. These blocks are assigned to subpool 0.

As indicated in the preceding example, it is possible for one 4096-byte block in subpool 0 to contain
many small areas allocated to many different tasks in the job step, and it is possible that numerous blocks
could be split up in this manner. Areas acquired by a task other than the job step task are not released
automatically on task termination. Even if FREEMAIN or STORAGE RELEASE macros were issued for each
of the small areas before a task terminated, the probable result would be that many small unused areas
would exist within each block while the control program would be continually assigning new blocks to
satisfy new requests. To avoid this situation, you can define subpools for exclusive use by individual tasks.

Figure 58. Virtual Storage Control

Any subpool can be used exclusively by a single task or shared by several tasks. Each time that you create
a task, you can specify which subpools are to be shared. Unlike other subpools, subpool 0 is shared by a
task and its subtask, unless you specify otherwise. When subpool 0 is not shared, the system creates a
new subpool 0 for use by the subtask. As a result, both the task and its subtask can request storage from
subpool 0 but both will not receive storage from the same 4096-byte block. When the subtask terminates,
its virtual storage areas in subpool 0 are released; since no other tasks share this subpool, complete
4096-byte blocks are made available for reallocation.

Note: If the storage is shared, it is not released until the owning task terminates.

When there is a need to share subpool 0, you can define other subpools for exclusive use by individual
tasks. When you first request storage from a subpool other than subpool 0, the system assigns new
4096-byte blocks to that subpool, and allocates storage from that block. The task that is then active is
assigned ownership of the subpool and, therefore, of the block. When additional requests are made by
the same task for the same subpool, the requests are satisfied by allocating areas from that block and as
many additional blocks as are required. If another task is active when a request is made with the same
subpool number, the system assigns a new block to a new subpool, allocates storage from the new block,
and assigns ownership of the new subpool to the second task.

FREEMAIN or STORAGE RELEASE macros can be issued to release any complete subpool except subpool
0, thus releasing complete 4096-byte blocks.

192 z/OS: z/OS MVS Assembler Services Guide

Subpool characteristics: Problem-state programs running under PSW key 8-15 can specify subpool
numbers 0-127, 131, and 132. Subpools 0-127 are task related, meaning that when a task terminates,
the system automatically releases any of the subpools from 0 through 127 that are unshared and are
associated with the task. Subpools 131 and 132 are job-step related; the system does not release these
subpools until the job-step task terminates, even if the task that created these subpools has terminated.
All the subpools are pageable, and all are fetch protected except subpool 132.

Storage keys for subpools: The storage key for storage in subpools 0-127 is from the TCB associated with
the first GETMAIN, STORAGE OBTAIN, or CPOOL BUILD request. All subsequent requests use this key,
regardless of the key currently in the TCB.

For subpools 131 and 132, the system assigns storage keys differently, depending on which macros
and parameters you use to allocate or free storage. The following table shows how the storage keys are
assigned for subpools 131 and 132:

Macros and Parameters Storage Key

• GETMAIN with LC, LU, VC, VU, EC, EU, or R
• FREEMAIN with LC, LU, L, VC, VU, V, EC, EU, E, or R
• STORAGE OBTAIN or RELEASE; CALLRKY=YES is specified

The storage key equals the caller's PSW key. (The KEY
parameter is ignored.)

• GETMAIN with RC, RU, VRC, VRU
• FREEMAIN with RC, RU
• CPOOL BUILD

The storage key is the key specified by caller on the KEY
parameter. If KEY is not specified, the default equals the caller's
PSW key.

• STORAGE OBTAIN or RELEASE; CALLRKY=YES is omitted or
CALLRKY=NO is specified

The storage key is the key specified by the caller on the KEY
parameter. If KEY is not specified, the default is storage key 0.

A program can issue a request to obtain or release storage from subpool 131 or 132 in a storage key that
does not match the PSW key under which the program is running. However, the system will accept the
storage request only if the requesting program is authorized to access the storage. To access storage in
subpool 131 or 132, a problem-state program that is not APF-authorized and is running under PSW key
8-15 must be able to switch its PSW key to match the storage key. Such a program can switch its PSW key
only if a supervisor-state program has previously set up the PSW-key mask (PKM) to enable the PSW key
switch. For STORAGE RELEASE or FREEMAIN requests to release all the storage in subpool 131 or 132,
the requesting program must be able to switch its PSW key to match all the storage keys that exist in the
subpool. For information about the function and structure of the PSW key-mask, and information about
switching the PSW key, see Principles of Operation.

Owning and sharing subpools: A subpool is initially owned by the task that was active when the subpool
was created. The subpool can be shared with other tasks, and ownership of the subpool can be assigned
to other tasks. The macros used to handle subpools are STORAGE, GETMAIN, ATTACH and ATTACHX. In
the GETMAIN and STORAGE macros, you can specify the SP parameter to request storage from subpools
0-127, 131, or 132. If you omit the SP parameter, the system assumes subpool 0. The parameters that
deal with subpools in the ATTACH and ATTACHX macros are:

• GSPV and GSPL, which give ownership of one or more subpools (other than subpool 0) to the task being
created.

• SHSPV and SHSPL, which share ownership of one or more subpools (other than subpool 0) with the new
subtask.

• SZERO, which determines whether subpool 0 is shared with the subtask.

All of these parameters are optional. If they are omitted, no subpools are given to the subtask, and only
subpool 0 is shared.

Creating a subpool: If the subpool specified does not exist for the active task, a new subpool is created
whenever SHSPV or SHSPL is coded on ATTACH or ATTACHX, or when a GETMAIN or STORAGE macro is
issued. A new subpool zero is created for the subtask if SZERO=NO is specified on ATTACH or ATTACHX.
If one of the ATTACH or ATTACHX parameters that specifies shared ownership of a subpool causes the
subpool to be created, the subpool number is entered in the list of subpools owned by the task, but no
blocks are assigned and no storage is actually allocated. If a GETMAIN or STORAGE macro results in

Chapter 11. Virtual storage management 193

the creation of a subpool, the subpool number is assigned to one or more 4096-byte blocks, and the
requested storage is allocated to the active task. In either case, ownership of the subpool belongs to the
active task; if the subpool is created because of an ATTACH or ATTACHX macro, ownership is transferred
or retained depending on the parameter used.

Transferring ownership: An owning task gives ownership of a subpool to a direct subtask by using the
GSPV or GSPL parameters on ATTACH or ATTACHX issued when that subtask is created. Ownership of a
subpool can be given to any subtask of any task, regardless of the control level of the two tasks involved
and regardless of how ownership was obtained. A subpool cannot be shared with one or more subtasks
and then transferred to another subtask, however; an attempt to do this results in abnormal termination
of the active task. Ownership of a subpool can only be transferred if the active task has sole ownership;
if the active task is sharing a subpool and an attempt is made to transfer it to a subtask, the subtask
receives shared control and the originating task relinquishes the subpool. Once ownership is transferred
to a subtask or relinquished, any subsequent use of that subpool number by the originating task results
in the creation of a new subpool. When a task that has ownership of one or more subpools terminates,
all of the virtual storage areas in those subpools are released. Therefore, the task with ownership of a
subpool should not terminate until all tasks or subtasks sharing the subpool have completed their use of
the subpool.

If GSPV or GSPL specifies a subpool that does not exist for the active task, no action is taken.

Sharing a subpool: A task can share ownership of a subpool with a subtask that it attaches. Subtasks
cannot share ownership of a subpool with the task that caused the attach. A program shares ownership by
specifying the SHSPV or SHSPL parameters on the ATTACH or ATTACHX macro issued when the subtask
is created. Any task with ownership or shared control of the subpool can add to or reduce the size of the
subpool through the use of the GETMAIN, FREEMAIN, or STORAGE macros. When a task that has shared
control of the subpool terminates, the subpool is not affected.

Subpools in task communication: The advantage of subpools in virtual storage management is that, by
assigning separate subpools to separate subtasks, the breakdown of virtual storage into small fragments
is reduced. An additional benefit from the use of subpools can be realized in task communication. A
subpool can be created for an originating task and all parameters to be passed to the subtask placed in
the subpool. When the subtask is created, the ownership of the subpool can be passed to the subtask.
After all parameters have been acquired by the subtask, a FREEMAIN or STORAGE RELEASE macro can be
issued, under control of the subtask, to release the subpool virtual storage areas. In a similar manner, a
second subpool can be created for the originating task, to be used as an answer area in the performance
of the subtask. When the subtask is created, the subpool ownership would be shared with the subtask.
Before the subtask is terminated, all parameters to be passed to the originating task are placed in the
subpool area; when the subtask is terminated, the subpool is not released, and the originating task can
acquire the parameters. After all parameters have been acquired for the originating task, a FREEMAIN or
STORAGE RELEASE macro again makes the area available for reuse.

Implicit requests for virtual storage
You make an implicit request for virtual storage every time you issue LINK, LINKX, LOAD, ATTACH,
ATTACHX, XCTL or XCTLX. In addition, you make an implicit request for virtual storage when you issue an
OPEN macro for a data set. This information discusses some of the techniques you can use to cut down on
the amount of central storage required by a job step, and the assistance given you by the system.

Reenterable load modules
A reenterable load module does not modify itself. Only one copy of the load module is loaded to satisfy
the requirements of any number of tasks in a job step. This means that even though there are several
tasks in the job step and each task concurrently uses the load module, the only central storage needed is
an area large enough to hold one copy of the load module (plus a few bytes for control blocks). The same
amount of central storage would be needed if the load module were serially reusable; however, the load
module could not be used by more than one task at a time.

194 z/OS: z/OS MVS Assembler Services Guide

Note: If your module is reenterable or serially reusable, the load module must be link edited, with
the desired attribute, into a library. The default linkage editor attributes are non-reenterable and non-
reusable.

Reenterable macros
All of the macros described in this information can be written in re-enterable form. These macros are
classified as one of two types: macro that pass parameters in registers 0 and 1, and macros that pass
parameters in a list. The macros that pass parameters in registers present no problem in a reenterable
program; when the macro is coded, the required parameter values should be contained in registers. For
example, the POST macro requires that the ECB address be coded as follows:

POST ecb address

One method of coding this in a reenterable program would be to require this address to refer to a portion
of storage that has been allocated to the active task through the use of a GETMAIN macro. The address
would change for each use of the load module. Therefore, you would load one of the general registers
2-12 with the address, and designate that register when you code the macro. If register 4 contains the
ECB address, the POST macro is written as follows:

POST (4)

The macros that pass parameters in a list require the use of special forms of the macro when used in a
reenterable program. The macros that pass parameters in a list are identified within their descriptions in
z/OS MVS Programming: Assembler Services Reference ABE-HSP and z/OS MVS Programming: Assembler
Services Reference IAR-XCT.The expansion of the standard form of these macros results in an in-line
parameter list and executable instructions to branch around the list, to save parameter values in the list,
to load the address of the list, and to pass control to the required system routine. The expansions of the
list and execute forms of the macro simply divide the functions provided in the standard form expansion:
the list form provides only the parameter list, and the execute form provides executable instructions to
modify the list and pass control. You provide the instructions to load the address of the list into a register.

The list and execute forms of a macro are used in conjunction to provide the same services available from
the standard form of the macro. The advantages of using list and execute forms are as follows:

• Any parameters that remain constant in every use of the macro can be coded in the list form. These
parameters can then be omitted in each of the execute forms of the macro which use the list. This can
save appreciable coding time when you use a macro many times. (Any exceptions to this rule are listed
in the description of the execute form of the applicable macro.)

• The execute form of the macro can modify any of the parameters previously designated. (Again, there
are exceptions to this rule.)

• The list used by the execute form of the macro can be located in a portion of virtual storage assigned to
the task through the use of the GETMAIN macro. This ensures that the program remains reenterable.

Figure 59 on page 196 shows the use of the list and execute forms of a DEQ macro in a reenterable
program. The length of the list constructed by the list form of the macro is obtained by subtracting two
symbolic addresses; virtual storage is allocated and the list is moved into the allocated area. The execute
form of the DEQ macro does not modify any of the parameters in the list form. The list had to be moved to
allocated storage because the system can store a return code in the list when RET=HAVE is coded. Note
that the coding in a routine labeled MOVERTN is valid for lengths up to 256 bytes only. Some macros do
produce lists greater than 256 bytes when many parameters are coded (for example, OPEN and CLOSE
with many data control blocks, or ENQ and DEQ with many resources), so in actual practice a length check
should be made. The move long instruction (MVCL) should be considered for moving large data lists.

Chapter 11. Virtual storage management 195

 .
 .
 LA 3,MACNAME Load address of list form
 LA 5,NSIADDR Load address of end of list
 SR 5,3 Length to be moved in register 5
 BAL 14,MOVERTN Go to routine to move list
 DEQ ,MF=(E,(1)) Release allocated resource
 .
 .
* The MOVERTN allocates storage from subpool 0 and moves up to 256
* bytes into the allocated area. Register 3 is from address,
* register 5 is length. Area address returned in register 1.
MOVERTN GETMAIN R,LV=(5)
 LR 4,1 Address of area in register 4
 BCTR 5,0 Subtract 1 from area length
 EX 5,MOVEINST Move list to allocated area
 BR 14 Return
MOVEINST MVC 0(0,4),0(3)
 .
 .
MACNAME DEQ (NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L
NSIADDR
NAME1 DC CL8'MAJOR'
NAME2 DC CL8'MINOR'

Figure 59. Using the List and the Execute Forms of the DEQ Macro

Non-reenterable load modules
The use of reenterable load modules does not automatically conserve virtual storage; in many
applications it will actually prove wasteful. If a load module is not used in many jobs and if it is not
employed by more than one task in a job step, there is no reason to make the load module reenterable.
The allocation of virtual storage for the purpose of moving coding from the load module to the allocated
area is a waste of both time and virtual storage when only one task requires the use of the load module.

You do not need to make a load module reenterable or serially reusable if reusability is not really
important to the logic of your program. Of course, if reusability is important, you can issue a LOAD macro
to load a reusable module, and later issue a DELETE macro to release its area.

Note:

1. If your module is reenterable or serially reusable, the load module must be link edited, with the
desired attribute, into a library. The default linkage editor attributes are non-reenterable and non-
reusable.

2. A module that does not modify itself (a refreshable module) reduces paging activity because it does
not need to be paged out.

Freeing of virtual storage
The system establishes two responsibility counts for every load module brought into virtual storage in
response to your requests for that load module. The responsibility counts are lowered as follows:

• If the load module was requested in a LOAD macro, that responsibility count is lowered when using a
DELETE macro.

• If the load module was requested on LINK, LINKX, ATTACH, ATTACHX, XCTL, or XCTLX, that
responsibility count is lowered when using XCTL or XCTLX or by returning control to the system.

• When a task is terminated, the responsibility counts are lowered by the number of requests for the load
module made by LINK, LINKX, LOAD, ATTACH, ATTACHX, XCTL, or XCTLX during the performance of
that task, minus the number of deletions indicated previously.

The virtual storage area occupied by a load module is released when the responsibility counts reach zero.
When you plan your program, you can design the load modules to give you the best trade-off between
execution time and efficient paging. If you use a load module many times in the course of a job step, issue
a LOAD macro to bring it into virtual storage; do not issue a DELETE macro until the load module is no
longer needed. Conversely, if a load module is used only once during the job step, or if its uses are widely

196 z/OS: z/OS MVS Assembler Services Guide

separated, issue LINK or LINKX to obtain the module and issue an XCTL or XCTLX from the module (or
return control to the system) after it has been executed.

There is a minor problem involved in the deletion of load modules containing data control blocks (DCBs).
An OPEN macro instruction must be issued before the DCB is used, and a CLOSE macro issued when it is
no longer needed. If you do not issue a CLOSE macro for the DCB, the system issues one for you when
the task is terminated. However, if the load module containing the DCB has been removed from virtual
storage, the attempt to issue the CLOSE macro causes abnormal termination of the task. You must either
issue the CLOSE macro yourself before deleting the load module, or ensure that the data control block is
still in virtual storage when the task is terminated (possibly by issuing a GETMAIN and creating the DCB in
the area that had been allocated by the GETMAIN).

Chapter 11. Virtual storage management 197

198 z/OS: z/OS MVS Assembler Services Guide

Chapter 12. Using the 64-bit address space

This chapter describes how to use the address space virtual storage above 2 gigabytes and control the
physical frames that back this storage.

What is the 64-bit address space?
Because of changes in the architecture that supports the z/OS operating system, there have been two
different address spaces prior to the 64-bit address space. The address space of the 1970s began at
address 0 and ended at 16 megabytes. The architecture that created this address space provided 24-bit
addresses.

In the early 1980s, extended architecture (XA) provided an address space that began at address 0 and
ended at two gigabytes. The architecture that created this address space provided 31-bit addresses. To
maintain compatibility, the operating system provided two addressing modes (AMODEs) for programs:
programs that use only the first 16 megabytes of the address space run in AMODE 24 and programs that
use the entire 31–bit address space run in AMODE 31.

As of z/OS Version 1 Release 2 (V1R1), the address space expands to a large size, new terms are needed
to describe it. Each address space is 16 exabytes in size; an exabyte is slightly more than one billion
gigabytes. The new address space has logically 264 addresses. It is 8 billion times the size of the former
2-gigabyte address space that logically has 231 addresses. The number is 18,466,744,073,709,551,616
bytes. Programs that use virtual storage above the 2-gigabyte address run in AMODE 64. The architecture
that creates this address space provides 64-bit addresses. The address space structure below the 2
gigabyte address has not changed; all programs in AMODE 24 and AMODE 31 continue to run without
change. In some fundamental ways, the address space is much the same as the XA address space.

In the 64-bit address space, a virtual line called the bar marks the 2-gigabyte address. The bar separates
storage below the 2-gigabyte address, called below the bar, from storage above the 2-gigabyte address,
called above the bar. In the 31-bit address space, a virtual line marks the 16-megabyte address. The area
above the bar is intended for data; no programs run above the bar. There is no area above the bar that is
common to all address spaces, and no system control blocks exist above the bar. IBM reserves an area of
storage above the bar for special uses to be developed in the future.

Figure 60 on page 200 shows the 64-bit address space, including the line that marks the 16-megabyte
address and the bar that marks the 2-gigabyte address.

© Copyright IBM Corp. 1988, 2022 199

Extended CSA

“The bar”

“The line”

Extended User Region (Extended Low Private)

Extended PLPA/FLPA/MLPA

Extended SQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA

CSA

PSA

System Region

User Region (Low Private)

LSQA/SWA/AUK (High Private)

16 MB

24 KB

24-bit
addressing

31-bit
addressing

64-bit
addressing

8 KB

0

Private

Common

Extended
Common

Extended
Private

2 GB
Extended LSQA/SWA/AUK (Extended High Private)

64 GB

320 GB

2 TB

High-Virtual
Private

Compressed References Area

Local System Area

High-Virtual User Region

High-Virtual Common

Common

High-Virtual Shared

High-Virtual User Region

16 EB

High-Virtual
Common

High-Virtual
Shared Area

High-Virtual
Private

Extended Restricted Use CSA (RUCSA)

Restricted Use CSA (RUCSA)

Figure 60. The 64-bit address space

All programs start in 24-bit or 31-bit AMODE; then, they are unable to work with data above the bar.
To use virtual storage above the bar, a program must change to AMODE 64 and use the z/Architecture
assembler instructions.

There are no practical limits to the virtual storage above the bar, but practical limits to the real storage
frames that back that area. To control the amount of real and auxiliary storage that an address space
can use, your installation can set a limit, called a MEMLIMIT. The MEMLIMIT is set on the total number
of usable virtual pages above the bar for a single address space. The installation can also classify your
address space to a WLM resource group with a real memory limit to control the amount of real storage. To
learn the MEMLIMIT value and WLM resource group classification rules, see a system programmer at your
installation.

Why would you use virtual storage above the bar?
The reason why someone designing an application would want to use the area above the bar is simple:
the program needs more virtual storage than the first 2 gigabytes in the address space provides.

200 z/OS: z/OS MVS Assembler Services Guide

Before z/OS V1R2, a program's need for storage beyond what the former 2-gigabyte address space
provided was sometimes met by creating one or more data spaces or hiperspaces and then designing a
memory management schema to keep track of the data in those spaces. Sometimes these programs used
complex algorithms to manage storage, reallocate and reuse areas, and check storage availability.

With the 16-exabyte address space, these kinds of programming complexities are unnecessary. A
program can potentially have as much virtual storage as it needs, while containing the data within the
program's primary or home address space.

Memory objects
Programs obtain storage above the bar in chunks of virtual storage called memory objects. The system
allocates a memory object as a number of virtual segments; each segment is a megabyte in size and
begins on a megabyte boundary. A memory object can be as large as the memory limits set by your
installation and as small as one megabyte.

Using the IARV64 macro, a program can create and free a memory object and manage the physical frames
that back the virtual storage. You can think of IARV64 as the GETMAIN/FREEMAIN or STORAGE macro for
virtual storage above the bar. (GETMAIN/FREEMAIN and STORAGE do not work on virtual storage above
the bar; neither do CPOOL or callable cell pool services.)

When a program creates a memory object, it provides an area in which the system returns the memory
object's low address. You can think of that address as the name of the memory object. After creating the
memory object, the program can use the storage in the memory object much as it used storage in the
2-gigabyte address space; see “Using a memory object” on page 208. The program cannot safely operate
on storage areas that span more than one memory object.

To help the system manage the physical pages that back ranges of addresses in memory objects, a
program can alert the system to its use of some of those pages, making them available for the system to
steal and then return.

The program can free the physical pages that back ranges of memory objects and, optionally, clear those
ranges to zeros. Later, the program can ask the system to return the physical backing from auxiliary
storage. When it no longer needs the memory object, the program frees it in its entirety.

While your program can obtain only one memory object at a single invocation of IARV64, it can, for
management purposes, relate a set of two or more memory objects to each other by specifying a user
token, a value you choose. A program can then delete all memory objects that have the same user token
value.

Using large pages
Large page is a special purpose performance feature for memory objects. Authorized programs and
unauthorized programs with READ authority to the IARRSM.LRGPAGES resource profile in the FACILITY
class can ask the system to use one megabyte page frames to back the memory object by using the
PAGEFRAMESIZE parameter when issuing the IARV64 GETSTOR request. Authorized programs can also
use the PAGEFRAMESIZE parameter to request large pages for common or shared memory objects with
the IARV64 GETCOMMON or IARV64 GETSHARED requests.

These large pages consume real storage and are non-pageable. The system programmer should carefully
consider what applications are granted access to large pages. Not all applications benefit from using large
pages. Long-running, memory-intensive applications benefit most from using large pages. Short-lived
processes with a small memory working set are not good candidates. The system programmer defines
the amount of real storage that can be used for large pages with the LFAREA system parameter. See the
description of the IEASYSxx member in z/OS MVS Initialization and Tuning Reference.

The key factors to consider when you grant access to large pages are:

• Memory usage
• Page translation overhead of the workload
• Available large frame area

Chapter 12. Using the 64-bit address space 201

Using assembler instructions in the 64-bit address space
With z/Architecture, two facts are prominent: the address space is 16 exabytes in size and the general
purpose registers (GPRs) are 64 bits in length. You can ignore these facts and continue to use storage
below the bar. If, however, you want to enhance old programs or design new ones to use the virtual
storage above the bar, you will need to use the new Assembler instructions. This information introduces
the concepts that provide context for your use of these instructions.

z/Architecture provides two new major capabilities that are related but are also somewhat independent:

• 64-bit binary operations
• 64-bit addressing mode (AMODE).

64-bit binary operations
64-bit binary operations perform arithmetic and logical operations on 64-bit binary values. 64-bit AMODE
allows access to storage operands that reside anywhere in the 16-exabyte address space. In support of
both, z/Architecture extends the GPRs to 64 bits. There is a single set of 16 64-bit GPRs, and the bits in
each are numbered from 0 to 63.

All S/390 instructions are carried forward into z/Architecture and continue to operate using the low-order
half of the z/Architecture 64-bit GPRs. That is, an S/390 instruction that operates on bit positions 0
through 31 of a 32-bit GPR in S/390 operates instead on bit positions 32 through 63 of a 64-bit GPR in
z/Architecture. You can think of the S/390 32-bit GPRs as being imbedded in the new 64-bit GPRs.

Throughout the discussion of GPRs, bits 0 through 31 of the 64-bit GPR are called the high-order half,
and bits 32 through 63 are called the low-order half.

The purpose of this information is help you use the 64-bit GPR and the 64-bit instructions as you want
to save registers, perform arithmetic operations, access data. It is not a tutorial about how to use the
new instruction set. Principles of Operation is the definitive reference information for these instructions.
This information, however, describes some concepts that provide the foundation you need. After you
understand these, you can go to Principles of Operation and read the introduction to z/Architecture and
then refer to the specific instructions you need to write your program.

How z/Architecture processes S/390 instructions
First of all, your existing programs work, unchanged, in z/Architecture mode. This information describes
how z/Architecture processes S/390 instructions. The best way to describe this processing is through
examples of common S/390 instructions. First, consider a simple Add instruction: A R3,NUM31. This
instruction takes the value of a fullword binary integer at location NUM31 and adds it to the contents of
the low-order half of GPR3, placing the sum in the low-order half of GPR3. The high-order half of GPR3 is
unchanged.

202 z/OS: z/OS MVS Assembler Services Guide

Second, consider the LOAD instruction: L R3,MYDATA. This instruction takes the 4 bytes of data at location
MYDATA and puts them into the low order bits of GPR3.

The high-order half is not changed by the ADD instruction or the LOAD instruction. The register forms of
these instructions (AR and LR) work similarly, as do Add Logical instructions (AL and ALR).

z/Architecture instructions that use the 64-bit GPR
z/Architecture provides many new instructions that use two 64-bit binary integers to produce a 64-bit
binary integer. These instructions include a "G" in the instruction mnemonic (AG and LG). Some of
these instructions are similar to S/390 instructions. Consider the example of an Add G instruction: AG
R3,NUM64. This instruction takes the value of a doubleword binary integer at location NUM64 and adds it
to the contents of GPR3, placing the sum in GPR3:

The second example, LG R3,TWOWORDS, takes a doubleword at location TWOWORDS and puts it into
GPR3.

Because 32-bit binary integers are prevalent in S/390, z/Architecture also provides instructions that use
a 64-bit binary integer and a 32-bit binary integer. These instructions include a "GF" in the instruction
mnemonic (AGF and LGF). Consider AGF. In AGF R3,MYDATA, assume that MYDATA holds a 32-bit positive
binary integer, and GPR3 holds a 64-bit positive binary integer. (The numbers could have been negative.)
The AGF instruction adds the contents of MYDATA to the contents of GPR3 and places the resulting signed
binary integer in GPR3; the sign extension, in this case, is zeros.

The AGFR instruction adds the contents of the low-order half of a 64-bit GPR to bits 0 through 63 in
another 64-bit GPR. Instructions that include "GF" are very useful as you move to 64-bit addressing.

64-bit addressing mode (AMODE)
When generating addresses, the processor performs address arithmetic; it adds three components: the
contents of the 64-bit GPR, the displacement (a 12-bit value), and (optionally) the contents of the 64-bit
index register. Then, the processor checks the addressing mode and truncates the answer accordingly.
For AMODE 24, the processor truncates bits 0 through 39; for AMODE 31, the processor truncates bits
0 through 32; for AMODE 64, no truncation (or truncation of 0 bits) occurs. In S/390 architecture, the
processor added together the contents of a 32-bit GPR, the displacement, and (optionally) the contents
of a 32-bit index register. It then checked to see if the addressing mode was 31 or 24 bits, and truncated
accordingly. AMODE 24 caused truncation of 8 bits, AMODE 31 caused a truncation of bit 0.

Chapter 12. Using the 64-bit address space 203

The addressing mode also determines where the storage operands can reside. The storage operands
for programs running in AMODE 64 can be anywhere in the 16-exabyte address space, while a program
running in AMODE 24 can use only storage operands that reside in the first 16 megabytes of the 16-
exabyte address space.

Non-modal instructions
An instruction that behaves the same, regardless of the AMODE of the program, is called a non-modal
instruction. The only influence AMODE exerts on how a non-modal instruction performs is where
the storage operand is located. Two excellent examples of non-modal instructions have already been
described: the Load and the Add instructions. Non-modal z/Architecture instructions already described
also include the LG instruction and the AGF instruction. For example, programs of any AMODE can issue
AG R3,NUM64, described earlier, which adds the value of a doubleword binary integer at location NUM64
to the contents of GPR3, placing the sum in GPR3.

The LGF instruction is another example of a non-modal instruction. In LGF R3,MYDATA, assume MYDATA
is a signed negative binary integer. This instruction places MYDATA into the low-order half of GPR3 and
propagates the sign (1s) to the high-order half, as follows:

If the current AMODE is 64, MYDATA can reside anywhere in the address space; if the AMODE is 31,
MYDATA must reside below 2 gigabytes; if the AMODE is 24, MYDATA must reside below 16 megabytes.

Other 64-bit instructions that are non-modal are the register form of AGF, which is AGFR, and the register
form of LGF, which is LGFR. Others are LGR, AGR, ALGR, and ALG.

Modal instructions
Modal instructions are instructions where addressing mode is a factor in the output of the instruction. The
AMODE determines the width of the output register operands. A good example of a modal instruction is
Load Address (LA). If you specify LA R3,VIRT_PTR successively in the three AMODEs, what are the three
results?

AMODE 24: The address of VIRT_PTR is a 24-bit address that is loaded into bits 40 through 63 of GPR3
(or bits 8 through 31 of the 32-bit register imbedded in the 64-bit GPR). The processor places zeroes into
bits 32 through 39, and leaves the first 31 bits unchanged, as follows:

AMODE 31: The address of VIRT_PTR is loaded into bits 33 through 63 of GPR3. The processor places
zero into bit 32 and leaves the first 32 bits unchanged, as follows:

AMODE 64: the address of VIRT_PTR fill the entire 64-bit GPR3:

204 z/OS: z/OS MVS Assembler Services Guide

Other modal instructions are Move Long (MVCL), Branch and Link (BALR), and Branch and Save (BASR).

Setting and checking the addressing mode
z/Architecture provides three new Set Addressing Mode instructions that allow you to change addressing
mode. The instructions are SAM24, which changes the current AMODE to 24, SAM31, which changes the
current AMODE to 31, and SAM64, which changes the current AMODE to 64.

The AMODE indicator in the PSW tells the processor what AMODE is currently in effect. You can obtain the
current addressing mode of a program by using the Test Addressing Mode (TAM) instruction. In response,
TAM sets a condition code based on the setting in the PSW; 0 indicates AMODE 24, 1 indicates AMODE 31,
and 3 indicates AMODE 64.

Linkage conventions
In z/OS R2, program entry is in AMODE 31; therefore linkage conventions you have used in S/390 apply,
which means passing 4-byte parameter lists and a 72-byte savearea.

A older program changing into AMODE 64 to exploit z/Architecture instructions should expect to receive
31-bit addresses and the 72-byte save area from its callers. If you are running in AMODE 64 and want to
use an address a caller has passed to you, the high-order half of the GPR will probably not be cleared to
zeroes. As soon as you receive this address, use the Load Logical G Thirty One Bits (LLGTR) instruction to
change this 31-bit address into a 64-bit address that you can use.

Register 15 contents on entry
In AMODE 64, the ATTACH(X), LINK(X), SYNCH(X), and XCTL(X) macros provide control to the target
routine with register 15 (R15) containing the "OR" value of X’00000000FFFFF000’ with the addressing-
mode values shown in Table 22 on page 205; it does not contain the module entry point address as it did
in AMODE 31.

Table 22. Register 15 contents on entry in AMODE=64

Addressing mode of macro issuer
R15 contains the value in this column
ORed with X’00000000FFFFF000’

31 X'00000002'

64 X'00000004'

Pitfalls to avoid
As you begin to use the 64-bit instructions, consider the following:

1. Some instructions reference or change all 64 bits of a GPR regardless of the AMODE.
2. Some instructions reference or change only the low-order half of a GPR regardless of the AMODE.
3. Some instructions reference or change only the high-order half of a GPR regardless of the AMODE.
4. When you are using signed integers in arithmetic operations, you can't mix instructions that handle

64-bit integers with instructions that handle 31-bit integers. The interpretation of a 32-bit signed
number differs from the interpretation of a 64-bit signed number. With the 32-bit signed number, the
sign is extended in the low half of the doubleword. With the 64-bit signed number, the sign is extended
to the left for the entire doubleword.

Chapter 12. Using the 64-bit address space 205

Consider the following example, where a 31-bit subtraction instruction has left a 31-bit negative integer in
bits 32 through 63 of GPR3 and has left the high-order half unchanged.

Next, the instruction AG R3,MYDOUBLEWORD, mentioned earlier, adds the doubleword at the location
MYDOUBLEWORD to the contents of the GPR3 and places the sum at GPR3. Because the high-order half
of the GPR has uncertain contents, the result of the AG instruction is incorrect. To change the value in the
GPR3 so that the AG instruction adds the correct integers, before you use the AG instruction, use the Load
G Fullword Register (LGFR) instruction to propagate the sign to the high-order half of GPR3.

Issuing MVS macros in AMODE 64
Many MVS macro services support callers in either AMODE 24, AMODE 31, or AMODE 64. When the
caller is in AMODE 64, the macro service might need to generate different instructions. At assembly time,
a macro service that needs to know whether a caller is in AMODE 64 checks the global indicator that
SYSSTATE AMODE64=YES sets. The system expects that a program issue SYSSTATE AMODE64=YES when
it issues macros while in AMODE 64. When the program switches out of AMODE 64, issue SYSSTATE
AMODE64=NO to reset the global indicator.

When your program is in AMODE 64, keep in mind these two facts:

• Before you use a macro in AMODE 64, check the description of the macro in z/OS MVS Programming:
Assembler Services Reference ABE-HSP or z/OS MVS Programming: Assembler Services Reference IAR-
XCT. If the description of the macro does not specifically state that the macro supports callers in
AMODE 64, use the SAM31 or SAM24 instruction to change the AMODE and use the macro in the
changed AMODE.

• GR 15-1 bits 0-31 of the 64-bit GRs are volatile across all macro calls, whether the caller is or is not in
AMODE 64. Do not count on the contents of these high halves to be the same after the call as they were
before.

Example of using SYSSTATE AMODE64=
Consider that a program changes AMODE from AMODE 31 to AMODE 64 and while in AMODE 64, issues
the TIMEUSED macro. When it changes to AMODE 64, it issues the following:

SAM64
SYSSTATE AMODE64=YES

The TIMEUSED macro generates different code, depending on the AMODE of the caller. During the
assembly of TIMEUSED, the TIMEUSED macro service checks the setting of the global indicator. Because
the global indicator indicates that the caller is in AMODE 64, TIMEUSED generates code that is
appropriate for callers in AMODE 64.

When the program changes back to AMODE 31, it issues the following:

SAM31
SYSSTATE AMODE64=NO

IARV64 services
The IARV64 macro provides all the virtual storage services for your programs. This information introduces
these services and the rules for what programs can do with the memory objects your programs create and
use.

Your program can use:

• The GETSTOR service to create a memory object in the primary address space. The memory object has
a storage key that matches your PSW key. You can assign ownership of the memory object to the TCB of
the job step task or the mother task (the task of the program that issued the ATTACHX). You can create a

206 z/OS: z/OS MVS Assembler Services Guide

memory object that contains two areas: a usable area and a guard area that cannot be used while in that
state.

• The PAGEOUT service to alert the system that physical pages will not be used so that the system can
optimize the use of the physical pages.

• The PAGEIN service to alert the system that pages will be needed soon.
• The DISCARDATA service to discard in physical pages and optionally clear the pages to zeros.
• The CHANGEGUARD service to change
• The DETACH service to free one or more memory objects that you own.

The remaining pages of this chapter describe how you use IARV64 services. It does not describe
environmental or programming requirements, register usage, or syntax rules. For that information, turn to
the descriptions of the IARV64 macro in z/OS MVS Programming: Assembler Services Reference IAR-XCT.

Protecting storage above the bar
To limit access to the memory object, the creating program can use the FPROT parameter on IARV64.
FPROT specifies whether the storage in the memory object is to be fetch-protected. The fetch protection
attribute applies for the entire memory object. A program cannot reference storage in a fetch-protected
memory object without holding the PSW key that matches the storage key of the memory object.

Preventing execution of code from the memory object
To prevent code execution from the memory object, the creating program can use EXECUTABLE=NO on
IARV64. Attempts to execute code from a memory object, which is obtained as EXECUTABLE=NO, results
in a system abend. This abend provides additional system integrity by not allowing unexpected execution
from areas such as heaps and stacks that contain only data.

Relationship between the memory object and its owner
Ownership issues are important. If you don't understand them, a memory object that your program
creates and uses might cause an abend. A program creates a memory object, but a TCB owns the memory
object. The TCB that represents the program is the owner of the memory object, unless the program
assigns ownership to another TCB.

The memory object is available to a program whose PSW key matches the storage key of the memory
object. The memory object can be accessed by programs running under the owning TCB and other
programs running in the same address space.

When a TCB terminates, the system deletes the memory objects that the TCB owns. The system swaps a
memory object in and out as it swaps in and out the address space that dispatched the owning TCB.

A memory object can remain active even after the creating TCB terminates if a program assigns ownership
of the memory object to a TCB that will outlive the creating TCB. In this case, termination of the creating
TCB does not affect the memory object.

Tagging 64-bit memory objects for data privacy
To control the distribution of sensitive data in 64-bit memory objects, the creating program can use the
SENSITIVE parameter on the IARV64 service. SENSITIVE=YES indicates that the memory object contains
sensitive data. Tagged sensitive data in dumps can be secured and redacted when post processed by
Data Privacy for Diagnostics (DPfD). For more information about DPfD, see z/OS MVS Diagnosis: Tools and
Service Aids.

• Consider tagging memory objects as SENSITIVE=YES when they contain data of a personal or
confidential nature that can cause harm to the individual or business if not safeguarded, such as
regulated data as defined by General Data Protection Regulation (GDPR), Health Insurance Portability
and Accountability Act (HIPAA), or other legal requirements.

Chapter 12. Using the 64-bit address space 207

• Consider tagging memory objects as SENSITIVE=NO when they do not contain data of a personal or
confidential nature.

• Consider tagging memory objects as SENSITIVE=UNKNOWN, which is the default, when you are unsure
of the sensitive nature of the data.

• IARV64 REQUEST=CHANGEATTRIBUTE can be used to specify different sensitive states for subsections
of the memory object, but there will be higher system memory overhead than for a memory object with
a uniform SENSITIVE setting.

Creating memory objects
To create a memory object, use the IARV64 GETSTOR service. When you create a memory object, request
a size large enough to meet long-term needs; the system, however, abends a program that unconditionally
tries to obtain more storage above the bar than the MEMLIMIT allows. IBM recommends that you specify
COND=YES on the request to avoid the abend. In this case, if the request exceeds the MEMLIMIT,
the system rejects the request but the program continues to run. The IARV64 service returns to the
caller with a non-zero return code. The recovery routine would be similar to one that would respond to
unsuccessful STORAGE macro conditional requests for storage.

The SEGMENTS parameter specifies the size, in megabytes, of the memory object you are creating. The
system returns the address of the memory object in the ORIGIN parameter.

Other parameters further define the memory object:

• FPROT=YES gives it fetch protection.
• SENSITIVE=YES indicates that it contains sensitive (for instance, personal or confidential) data.
• TTOKEN=ttoken indicates what task is to own the memory object.
• USERTKN=usertoken is an 8-byte token that relates two or more memory objects to each other. Later,

the program can request a list of memory objects that have that same token and can delete them as a
group.

When a program creates a memory object, it can specify, through the GUARDSIZE and GUARDHIGH and
GUARDLOW parameters, that the memory object is to consist of two different areas. One area is called
a guard area; this storage is not accessible; the other area is called the usable area. A later request can
change the guard area into a usable area. “Creating a guard area and changing its size” on page 211 can
help you understand the important purposes for this kind of memory object.

Before issuing IARV64, issue SYSSTATE ARCHLVL=2 so that the macro generates the correct parameter
addresses.

Example of creating a memory object
The following example creates a memory object one megabyte in size. It specifies a constant with value of
one as a user token.

IARV64 REQUEST=GETSTOR,
 SEGMENTS=ONE_SEG,
 USERTKN=USER_TOKEN,
 ORIGIN=VIRT64_ADDR,
 COND=YES
ONE_SEG DC ADL8(1)
USER_TOKEN DC ADL8(1)
VIRT64_ADDR DS AD

Using a memory object
To use the storage in a memory object, the program must be in AMODE 64. To get there, a program in
AMODE 24 or AMODE 31 uses the assembler instruction SAM64. While in AMODE 64, a program can issue
only the IARV64 macro. The parameter lists the program passes to IARV64 can reside above or below the
bar.

208 z/OS: z/OS MVS Assembler Services Guide

To invoke macros other than IARV64, a program must be in AMODE 31 or AMODE 24. This restriction
might mean that the program must first issue SAM31 to return to AMODE 31. After a program issues a
macro other than IARV64, it can return to AMODE 64 through SAM64. To learn whether a program is in
AMODE 64, see “Setting and checking the addressing mode” on page 205.

Managing the data, such as serializing the use of a memory object, is no different from serializing the use
of an area obtained through GETMAIN or STORAGE.

Although only one macro can be issued in AMODE 64, other interfaces support storage above the bar. For
example, the DUMP command with the STOR=(beg,end[,beg,end]...) parameter specifies ranges of virtual
storage to be dumped. Those ranges can be above the bar.

In summary, there are major differences between how you manage storage below the bar and how you
manage storage above the bar. Table 23 on page 209 can help you understand the differences, as well
as, some similarities. The first column identifies a task of concept, the second column applies to storage
below the bar; the third column applies to storage above the bar.

Table 23. Comparing Tasks and Concepts: Below the Bar and Above the Bar

Task or concept Below the bar Above the bar

Obtaining storage GETMAIN, STORAGE, CPOOL
macros and callable cell pool
services. On GETMAIN and
STORAGE, you can ask to have a
return code tell you whether the
storage is cleared to zeros.

IARV64 GETSTOR service creates
memory objects; storage is
cleared to zeros.

Increments of storage allocation In 8–byte increments. In 1-megabyte increments.

Requirements for requestor GETMAIN cannot be issued by an
AR mode caller. STORAGE can be
issued by an AR mode program.
CPOOL cannot be issued by a
program in AR mode. Callable
cell pool services can be issued
in either mode.

IARV64 can be issued by a
program in AR mode.

Freeing storage FREEMAIN, STORAGE, CPOOL
macros, and callable cell pool
services. Any 8-byte increment
of the originally-obtained storage
can be freed. An entire subpool
can be freed with a single
request. At task termination,
storage owned by task is freed;
some storage (common, for
example) does not have an
owner.

IARV64 DETACH service. Storage
can be freed only in 1-megabyte
increments. All memory objects
obtained with a specified user-
defined token can be freed
with a single request. At task
termination, storage owned by
task is freed; all storage has an
owner and that owner is a task.

Notifying the system of an
anticipated use of storage

PGSER LOAD request PGSER OUT
request.

IARV64 PAGEIN and IARV64
PAGEOUT services.

Making a range of storage read-
only or modifiable

PGSER PROTECT request and
PGSER UNPROTECT request.

IARV64 REQUEST=PROTECT
option.

Chapter 12. Using the 64-bit address space 209

Table 23. Comparing Tasks and Concepts: Below the Bar and Above the Bar (continued)

Task or concept Below the bar Above the bar

Discard data in physical pages
and optionally clear the pages to
zeros.

PGSER RELEASE request always
clears the storage to zeros.

Note: PGRLSE, PGSER RELEASE,
PGSER FREE with RELEASE=Y,
and PGFREE RELEASE=Y may
ignore some or all of the pages in
the input range and will not notify
the caller if this was done.

Any pages in the input range
that match any of the following
conditions will be skipped, and
processing continues with the
next page in the range:

• Storage is not allocated or all
pages in a segment have not
yet been referenced.

• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's
fixed.

• Page is in BLDL, (E)PLPA, or
(E)MLPA.

• Page has a page fix in progress
or a nonzero FIX count.

• Pages with COMMIT in progress
or with DISASSOCIATE in
progress.

IARV64 DISCARDDATA service.
CLEAR=YES must be specified to
guarantee the storage is cleared
to zeros on the next usage.

Fetch protection attributes Apply to the entire allocated
area.

Apply to the entire allocated
area.

What the area consists of System programs and data, user
programs and data.

User data only.

Performing I/O VSAM, BSAM, BPAM, QSAM,
VTAM®, and EXCP, EXCPVR
services.

EXCP and EXCPVR services and
BSAM with an extended format
data set.

Accessing storage To access data in the 2–gigabyte
address space, a program must
run in AMODE 31 or AMODE
64. S/390 and z/Architecture
instructions can be used.

To access data in the 16-exabyte
address space, a program must
run in AMODE 64. To load an
address of a location above the
bar into a GPR, a program must
use a z/Architecture instruction.

Discarding data in a memory object
Your program can use the IARV64 DISCARDDATA service to tell the system that your program no longer
needs the data in certain pages and that the system can free them. Optionally, you can use the CLEAR
parameter to clear the area to zeros. You can also use the KEEPREAL parameter to specify whether to free
the real frames that back the pages to be discarded.

The RANGLIST parameter provides a list of page ranges, in the following format:

210 z/OS: z/OS MVS Assembler Services Guide

Releasing the physical resources that back pages of memory
objects

A program uses the IARV64 PAGEOUT service to tell the system that the data in certain pages will not
be used for some time (as measured in seconds) and that the pages are candidates for paging out of real
storage. A pageout does not affect pages that are fixed in real storage. On the RANGLIST parameter, the
program provides a list of page ranges.

A program uses the IARV64 PAGEIN service to tell the system that it will soon reference the data in
certain pages and that the system should page them into real storage if the pages are not already backed
by real storage.

Freeing a memory object
When your program no longer needs the memory object, it uses IARV64 DETACH to free (delete) the
memory object. You can free memory objects that are related to each other through the user token
defined on the IARV64 GETSTOR service. Additionally, all programs can use the following parameters:

• MATCH=SINGLE,MEMOBJSTART frees a specific memory object, as identified by its origin address.
• MATCH=USERTOKEN, USERTKN frees a related set of memory objects by providing the user token
specified when the memory objects were created.

• COND=YES makes the request conditional, but only when you also pass a user token. IBM recommends
you use COND to avoid having the program abend because it asked to free a memory object that doesn't
exist.

Three conditions to avoid when you try to free a memory object are:

• Freeing a memory object that does not exist.

If you try to free a memory object that doesn't exist, the system abends your program.
• Freeing a memory object that has I/O in progress.

If you specify the COND=YES parameter, you must also specify a user token. In the recovery routine that
gets control at an abend, you can ignore the abend and leave the memory object in an unusable state.

As part of normal task termination, RTM frees the memory objects owned by the terminating task.

Example of freeing a memory object
The program frees all memory objects that have the user token specified in "USER_TOKEN":

IARV64 REQUEST=DETACH,
 MATCH=USERTOKEN,
 USERTKN=USER_TOKEN
USER_TOKEN DC ADL8(1)

Creating a guard area and changing its size
A program can create a memory object that consists of two areas: an area it can use immediately, called
the usable area, and a second area, called a guard area. The system does not allow programs to use
storage in the guard area.

Chapter 12. Using the 64-bit address space 211

To create a memory object with a guard area, use the IARV64 GETSTOR or GETCOMMON request
with either the SEGMENTS or UNITS parameter to specify the size of the memory object, and
either the GUARDSIZE or GUARDSIZE64 parameter to specify the size of the initial guard area. Use
GUARDLOC=LOW or GUARDLOC=HIGH to specify whether the initial guard area is to be at the low end or
the high end of the memory object.

One reason for specifying a guard area is to reserve the area for future use. For example, a program can
manage the parceling out of pages of the memory object. Another reason for using a guard area is so
that the program requesting the memory object can protect itself from accidentally referencing storage
beyond the end of the memory object, and possibly overlaying data in another adjacent memory object.
For that, the program would use GUARDLOC=HIGH. If the program wanted to protect itself from another
program that might be using an adjacent memory at a lower address, it would likely use GUARDLOC=LOW.

Use COND=YES, conditionally requesting the change, to avoid an abend if the request exceeds the
MEMLIMIT established by the installation or if there are insufficient frames to back the additional usable
area of the memory object. If it cannot grant a conditioned request, the system rejects the request, but
the program continues to run.

The following illustration shows a memory object, three segments in size. GUARDLOC=HIGH creates the
guard area at the highest addresses of the memory object. The memory object has two segments of
usable storage and one segment on reserve for later use.

Use the IARV64 CHANGEGUARD service to increase or decrease the amount of usable space in a memory
object by adjusting the size of the guard area. Your program cannot reference an address in the guard
area; if it does, the program receives a program exception (0C4 abend). To avoid the abend, code a
recovery routine to get control upon receiving the program exception; the recovery routine can retry and
can then increase the usable part of the memory object (decreasing the guard area.)

The guard area does not count towards the MEMLIMIT set by the installation; the usable area does count
toward the MEMLIMIT.

Example of creating a memory object with a guard area
The following example creates a 3-megabyte memory object with a 2-megabyte guard area. The guard
area is at the high end of the memory object:

IARV64 REQUEST=GETSTOR, +
 SEGMENTS=NUM_SEG, +
 USERTKN=USER_TOKEN, +
 GUARDSIZE=GUARDPAGES, +
 GUARDLOC=HIGH, +
 ORIGIN=VIRT64_ADDR

The following example increases the size of the guard area by the specified amount.

IARV64 REQUEST=CHANGEGUARD, +
 CONVERT=FROMGUARD, +

212 z/OS: z/OS MVS Assembler Services Guide

 MEMOBJSTART=VIRT64_ADDR, +
 CONVERTSIZE=SEGMENT_SIZE

An example of creating, using, and freeing a memory object
The following program creates a 1-megabyte memory object and writes the character string "Hi Mom"
into each 4k page of the memory object. The program then frees the memory object.

 TITLE 'TEST CASE DUNAJOB'
 ACONTROL FLAG(NOALIGN)
DUNAJOB CSECT
DUNAJOB AMODE 31
DUNAJOB RMODE 31
 SYSSTATE ARCHLVL=2
* Begin entry linkage
 BAKR 14,0
 CNOP 0,4
 BRAS 12,@PDATA
 DC A(@DATA)
@PDATA LLGF 12,0(12)
 USING @DATA,12
 LHI 0,DYNAREAL
 STORAGE OBTAIN,LENGTH=(0),SP=0,CALLRKY=YES
 LLGTR 13,1
 USING @DYNAREA,13
 MVC 4(4,13),=C'F6SA'
* End entry linkage
*
 SAM64 Change to amode64
 IARV64 REQUEST=GETSTOR, +
 SEGMENTS=ONE_SEG, +
 USERTKN=USER_TOKEN, +
 ORIGIN=VIRT64_ADDR
 LG 4,VIRT64_ADDR Get address of memory obj
 LHI 2,256 Set loop counter
LOOP DS 0H
 MVC 0(10,4),=C'HI_MOM! ' Store HI MOM!
 AHI 4,4096
 BRCT 2,LOOP
* Get rid of all memory objects created with this
* user token
 IARV64 REQUEST=DETACH, +
 MATCH=USERTOKEN, +
 USERTKN=USER_TOKEN, +
 COND=YES
*
* Begin exit linkage
 LHI 0,DYNAREAL
 LR 1,13
 STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=0,CALLRKY=YES
 PR
* End exit linkage
@DATA DS 0D
ONE_SEG DC FD'1'
USER_TOKEN DC FD'1'
 LTORG
@DYNAREA DSECT
SAVEAREA DS 36F
VIRT64_ADDR DS AD
DYNAREAL EQU *-@DYNAREA
 END DUNAJOB

Chapter 12. Using the 64-bit address space 213

214 z/OS: z/OS MVS Assembler Services Guide

Chapter 13. Callable cell pool services

Note to reader

In this section, the notation CSRPxxx/CSRC4xxx is used to indicate either the CSRPxxx service in AMODE
24 or 31, or the CSRC4xxx service in AMODE 64.

End of Note to reader

Callable cell pool services manage areas of virtual storage in the primary address space, in data spaces
and in address spaces other than the primary address space. A cell pool is an area of virtual storage that
is subdivided into fixed-sized areas of storage called cells, where the cells are the size you specify. A cell
pool contains:

• An anchor
• At least one extent
• Any number of cells, all having the same size.

The anchor is the starting point or foundation on which you build a cell pool. Each cell pool has only one
anchor. An extent contains information that helps callable cell pool services manage cells and provides
information you might request about the cell pool. A cell pool can have up to 65,536 extents, each
responsible for its own cell storage. Your program determines the size of the cells and the cell storage.
Figure 61 on page 217 illustrates the three parts of a cell pool.

Through callable cell pool services, you build the cell pool. You can then obtain cells from the pool. When
there are no more cells available in a pool, you can use callable cell pool services to enlarge the pool.

To use callable cell pool services, your program issues the CALL macro to invoke one of the following
services:

• Build a cell pool and initialize an anchor (CSRPBLD/CSRC4BLD service)
• Expand a cell pool by adding an extent (CSRPESP/CSRC4EXP service)
• Connect cell storage to an extent (CSRPCON/CSRC4CON service)
• Activate previously connected storage (CSRPACT/CSRC4ACT service)
• Deactivate an extent (CSRPDAC/CSRC4DAC service)
• Disconnect the cell storage for an extent (CSRPDIS/CSRC4DIS service)
• Allocate a cell from a cell pool (CSRPGET/CSRC4GET, CSRPGT1/CSRC4GT1, or CSRPGT2/CSRC4GT2

and CSRPRGT/CSRC4RGT or CSRPRGT1/CSRC4RG1 services)
• Return a cell to the cell pool (CSRPFRE/CSRC4FRE or CSRPFR1/CSRC4FR1, or CSRPFR2/CSRC4FR2 and

CSRPRFT/CSRC4RFR or CSRPRFR1/CSRC4RF1 services)
• Query the cell pool (CSRPQPL/CSRC4QPL service)
• Query a cell pool extent (CSRPQEX/CSRC4QEX service)
• Query a cell (CSRPQCL/CSRC4QCL service).

Your system's AMODE will determine which set of services to use, as follows:

• When running AMODE 24 or AMODE 31, use the CSRPxxx services. Use the CSRCPxxx interface
definition file (IDF) for your language, and use CSRCPOOL to linkedit.

• When running AMODE 64, use the CSRC4xxx services. Use the CSRC4xxx interface definition file (IDF)
for your language (note that only assembler and C IDFs are provided), and use CSRC4POL to linkedit.

© Copyright IBM Corp. 1988, 2022 215

Comparison of callable cell pool services and the CPOOL macro
Callable cell pool services are similar to the CPOOL macro, but with some additional capabilities. A
program executing in any state or mode (disabled, locked, AR mode, SRB mode, etc.) can use the services
to manage storage in data spaces as well as address spaces. The services allow you to define cell
boundaries and to expand and contract cell pools. Another difference is in how CPOOL and the callable
cell pool services handle the requests to free cells. CPOOL corrupts storage if you try to free a cell that has
not been obtained (through CPOOL GET), or if you try to free a cell for a second time. Callable cell pool
services accept the request, but do no processing except to return a code to your program.

Table 24 on page 216 describes other differences; it can help you decide between the two ways to
manage cell pools.

Table 24. Cell pool services versus the CPOOL macro, based on program requirements

If your program… Use…

Is in AR mode Cell pool services
(CPOOL has mode restrictions.)

Needs to reduce the size of a cell pool Cell pool services
(CPOOL supports expansion but only supports
contraction under certain conditions.)

Needs data space storage Cell pool services
(CPOOL supports only the primary address space.)

Needs storage in an address space other than the
primary

Cell pool services
(CPOOL supports only primary address space
storage.)

Must define cell boundaries Cell pool services
(CPOOL supports only 8-byte boundaries.)

Requires high performance on GETs and FREEs CPOOL macro

In some ways, callable cell pool services require more work from the caller than CPOOL does. For
example, the services require the following actions that the CPOOL macro does not require:

• Use the GETMAIN, STORAGE OBTAIN, or DSPSERV macro to obtain the storage area for the cell pool.
• Provide the beginning addresses of the anchor, the extents, and cell storage areas.
• Provide the size of each extent and the cell storage that the extent is responsible for.

Storage considerations
The virtual storage for the cell pool must reside in an address space or a data space.

• The anchor and extents must reside within the same address space or data space.
• The cells must reside within one address space or data space; that space can be different from the one

that contains the anchor and extents.

Figure 61 on page 217 illustrates the anchor and extents in Data/Address Space A and the cell storage in
Data/Address Space B.

Before you can obtain the first cell from a cell pool, you must plan the location of the anchor, the extents,
and the cell storage. You must obtain the storage for the following areas and pass the following addresses
to the services:

• The anchor, which requires 64 bytes of storage
• The extent, which requires 128 bytes plus one byte for every eight cells of cell storage
• The cell storage.

216 z/OS: z/OS MVS Assembler Services Guide

Figure 61. Cell pool storage

When you plan the size of the cell storage, consider the total requirements of your application for this
storage and some performance factors. Although a single extent may contain any number of cells (up
to 2²⁴ bytes, or 16,777,216), you might wish to have multiple extents for performance purposes. Avoid
having a large number of extents, where each extent is responsible for a small number of cells. In general,
a greater requirement for cells should mean a proportionately smaller number of extents. The following
two examples illustrate this point.

• If you have 10,000 cells in the pool, a good extent size is 2,500 cells per extent.
• If you have 100,000 cells in the pool, a good extent size is 10,000 cells per extent.

“Using callable cell pool services to manage data space areas” on page 272 contains an example of using
callable cell pool services with data spaces. It also describes some storage considerations.

Link-editing callable cell pool services
Any program that invokes callable cell pool services must be link-edited with an IBM-provided linkage-
assist routine. The linkage-assist routine provides the logic needed to locate and invoke the callable
services. The linkage-assist routine resides in SYS1.CSSLIB.

Chapter 13. Callable cell pool services 217

The following examples show the JCL needed to link-edit a program with the linkage-assist routine. The
examples assume that the program is reentrant.

AMODE 24 or 31 example

//LINKJOB JOB ’accountinfo’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTP1 EXEC PGM=HEWL,PARM=’LIST,LET,XREF,REFR,RENT,NCAL,
// SIZE=(1800K,128K)’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSNAME=userid.LOADLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
 INCLUDE OBJDD1(userpgm)
 INCLUDE OBJDD2(CSRCPOOL)
 NAME userpgm(R)
//OBJDD1 DD DSN=userid.OBJLIB,DISP=SHR
//OBJDD2 DD DSN=SYS1.CSSLIB,DISP=SHR

AMODE 64 example

//LINKJOB JOB ’accountinfo’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTP1 EXEC PGM=IEWBIND,PARM=’LIST,LET,XREF,REFR,RENT,NCAL,
// SIZE=(1800K,128K)’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSNAME=userid.LOADLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
 INCLUDE OBJDD1(userpgm)
 INCLUDE OBJDD2(CSRC4POL)
 NAME userpgm(R)
//OBJDD1 DD DSN=userid.OBJLIB,DISP=SHR
//OBJDD2 DD DSN=SYS1.CSSLIB,DISP=SHR

Using callable cell pool services
The following topics describe how you can use callable cell pool services to control storage and request
information about the cell pools. The discussion of creating a cell pool and adding an extent assumes that
you have already obtained the storage for these areas.

To create a cell pool, call the CSRPBLD/CSRC4BLD service. This service initializes the anchor for the cell
pool, assigns the name of the pool, and establishes the size of the cells.

To add an extent and connect it to the cell storage, call the CSRPEXP/CSRC4EXP service. You need at
least one extent in a cell pool. Each extent is responsible for one cell storage area. You can add an
extent to increase the numbers of cells; the maximum number of extents in a cell pool is 65,536. The
CSRPEXP/CSRC4EXP service initializes an extent for the cell pool, connects the cell storage area to the
extent, and activates the cell storage for the extent.

Having activated the cell storage for an extent, you can now process GET requests from the cells that the
extent represents.

To contract a cell pool, deactivate its extents, and disconnect its storage, use the CSRPDAC/CSRC4DAC
and CSRPDIS/CSRC4DIS services. CSRPDAC/CSRC4DAC deactivates an extent and prevents the
processing of any further GET requests from the storage that the extent represents. Cell FREE requests
are unaffected. (You can use the CSRPACT/CSRC4ACT service to reactivate an inactive extent; reactivating
undoes the effect of using CSRPDAC/CSRC4DAC.)

CSRPDIS/CSRC4DIS disconnects the cell storage from an extent and makes cell storage unavailable. After
you disconnect an extent, you can free the cell storage associated with the extent.

Note: Do not free the extent itself until you have finished using the entire pool.

218 z/OS: z/OS MVS Assembler Services Guide

To reuse a deactivated, disconnected extent, call the CSRPCON/CSRC4CON and CSRPACT/CSRC4ACT
services, not CSRPEXP/CSRC4EXP. This is generally the only time you will need to use these two services.
CSRPCON/CSRC4CON reconnects an extent to cell pool storage that you have not explicitly freed or that
connects the extent to cells in newly-obtained storage. If you reconnect the extent to new cell storage, be
sure that the extent is large enough to support the size of the cell storage. (CSRPCON/CSRC4CON undoes
the effects of using CSRPDIS/CSRC4DIS.) CSRPACT/CSRC4ACT activates the cell storage for the extent.
You can now issue GET requests for the cells.

To allocate (or obtain) cells and deallocate (or free) previously allocated cells, you have a choice of two
forms of the same services. One service form supports the standard CALL interface. The other supports a
register interface and is appropriate for programs that cannot obtain storage for a parameter list. The two
service functions are identical; however, the calling interface is different.

The CSRPGET/CSRC4GET (standard CALL interface) and CSRPRGT/CSRC4RGT (register interface) services
allocate a cell from the cell pool. You can allocate cells only from extents that have not been deactivated.
Such an extent is called an active extent. The services return to the caller the address of the allocated cell.
The CSRPGT1/CSRC4GT1 and CSRPGT2/CSRC4GT2 (standard CALL interface) and CSRPRGT1/CSRC4RG1
(register interface) services provide the same function with slightly improved performance.

The CSRPFRE/CSRC4FRE (standard CALL interface) and CSRPRFR/CSRC4RFR (register interface) services
return a previously allocated cell to a cell pool. They return a code to the caller if they cannot find the
cell associated with an extent. If you free the last allocated cell in an inactive extent, you will receive a
unique code. You may use this information to initiate cell pool contraction. The CSRPFR1/CSRC4FR1 and
CSRPFR2/CSRC4FR2 (standard CALL interface) and CSRPRFR1/CSRC4RF1 (register interface) services
provide the same function with slightly improved performance.

To obtain status about a cell pool, use one of three services. These services do not prevent the cell pool
from changing during a status query. They return status as it is at the time you issue the CALL.

The CSRPQPL/CSRC4QPL service returns the following information about the entire cell pool:

• Pool name
• Cell size
• Total number of cells in active extents
• Total number of available cells associated with active extents
• Number of extents in the cell pool

The CSRPQEX/CSRC4QEX service returns the following information about a specific extent:

• Address and length of the extent
• Address and length of the cell storage area
• Total number of cells associated with the extent
• Number of available cells associated with the extent

The CSRPQCL/CSRC4QCL service returns the following information about a cell:

• Number of the extent that represents the cell
• Cell allocation status

Handling return codes
Each time you call a service, you receive a return code. The return code indicates whether the service
completed successfully, encountered an unusual condition, or was unable to complete successfully.

Standard CALL interface services pass return codes in both the parameter list and register 15.

When you receive a return code that indicates a problem or an unusual condition, your program can either
attempt to correct the problem, or can terminate its processing.

Chapter 13. Callable cell pool services 219

Callable cell pool services coding examples
The code in these examples invokes callable cell pool services. The anchor, the one extent, and the
cell storage are all in a data space. The caller obtains a cell from the cell storage area and requests
information about the pool, the extent, and the cell.

AMODE 24 or 31 example

 CSRCPASM INVOKE CELL POOL SERVICES ASSEMBLER DECLARES
 SAC 512 SET AR ASC MODE
 SYSSTATE ASCENV=AR
*
* Establish addressability to code. *
*
 LAE AR12,0
 BASR R12,0
 USING *,R12
*
* Get data space for the cell pool. *
*
GETDSP DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
*
* Add the data space to caller's access list. *
*
GETALET ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 L 2,DSPCORG ORIGIN OF SPACE IN GR2
 ST 2,DSPCMARK DSPCMARK IS MARK FOR DATA SPACE
*
* Copy ALET to ANCHALET for calls to cell pool services. *
*
 MVC ANCHALET(4),DSPCALET
*
* Set address and size of the anchor
*
 L R4,DSPCMARK
 ST R4,ANCHADDR
 A R4,ANCHSIZE
 ST R4,DSPCMARK
*

* Call the build service. *
*
 CALL CSRPBLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
*
* Set address and size of the extent and connect extent to cells *
*
 L R4,DSPCMARK RESERVES
 ST R4,XTNTADDR
 A R4,XTNTSIZE SETS SIZE OF EXTENT
 ST R4,CELLSTAD
 A R4,CELLSTLN SETS SIZE OF CELL STORAGE
 ST R4,DSPCMARK DATA
 CALL CSRPEXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X
 CELLSTAD,CELLSTLN,EXTENT,RTNCODE)
*
* Get a cell. CELLADDR receives the address of the cell. *
*
 CALL CSRPGET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* The program uses the cells.
*
* Query the pool, the extent, and the cell. *
*
 CALL CSRPQPL,(ANCHALET,ANCHADDR,QNAME,QCELLSZ,QTOT_CELLS, X
 QAVAIL_CELLS,QNUMEXT,QRTNCODE)
 CALL CSRPQEX,(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
 QXTNT_LEN,QCELL_ADDR,QCELL_LEN,QTOT_CELLS, X
 QAVAIL_CELLS,QRTNCODE)
 CALL CSRPQCL,(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
 QRTNCODE)
*
* Free the cell. *
*
 CALL CSRPFRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*

220 z/OS: z/OS MVS Assembler Services Guide

* Deactivate the extent. *
*
 CALL CSRPDAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
*
* Disconnect the extent. *
*
 CALL CSRPDIS,(ANCHALET,ANCHADDR,EXTENT,QCELL_ADDR,QCELL_LEN, X
 QRTNCODE)
*
* Remove the data space from the access list. *
*
 ALESERV DELETE,ALET=DSPCALET
*
* Delete the data space. *
*
 DSPSERV DELETE,STOKEN=DSPCSTKN
*
* Return to caller.
*
 BR 14

* Constants and data areas used by cell pool services *

*
CELLS_PER_EXTENT EQU 512
EXTENTS_PER_POOL EQU 10
CELLSIZE_EQU EQU 256
CELLS_PER_POOL EQU CELLS_PER_EXTENT*EXTENTS_PER_POOL
XTNTSIZE_EQU EQU 128+(((CELLS_PER_EXTENT+63)/64)*8)
STORSIZE_EQU EQU CELLS_PER_EXTENT*CELLSIZE_EQU
CELLS_IN_POOL DC A(CELLS_PER_POOL)
ANCHALET DS F
ANCHADDR DS F
CELLSIZE DC A(CELLSIZE_EQU)
USERNAME DC CL8'MYCELLPL'
ANCHSIZE DC F'64'
XTNTSIZE DC A(XTNTSIZE_EQU)
XTNTADDR DS F
CELLSTAD DS F
CELLSTLN DC A(STORSIZE_EQU)
CELLADDR DS F
EXTENT DS F
STATUS DS F
RTNCODE DS F
*

* Constant data and areas for data space *

*
 DS 0D
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU STORSIZE_EQA*EXTENTS_PER_POOL 1.28MEG DATA SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) BLOCKS FOR 10K DATA SPACE
DSPCALET DS F
DSPCMARK DS F HIGH WATER MARK FOR DATA SPACE
DSPCNAME DC CL8'DATASPC1' DATA SPACE NAME
*

* Values returned by queries *

*
QNAME DS CL8
QCELLSZ DS F
QNUMEXT DS F
QEXTNUM DS F
QEXSTAT DS F
QXTNT_ADDR DS F
QXTNT_LEN DS F
QCELL_ADDR DS F
QCELL_LEN DS F
QTOT_CELLS DS F
QAVAIL_CELLS DS F
QRTNCODE DS F
RC DS F
QCLADDR DS F

Chapter 13. Callable cell pool services 221

QCLEXT DS F
QCLAVL DS F

AMODE 64 example

TEST CSECT
TEST AMODE 64
TEST RMODE 31
 BSM R14,0 Save caller's AMODE indication
 BAKR R14,0 Save regs on linkage stack
 SAM64 Into AMODE 64
 SYSSTATE AMODE64=YES
*
* Establish addressability to static data. We use relative
* branching to avoid needing addressability to the code
*
 CNOP 0,4
 BRAS R12,PAST1
 DC A(STATIC_DATA)
PAST1 DS 0H
 LLGT R12,0(R12,0)
 USING STATIC_DATA,R12
*
* Get space for the cell pool in primary, above 2G
*
 IARV64 REQUEST=GETSTOR,SEGMENTS=STORSEGS,ORIGIN=STORORIG
*
* Since the space is in primary, an ALET of 0 is needed
*
 XC ANCHALET(4),ANCHALET
*
* Set address and size of the anchor
*
 LG R4,STORORIG
 STG R4,ANCHADDR

*
* Call the build service
*
 CALL CSRC4BLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
*
* Set address and size of the extent and connect extent to cells
*
 LG R4,STORORIG
 AGF R4,ANCHSIZE
 STG R4,XTNTADDR
 AG R4,XTNTSIZE Sets size of extent
 STG R4,CELLSTAD
 AG R4,CELLSTLN Sets size of cell storage
 CALL CSRC4EXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X
 CELLSTAD,CELLSTLN,EXTENT,RTNCODE)
*
* Get a cell. CELLADDR receives the address of the cell.
*
 CALL CSRC4GET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* The program uses the cells.
*
* Query the pool, the extent, and the cell. *
*
 CALL CSRC4QPL,(ANCHALET,ANCHADDR,QNAME,QCELLSZ,QTOT_CELLS, X
 QAVAIL_CELLS,QNUMEXT,QRTNCODE)
 CALL CSRC4QEX,(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
 QXTNT_LEN,QCELL_ADDR,QCELL_LEN,QTOT_CELLS, X
 QAVAIL_CELLS,QRTNCODE)
 CALL CSRC4QCL,(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
 QRTNCODE)
*
* Free the cell.
*
 CALL CSRC4FRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* Deactivate the extent.
*
 CALL CSRC4DAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
*
* Disconnect the extent.
*

222 z/OS: z/OS MVS Assembler Services Guide

 CALL CSRC4DIS,(ANCHALET,ANCHADDR,EXTENT,QCELL_ADDR,QCELL_LEN, X
 QRTNCODE)
*
* Free the storage
*
 IARV64 REQUEST=DETACH,MEMOBJSTART=STORORIG
*
* Return to caller.
*
 PR

* Constants and data areas used by cell pool services *

*
STATIC_DATA DS 0D
*
CELLS_PER_EXTENT EQU 512
EXTENTS_PER_POOL EQU 10
CELLSIZE_EQU EQU 256
CELLS_PER_POOL EQU CELLS_PER_EXTENT*EXTENTS_PER_POOL
XTNTSIZE_EQU EQU CSRC4_EXTENT_BASE+(((CELLS_PER_EXTENT+63)/64)*8)
STORSIZE_EQU EQU CELLS_PER_EXTENT*CELLSIZE_EQU
CELLS_IN_POOL DC AD(CELLS_PER_POOL)
ANCHADDR DS AD
CELLSIZE DC AD(CELLSIZE_EQU)
USERNAME DC CL(CSRC4_POOL_NAME_LEN)'MYCELLPL'
ANCHALET DS F
ANCHSIZE DC A(CSRC4_ANCHOR_LENGTH)
XTNTSIZE DC AD(XTNTSIZE_EQU)
XTNTADDR DS AD
CELLSTAD DS AD
CELLSTLN DC AD(STORSIZE_EQU)
CELLADDR DS AD
STATUS DS D
EXTENT DS F
RTNCODE DS F
*

* Constant data and areas

*
 DS 0D
STORORIG DS AD Storage Origin
STORSIZE EQU STORSIZE_EQU*EXTENTS_PER_POOL
STORSEGS DC AD((STORSIZE+1024*1024-1)/(1024*1024)) 1M Segments needed
*

* VALUES RETURNED BY QUERIES

*
QNAME DS CL(CSRC4_POOL_NAME_LEN)
QCELLSZ DS D
QNUMEXT DS D
QEXSTAT DS D
QXTNT_ADDR DS D
QXTNT_LEN DS D
QCELL_ADDR DS D
QCELL_LEN DS D
QTOT_CELLS DS D
QAVAIL_CELLS DS D
QCLADDR DS D
QCLAVL DS D
QCLEXT DS F
QRTNCODE DS F

* Registers

R4 EQU 4
R12 EQU 12
R14 EQU 14

* Declares for CSRC4xxx services

 CSRC4ASM Assembler declares for AMODE 64
 END TEST

Chapter 13. Callable cell pool services 223

224 z/OS: z/OS MVS Assembler Services Guide

Chapter 14. Data-in-virtual

Data-in-virtual simplifies the writing of applications that use large amounts of data from permanent
storage. Applications can create, read, and update data without the I/O buffer, blocksize, and record
considerations that the traditional GET and PUT types of access methods require.

By using the services of data-in-virtual, certain applications that access large amounts of data can
potentially improve their performance and their use of system resources. Such applications have an
accessing pattern that is non-sequential and unpredictable. This kind of pattern is a function of conditions
and values that are revealed only in the course of the processing. In these applications, the sequential
record subdivisions of conventional access methods are meaningless to the central processing algorithm.
It is difficult to adapt this class of applications to conventional record management programming
techniques, which require all permanent storage access to be fundamentally record-oriented. Through
the DIV macro, data-in-virtual provides a way for these applications to manipulate the data without the
constraints of record-oriented processing.

An application written for data-in-virtual views its permanent storage data as a seamless body of data
without internal record boundaries. By using the data-in-virtual MAP service, the application can make
any portion of the object appear in virtual storage in an area called a virtual storage window. The window
can exist in an address space, a data space, or a shared or non-shared standard hiperspace. (See
“Example of mapping a data-in-virtual object to a data space” on page 275 and “Using data-in-virtual
with hiperspaces” on page 287 for more information.) When the window is in a data space, the application
can reference and update the data in the window by using assembler instructions. When the window is
in a hiperspace, the application uses the HSPSERV macro to reference and update the data. To copy the
updates to the object, the application uses the data-in-virtual SAVE service.

An application written for data-in-virtual might also benefit by using the IARVSERV macro to share virtual
storage, when that storage is in an address space or data space. For information about sharing data
in virtual storage through IARVSERV, particularly the restrictions for using the data-in-virtual MAP and
UNMAP services, see Chapter 20, “Sharing data in virtual storage (IARVSERV macro),” on page 331.

The data-in-virtual services process the application data in 4096-byte (4K-byte) units on 4K-byte
boundaries called blocks. The application data resides in what is called a data-in-virtual object, a data
object, or simply an object. The data-in-virtual object is a continuous string of uninterrupted data. The
data object can be either a VSAM linear data set or a non-shared standard hiperspace. Choosing a linear
data set as an object or a non-shared standard hiperspace as an object depends on your application. If
your application requires the object to retain data, choose a linear data set, which provides permanent
storage on DASD. A hiperspace object provides temporary storage.

When to use data-in-virtual
When an application reads more input and writes more output data than necessary, the unnecessary
reads and writes impact performance. You can expect improved performance from data-in-virtual
because it reduces the amount of unnecessary I/O.

As an example of unnecessary I/O, consider the I/O performed by an interactive application that requires
immediate access to several large data sets. The program knows that some of the data, although not all
of it, will be accessed. However, the program does not know ahead of time which data will be accessed. A
possible strategy for gaining immediate access to all the data is to read all the data ahead of time, reading
each data set in its entirety insofar as this is possible. Once read into processor storage, the data can be
accessed quickly. However, if only a small percentage of the data is likely to be accessed during any given
period, the I/O performed on the unaccessed data is unnecessary.

Furthermore, if the application changes some data in main storage, it might not keep track of the changes.
Therefore, to guarantee that all the changes are captured, the application must then write entire data sets
back onto permanent storage even though only relatively few bytes are changed in the data sets.

© Copyright IBM Corp. 1988, 2022 225

Whenever such an application starts up, terminates, or accesses different data sets in an alternating
manner, time is spent reading data that is not likely to be accessed. This time is essentially wasted,
and the amount of it is proportional to the amount of unchanged data for which I/O is performed. Such
applications are suitable candidates for a data-in-virtual implementation.

Factors affecting performance
When you write applications using the techniques of data-in-virtual, the I/O takes place only for the data
referenced and saved. If you run an application using conventional access methods, and then run it a
second time using data-in-virtual techniques, you will notice a difference in performance. This difference
depends on two factors: the size of the data set and its access pattern (or reference pattern). Size refers
to the magnitude of the data sets that the application must process. The access pattern refers to how the
application references the data.

In order to improve performance by using the data-in-virtual application, your data sets must be large and
the pattern must be scattered throughout the data set.

Engineering and scientific applications often use data access patterns that are suitable for data-in-virtual.
Among the applications that can be considered for a data-in-virtual implementation are:

• Applications that process large arrays
• VSAM relative record applications
• BDAM fixed length record applications

Commercial applications sometimes use data access patterns that are not suitable because they are
predictable and sequential. If the access pattern of a proposed application is fundamentally sequential
or if the data set is small, a conventional VSAM (or other sequential access method) implementation
may perform better than a data-in-virtual implementation. However, this does not rule out commercial
applications as data-in-virtual candidates. If the performance factors are favorable, any type of
application, commercial or scientific, is suitable for a data-in-virtual implementation.

Before you can use the DIV macro to process a linear data set object or a hiperspace object, you must
create either the data set or the hiperspace. Chapter 16, “Data spaces and hiperspaces,” on page 259
explains how to create a hiperspace. “Creating a linear data set” on page 226 explains how to create a
linear data set.

Creating a linear data set
To create the data set, you need to specify the DEFINE CLUSTER function of IDCAMS with the LINEAR
parameter. When you code the SHAREOPTIONS parameter for DEFINE CLUSTER, the cross-system value
must be 3; that is, you may code SHAREOPTIONS as (1,3), (2,3), (3,3), or (4,3). Normally, you should use
SHAREOPTIONS (1,3).

When creating a linear data set for DIV, you can use the LOCVIEW parameter of the DIV macro in
conjunction with the other SHAREOPTIONS. LOCVIEW is described under the topic “The ACCESS service”
on page 230. For a complete explanation of SHAREOPTIONS, see z/OS DFSMS Using Data Sets.

The following is a sample job that invokes Access Method Services (IDCAMS) to create the linear data set
named DIV.SAMPLE on the volume called DIVPAK. When IDCAMS creates the data set, it creates it as an
empty data set. Note that there is no RECORDS parameter; linear data sets do not have records.

226 z/OS: z/OS MVS Assembler Services Guide

//JNAME JOB 'ALLOCATE LINEAR',MSGLEVEL=(1,1),
// CLASS=R,MSGCLASS=D,USER=JOHNDOE
//*
//* ALLOCATE A VSAM LINEAR DATASET
//*
//CLUSTPG EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//DIVPAK DD UNIT=3380,VOL=SER=DIVPAK,DISP=OLD
//SYSIN DD *
 DEFINE CLUSTER (NAME(DIV.SAMPLE) -
 VOLUMES(DIVPAK) -
 TRACKS(1,1) -
 SHAREOPTIONS(1,3) -
 LINEAR)
/*

For further information on creating linear VSAM data sets and altering entry-sequenced VSAM data sets,
see z/OS DFSMS Access Method Services Commands.

Using the services of data-in-virtual
Each invocation of the DIV macro requests any one of the services provided by data-in-virtual:

• IDENTIFY
• ACCESS
• MAP
• SAVE
• SAVELIST
• RESET
• UNMAP
• UNACCESS
• UNIDENTIFY

Identify
An application must use IDENTIFY to tell the system which data-in-virtual object it wants to process.
IDENTIFY generates a unique ID, or token, that uniquely represents an application's request to use the
given data object. The system returns this ID to the application. When the application requests other
kinds of services with the DIV macro, the application supplies this ID to the system as an input parameter.
Specify DDNAME for a linear data set object and STOKEN for a hiperspace object.

Access
To gain the right to view or update the object, an application must use the ACCESS service. You normally
invoke ACCESS after you invoke IDENTIFY and before you invoke MAP. ACCESS is similar to the OPEN
macro of VSAM. It has a mode parameter of READ or UPDATE, and it gives your application the right to
read or update the object.

If the object is a data set and if the SHAREOPTIONS parameter used to allocate the linear data set implies
serialization, the system automatically serializes your access to the object. If access is not automatically
serialized, you can serialize access to the object by using the ISGENQ, ENQ, DEQ, and the RESERVE
macros. If you do not serialize access to the object, you should consider using the LOCVIEW parameter to
protect your window data against the unexpected changes that can occur when access to the object is not
serialized. LOCVIEW is described under the topic “The ACCESS service” on page 230.

If the object is a hiperspace, DIV ensures that only one program can write to the object and that multiple
users can only read the object. Only the task that owns the corresponding ID can issue ACCESS.

Chapter 14. Data-in-virtual 227

Map
The data object is stored in units of 4096-byte blocks. An application uses the MAP service to specify
the part of the object that is to be processed in virtual storage. It can specify the entire object (all of the
blocks), or a part of the object (any continuous range of blocks). Because parts of the same object can be
viewed simultaneously through several different windows, the application can set up separate windows
on the same object. However, a specific page of virtual storage cannot be in more than one window at a
time.

After ACCESS, the application obtains a virtual storage area large enough to contain the window. The
size of the object, which ACCESS optionally returns, can determine how much virtual storage you need
to request. After requesting virtual storage, the application invokes MAP. MAP establishes a one to one
correspondence between blocks in the object and pages in virtual storage. A continuous range of pages
corresponds to a continuous range of blocks. This correspondence is called a virtual storage window, or a
window.

After MAP, the application can look into the virtual storage area that the window contains. When it looks
into this virtual storage area, it sees the same data that is in the object. When the application references
this virtual storage area, it is referencing the data from the object. To reference the area in the window,
the application simply uses any conventional processor instructions that access storage.

Although the object data becomes available in the window when the application invokes MAP, no actual
movement of data from the object into the window occurs at that time. Actual movement of data from the
object to the window occurs only when the application refers to data in the window. When the application
references a page in the window for the first time, a page fault occurs. When the page fault occurs, the
system reads the permanent storage block into central storage.

When the system brings data into central storage, the data movement involves only the precise block
that the application references. The system updates the contents of the corresponding page in the
window with the contents of the linear data set object. Thus, the system brings in only the blocks that
an application references into central storage. The sole exception to the system bringing in only the
referenced blocks occurs when the application specifies LOCVIEW=MAP with the ACCESS service for a
data set object.

Notes:

1. If the application specifies LOCVIEW=MAP with ACCESS, the entire window is immediately filled with
object data when the application invokes MAP.

2. If, when an application invokes MAP, it would rather keep in the window the data that existed before
the window was established (instead of having the object data appear in the window), it can specify
RETAIN=YES. Specifying RETAIN=YES is useful when creating an object or overlaying the contents of
an object.

3. An important concept for data-in-virtual is the concept of freshly obtained storage. When virtual
storage has been obtained and not subsequently modified, the storage is considered to be freshly-
obtained. The storage is also in this state when it has been obtained as a data space by using a
DSPSERV CREATE and not subsequently modified. After a DSPSERV RELEASE, the storage is still
considered freshly obtained until it has been modified. When referring to this storage or any of its
included pages, this information uses “freshly obtained storage” and “freshly obtained pages”. If a
program stores into a freshly obtained page, only that page loses its freshly obtained-status, while
other pages still retain it.

4. You can map virtual storage pages that are protected only when you specify RETAIN=YES. When the
system establishes the virtual window, you can use the PGSER PROTECT macro to protect the data in
the window. However, you must ensure that the data in the window is not protected when you issue
the RESET form of the DIV macro.

Save, savelist, and reset
After using the MAP service, the application can access the data inside the window directly through
normal programming techniques. When the application changes some data in the window, however, the
data on the object does not consequently change. If the application wants the data changes in the

228 z/OS: z/OS MVS Assembler Services Guide

window to appear in the object, it must use the SAVE service. SAVE writes all changed blocks within
the range to be saved inside the window to the object. It does not write unchanged blocks. When SAVE
completes, the object contains any changes that the application made inside the virtual storage window.
If a SAVE is preceded by another SAVE, the second SAVE will pick up only the changes that occurred since
the previous SAVE.

Optionally, SAVE accepts a user list as input. To provide a user list, the application uses the SAVELIST
service. SAVELIST returns the addresses of the first and last changed pages in each range of changed
pages within the window. The application can then use these addresses as the user list for SAVE. The
SAVE operation can be more efficient when using the list of addresses, so an application can improve its
performance by using SAVELIST and then SAVE.

When specifying a user list and when a data space or hiperspace contains the window, the caller must use
an STOKEN with SAVE to identify the data space or hiperspace.

If the application changes some data in a virtual storage window but then decides not to keep those
changes, it can use the RESET service to reload the window with data from the object. RESET reloads only
the blocks that have been changed unless you specify or have specified RELEASE=YES.

Unmap
When the application is finished processing the part of the object that is in the window, it eliminates
the window by using UNMAP. To process a different part of the object, one not already mapped, the
application can use the MAP service again. The SAVE, RESET, MAP, and UNMAP services can be invoked
repeatedly as required by the processing requirements of the application.

If you issued multiple MAPs to different STOKENs, use STOKEN with UNMAP to identify the data space or
hiperspace you want to unmap.

Note: If you do not want to retain the data in the virtual window, use the PGSER UNPROTECT macro to
"unprotect" any protected pages in the window, before you use the UNMAP service.

If you issue UNMAP with RETAIN=NO and there are protected pages in the virtual storage window, the
system loses the data in the protected pages and preserves the protection status. If you try to reference
the protected pages, the system issues abend X'028'. To access the protected pages again, remove the
protection status. Then issue the PGSER RELEASE or DSPSERV RELEASE macro to release all physical
paging resources.

Unaccess
If the application has temporarily finished processing the object but still has other processing to perform,
it uses UNACCESS to relinquish access to the object. Then other programs can access the object. If the
application needs to access the same object again, it can regain access to the object by using the ACCESS
service again without having to use the IDENTIFY service again.

Unidentify
UNIDENTIFY ends the use of a data-in-virtual object under a previously assigned ID that the IDENTIFY
service returned.

The IDENTIFY service
Your program uses IDENTIFY to select the data-in-virtual object that you want to process. IDENTIFY has
four parameters: ID, TYPE, DDNAME, and STOKEN.

The following examples show two ways to code the IDENTIFY service:

For a hiperspace object:

 DIV IDENTIFY,ID=DIVOBJID,TYPE=HS,STOKEN=HSSTOK

For a data set object:

Chapter 14. Data-in-virtual 229

 DIV IDENTIFY,ID=DIVOBJID,TYPE=DA,DDNAME=DDAREA

The parameters are as follows:
ID

The ID parameter specifies the address where the IDENTIFY service returns a unique eight-byte name
that connects a particular user with a particular object. This name is an output value from IDENTIFY,
and it is also a required input value to all other services.

Simultaneous requests for different processing activities against the same data-in-virtual object can
originate from different tasks or from different routines within the same task or the same routine.
Each task or routine requesting processing activity against the object must first invoke the identify
service. To correlate the various DIV macro invocations and processing activities, the eight-byte IDs
generated by IDENTIFY are sufficiently unique to reflect the individuality of the IDENTIFY request, yet
they all reflect the same data-in-virtual object.

TYPE
The TYPE parameter indicates the type of data-in-virtual object, either a linear data set (TYPE=DA) or
a hiperspace (TYPE=HS). DIV does not support VSAM extended format linear data sets for use as a
DIV object for which the size is greater than 4GB.

DDNAME
When you specify TYPE=DA for a data set object, you must specify DDNAME to identify your data-in-
virtual object. If you specify TYPE=HS with IDENTIFY, do not specify DDNAME. (Specify STOKEN
instead.) Do not specify a DDNAME that corresponds to a VSAM extended format linear data set for
which the size is greater than 4GB, because DIV does not support them for use as a DIV object.

Encrypted linear VSAM data sets are supported. For more information, see z/OS DFSMS Using Data
Sets.

STOKEN
When you specify TYPE=HS for a hiperspace object, you must specify STOKEN to identify that
hiperspace. The STOKEN must be addressable in your primary address space. The hiperspace must be
a non-shared standard hiperspace and must be owned by the task issuing the IDENTIFY. The system
does not verify the STOKEN until your application uses the associated ID to access the object.

The ACCESS service
Your program uses the ACCESS service to request permission to read or update the object. ACCESS has
two required parameters: ID and MODE, and two optional parameters: SIZE and LOCVIEW.

The following example shows one way to code the ACCESS service.

 DIV ACCESS,ID=DIVOBJID,MODE=UPDATE,SIZE=OBJSIZE

ID: When you issue a DIV macro that requests the ACCESS service, you must also specify, on the ID
parameter, the identifier that the IDENTIFY service returned. The ID parameter tells the system what
object you want access to. When you request permission to access the object under a specified ID, the
system checks the following conditions before it grants the access:

• You previously established the ID specified with your ACCESS request by invoking IDENTIFY.
• You have not already accessed the object under the same unique eight-byte ID. Before you can reaccess

an already-accessed object under the same ID, you must first invoke UNACCESS for that ID.
• If your installation uses RACF® and the object is a linear data set, you must have the proper RACF

authorization to access the object.
• If you are requesting read access, the object must not be empty. Use the MODE parameter to request

read or update access.
• If the data object is a hiperspace, the system rejects the request if the hiperspace:

– Has ever been the target of an ALESERV ADD.

230 z/OS: z/OS MVS Assembler Services Guide

– Has one or more readers and one updater. (That is, the hiperspace can have readers and it can have
one updater, but it can't have both.)

• If the data object is a linear data set, the system rejects the request if the linear data set:

– Is a VSAM extended format linear data set for which the size is greater than 4GB.

MODE: The MODE parameter specifies how your program will access the object. You can specify a mode
parameter of READ or UPDATE. They are described as follows:

• READ lets you read the object, but prevents you from using SAVE, to change the object.
• UPDATE, like READ, lets you read the object, but it also allows you update the object with SAVE.

Whether you specify READ or UPDATE, you can still make changes in the window, because the object does
not change when you change the data in the window.

SIZE: The SIZE parameter specifies the address of the field where the system stores the size of the
object. The system returns the size in this field whenever you specify SAVE or ACCESS with SIZE. If you
omit SIZE or specify SIZE=*, the system does not return the size.

If you specified TYPE=DA with IDENTIFY for a data set object, SIZE specifies the address of a four-byte
field. When control is returned to your program after the ACCESS service executes, the four-byte field
contains the current size of the object. The size is the number of blocks that the application must map to
ensure the mapping of the entire object.

If you specified TYPE=HS with IDENTIFY for a hiperspace object, ACCESS returns two sizes. The first is
the current size of the hiperspace (in blocks). The second is the maximum size of the hiperspace (also
in blocks). When specifying SIZE with an ID associated with a hiperspace object, you must provide an
eight-byte field in which the system can return the sizes (4 bytes each).

LOCVIEW: The LOCVIEW parameter allows you to specify whether the system is to create a local copy of
the data-in-virtual object.

If your object is a hiperspace, you cannot specify LOCVIEW=MAP.

If your object is a data set, you can code the LOCVIEW parameter two ways:

• LOCVIEW=MAP
• LOCVIEW=NONE (the default if you do not specify LOCVIEW)

If another program maps the same block of a data-in-virtual object as your program has mapped,
a change in the object due to a SAVE by the other program can sometimes appear in the virtual
storage window of your program. The change can appear when you allocate the data set object with
a SHAREOPTIONS(2,3), SHAREOPTIONS(3,3), or SHAREOPTIONS(4,3) parameter, and when the other
program is updating the object while your program is accessing it.

If the change appears when your program is processing the data in the window, processing results might
be erroneous because the window data at the beginning of your processing is inconsistent with the
window data at the end of your processing. The relationship between SHAREOPTIONS and LOCVIEW is as
follows:

• When you allocate the data set object by SHAREOPTIONS(2,3), SHAREOPTIONS(3,3), or
SHAREOPTIONS(4,3), the system does not serialize the accesses that programs make to the object.
Under these options, if the programs do not observe any serialization protocol, the data in your virtual
storage window can change when other programs invoke SAVE. To ensure that your program has a
consistent view of the object, and protect your window from changes that other programs make on
the object, use LOCVIEW=MAP. If you do not use LOCVIEW=MAP when you invoke ACCESS, the system
provides a return code of 4 and a reason code of hexadecimal 37 as a reminder that no serialization is in
effect even though the access was successful.

• When you allocate the object by SHAREOPTIONS(1,3), object changes made by the other program
cannot appear in your window because the system performs automatic serialization of access. Thus,
when any program has update access to the object, the system automatically prevents all other access.
Use LOCVIEW=NONE when you allocate the data set by SHAREOPTIONS(1,3).

Chapter 14. Data-in-virtual 231

Note: The usual method of programming data-in-virtual is to use LOCVIEW=NONE and
SHAREOPTIONS(1,3). LOCVIEW=MAP is provided for programs that must access a data object
simultaneously. Those programs would not use SHAREOPTIONS(1,3).

LOCVIEW=MAP requires extra processing that degrades performance. Use LOCVIEW=NONE whenever
possible although you can use LOCVIEW=MAP for small data objects without significant performance loss.
When you write a program that uses LOCVIEW=MAP, be careful about making changes in the object size.
Consider the following:

• When a group of programs, all using LOCVIEW=MAP, have simultaneous access to the same object, no
program should invoke any SAVE or MAP that extends or truncates the object unless it informs the other
programs by some coding protocol of a change in object size. When the other programs are informed,
they can adjust their processing based on the new size.

• All the programs must create their maps before any program changes the object size. Subsequently,
if any program wants to reset the map or create a new map, it must not do so without observing
the protocol of a size check. If the size changed, the program should invoke UNACCESS, followed by
ACCESS to get the new size. Then the program can reset the map or create the new map.

The MAP service
The MAP service makes an association between part or all of an object, the portion being specified by
the OFFSET and SPAN parameters, and your program's virtual storage. This association, which is called a
virtual storage window, takes the form of a one-to-one correspondence between specified blocks on the
object and specified pages in virtual storage. After the MAP is complete, your program can then process
the data in the window. The RETAIN parameter specifies whether data that is in the window when you
issue MAP is to remain or be replaced by the data from the associated object.

Note: You cannot map virtual storage pages that are page-fixed into a virtual storage window. Once the
window exists, you can page-fix data inside the window so long as it is not fixed when you issue SAVE,
UNMAP, or RESET.

If your window is in an address space, you can map either a linear data set or a hiperspace object. See
Figure 62 on page 232.

Figure 62. Mapping from an address space

232 z/OS: z/OS MVS Assembler Services Guide

If your window is in a data space or a hiperspace, you can map only a linear data set. See Figure 63 on
page 233.

Figure 63. Mapping from a data space or hiperspace

If your window is in a data space or hiperspace, you can issue multiple MAPs under the same ID to
different data spaces or hiperspaces. You cannot mix data space maps or hiperspace maps with address
space maps under the same ID at any one time. However, you can mix data space maps and hiperspace
maps. See Figure 64 on page 234.

The MAP service has two required parameters: ID and OFFSET, and five optional parameters: SPAN,
AREA, RETAIN, STOKEN, and PFCOUNT.

The following examples show two ways to code the MAP service.

Hiperspace or data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=*,PFCOUNT=7

Data set object:

DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,OFFSET=*,STOKEN=DSSTOK,PFCOUNT=7

ID: The ID parameter specifies the storage location containing the unique eight-byte value that was
returned by IDENTIFY. The map service uses this value to determine which object is being mapped under
which request.

If you specify the same ID on multiple invocations of the MAP service, you can create simultaneous
windows corresponding to different parts of the object. However, an object block that is mapped into one
window cannot be mapped into any other window created under the same ID. If you use different IDs,
however, an object block can be included simultaneously in several windows.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate a range of blocks on the object. Blocks
in this range appear in the window. OFFSET indicates the first object block in the range, while SPAN
indicates how many contiguous blocks make up the range. An offset of zero indicates the beginning of the
object. For example, an offset of zero and a span of ten causes the block at the beginning of the object
to appear in the window, together with the next nine object blocks. The window would then be ten pages
long.

Chapter 14. Data-in-virtual 233

Figure 64. Multiple mapping

Specifying OFFSET=* or omitting OFFSET causes the system to use a default OFFSET of zero. Specifying
SPAN=0, SPAN=*, or omitting SPAN results in a default SPAN of the number of blocks needed to MAP
the entire object, starting from the block indicated by OFFSET. Specifying both OFFSET=* and SPAN=* or
omitting both causes the entire object to appear in the window.

You may use the OFFSET and SPAN parameters to specify a range spanning any portion of the object, the
entire object, or extending beyond the object. Specifying a range beyond the object enables a program to
add data to the object, increasing the size of the object. If data in a mapped range beyond the object is
saved (using the SAVE service), the size of the object is updated to reflect the new size.

To use the OFFSET parameter, specify the storage location containing the block offset of the first block to
be mapped. The offset of the first block in the data object is zero. To use the SPAN parameter, specify the
storage location containing the number of blocks in the mapped range.

Note: Data-in-virtual always allocates an extra block beyond the requested block number range to ensure
that there is enough space for an end-of-file (EOF) record. Therefore, when a DIV object is created
without extents, the largest possible span value is the total number of blocks contained in the DIV object
minus one.

AREA: When you specify MAP, you must also specify an AREA parameter. AREA indicates the beginning of
a virtual storage space large enough to contain the entire window. Before invoking MAP, you must ensure
that your task owns this virtual storage space. The storage must belong to a single, pageable private area

234 z/OS: z/OS MVS Assembler Services Guide

subpool. It must begin on a 4096-byte boundary (that is, a page boundary) and have a length that is a
multiple of 4096 bytes.

Note that any virtual storage space assigned to one window cannot be simultaneously assigned to
another window. If your MAP request specifies a virtual storage location, via the AREA parameter, that is
part of another window, the system rejects the request.

You cannot free virtual storage that is mapped into a window as long as the map exists. Attempts to do
this will cause your program to abend. Subsequent attempts to reference the mapped virtual space will
cause an ABEND.

RETAIN: The RETAIN parameter determines what data you can view in the window. It can be either the
contents of the virtual storage area (that corresponds to the window) the way it was before you invoked
MAP, or it can be the contents of the object. The following table shows how using the RETAIN parameter
with MAP affects the contents of the window.

RETAIN= Window view

NO (default) Contents of mapped object

YES Contents of virtual storage

If you specify RETAIN=NO, or do not specify the RETAIN parameter at all (which defaults to RETAIN=NO),
the contents of the object replace the contents of the virtual storage whenever your program references
a page in the window. Virtual storage that corresponds to a range beyond the end of the object appears
as binary zeroes when referenced. You can use RETAIN=NO to change some data and save it back to the
object.

If you specify RETAIN=YES, the window retains the contents of virtual storage. The contents of the
window are not replaced by data from the object. If you issue a subsequent SAVE, the data in the window
replaces the data on the object. If the window extends beyond the object and your program has not
referenced the pages in the extending part of the window, the system does not save the extending pages.
However, if your program has referenced the extending pages, the system does save them on the object,
extending the object so it can hold the additional data.

You can also use RETAIN=YES to reduce the size of (truncate) the object. If the part you want to truncate
is mapped with RETAIN=YES and the window consists of freshly obtained storage, the data object size is
reduced at SAVE time.

If you want to have zeroes written at the end of the object, the corresponding virtual storage must be
explicitly set to zero prior to the SAVE.

STOKEN: To reference an entire linear data set through a single window, a program might require a
considerable amount of virtual storage. In this case, the program can use a data space or hiperspace to
contain the window. If you want the virtual storage window to be in a data space or hiperspace, specify
STOKEN when you invoke MAP. When you specify STOKEN, you provide an eight-byte input parameter
that identifies the data space or hiperspace, and that was returned from DSPSERV CREATE.

However, do not place the window in a data space or hiperspace under the following circumstances:

• If the data space is a disabled reference (DREF) data space.
• If the object is accessed with LOCVIEW=MAP.
• If the data space or hiperspace belongs to another task. However, if your program is in supervisor state

or has a system storage key, it can use a data space or hiperspace that belongs to another task provided
that the other task is in the same primary address space as your program.

PFCOUNT: PFCOUNT is useful for referencing sequential data. Because you get a page fault the first time
you reference each page, preloading successive pages decreases the number of page faults.

The PFCOUNT parameter (nnn) is an unsigned decimal number up to 255. When an application references
a mapped object, PFCOUNT tells the system that the program will be referencing this object in a
sequential manner. PFCOUNT might improve performance because it asks the system to preload nnn

Chapter 14. Data-in-virtual 235

pages, if possible. The system reads in nnn successive pages only to the end of the virtual range of the
mapped area containing the originally referenced page, and only as resources are available.

You can use REFPAT INSTALL to define a reference pattern for the mapped area. In response to REFPAT,
the system brings multiple pages into central storage when referenced. In this case, the PFCOUNT value
you specify on DIV is not in effect as long as the reference pattern is in effect. When REFPAT REMOVE
removes the definition of the reference pattern, the PFCOUNT you specify on DIV is again in effect. For
information on the REFPAT macro, see “Defining the reference pattern (REFPAT)” on page 321.

The SAVE service
The SAVE service writes changed pages from the window to the object if the changed pages are within the
range to be saved. When you invoke SAVE, you specify one of the following:

• A single and continuous range of blocks in the data-in-virtual object with the use of OFFSET and SPAN.
Any virtual storage windows inside this range are eligible to participate in the save.

• A user list supplied through the use of LISTADDR and LISTSIZE. The list must contain the addresses
of the first and last changed pages for each range of changed pages within the window. The SAVELIST
service can provide these addresses for the user list.

For a SAVE request to be valid, the object must currently be accessed with MODE=UPDATE, under the
same ID as the one specified on this SAVE request. Because you can map an object beyond its current
end, the object might be extended when the SAVE completes if there are changed pages beyond the
current end at the time of the ACCESS. On the other hand, the SAVE truncates the object if freshly
obtained pages are being saved that are mapped in a range that extends to or beyond the end of the
object and additional non-freshly obtained pages beyond the object area are not also being saved. In
either case, the new object size is returned to your program if you specify the SIZE parameter.

When the system writes the pages from the window to the object, it clears (sets to zeroes) blocks in the
object that are mapped to freshly obtained pages in the window if either one of the following conditions is
true:

• There are subsequent pages in the range being saved that are not freshly obtained
• The blocks mapped to the freshly obtained pages are not at the end of the object. That is, they are

imbedded in the object somewhere before the last block of the object. If the blocks mapped to freshly
obtained pages do extend to the end of the object and no subsequent non-freshly obtained pages are
being saved, then the object is truncated by that number of blocks.

If you specified RETAIN=YES with MAP, SAVE treats pages in the window that you have not previously
saved as changed pages and will write them to the object.

Notes:

1. Do not specify SAVE for a storage range that contains DREF or page fixed storage.
2. If data to be saved has not changed since the last SAVE, no I/O will be performed. The performance

advantages of using data-in-virtual are primarily because of the automatic elimination of unnecessary
read and write I/O operations.

3. The range specified with SAVE can extend beyond the end of the object.
4. The system does not save pages of an object that is not mapped to any window.
5. The system does not save pages in a window that lies outside the specified range.

The following example shows how to code the SAVE service for a hiperspace or data set object.

 DIV SAVE,ID=DIVOBJID,SPAN=SPAVAL,OFFSET=*,SIZE=OBJSIZE

ID: The ID parameter tells the SAVE service which data object the system is writing to under which
request. Use ID to specify the storage location containing the unique eight-byte name that was returned
by IDENTIFY. You must have previously accessed the object with MODE=UPDATE under the same ID as
the one specified for SAVE.

236 z/OS: z/OS MVS Assembler Services Guide

OFFSET and SPAN: Use the OFFSET and SPAN parameters to select a continuous range of object blocks
within which the SAVE service can operate. OFFSET indicates the first block and SPAN indicates the
number of blocks in the range. As in the MAP service, the offset and span parameters refer to object
blocks; they do not refer to pages in the window. You cannot specify OFFSET and SPAN when you specify
LISTADDR and LISTSIZE.

Specifying OFFSET=* or omitting OFFSET causes the system to use the default offset (zero). The zero
offset does not omit or skip over any of the object blocks, and it causes the range to start right at the
beginning of the object. Specifying SPAN=0, SPAN=*, or omitting SPAN gives you the default span. The
default span includes the first object block after the part skipped by the offset, and it includes the entire
succession of object blocks up to and including the object block that corresponds to the last page of the
last window.

When SAVE executes, it examines each virtual storage window established for the object. In each window,
it detects every page that corresponds to an object block in the selected range. Then, if the page has
changed since the last SAVE, the system writes the page on the object. (If the page has not changed
since the last SAVE, it is already identical to the corresponding object block and there is no need to save
it.) Although SAVE discriminates between blocks on the basis of whether they have changed, it has the
effect of saving all window pages that lie in the selected range. Specifying both OFFSET=* and SPAN=* or
omitting both causes the system to save all changed pages in the window without exceptions.

To use the OFFSET parameter, specify the storage location containing the block offset of the first block to
be saved. The offset of the first block in the object is zero. To use the SPAN parameter, specify the storage
location containing the number of blocks in the range to be saved.

SIZE: When you specify SIZE after the SAVE completes, the system returns the size of the data object
in the virtual storage location specified by the SIZE parameter. If you omit SIZE or specify SIZE=*, the
system does not return the size value. If TYPE=DA, invoking SAVE can change the size of the object. If
TYPE=HS, invoking SAVE has no effect on the size of the object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in the user list. Use this
parameter and the LISTSIZE parameter when you specify a user list as input for SAVE.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the user list. Use this parameter
and the LISTADDR parameter when you specify a user list as input for SAVE.

STOKEN: If you specify a user list as input for SAVE and a data space or hiperspace contains the window,
you must specify STOKEN when you invoke SAVE. When you specify STOKEN, you provide an eight-byte
input parameter that identifies the data space or hiperspace, and that was returned from DSPSERV
CREATE.

The SAVELIST service
The advantage of using SAVELIST with SAVE is improved performance, especially for applications that
manipulate graphic images. The SAVELIST service allows the application to inspect and verify data only in
pages that have been changed. In a user list provided by the application, SAVELIST returns the addresses
of the first and last page in each range of changed pages within the window. The mapped ranges may be
either address spaces, data spaces or hiperspaces. If more than one data space or hiperspace is mapped
onto a DIV object, the selected range must be contained within a single data space or hiperspace.

The application must set up a user list before issuing SAVELIST. Upon return from SAVELIST, the first
word of each list entry holds the virtual storage address of the first page in a range of changed pages. The
second word of the entry holds the virtual storage address of the last changed page in that range. In the
last valid entry of the user list, the high-order bit of the first word is set to one.

If the reason code indicates that there are more changed pages that can fit in this list, the first word of
the last entry in the list contains an offset (in block number format) into the DIV object from which more
changed pages might exist. The second word of the last entry contains the span from the new offset to the
block pointed to by the original OFFSET/SPAN combination. If more changed pages can fit in the user list,
you can issue SAVE with the current list, and then issue SAVELIST and SAVE again to obtain the additional
changed pages and to save them.

Chapter 14. Data-in-virtual 237

ID: Use ID to specify the storage location containing the unique eight-byte name that was returned by
IDENTIFY, which connects a particular user with a particular object.

LISTADDR: The LISTADDR parameter specifies the address of the first entry in the user list.

LISTSIZE: The LISTSIZE parameter specifies the number of entries in the list. The size of the list must be
a minimum of three entries and a maximum of 255 entries. The SAVELIST service can place addresses in
all but the last two entries, which the macro uses as a work area.

The RESET service
At times during program processing, your program might have made changes to pages in the virtual
storage window, and might no longer want to keep those changes. RESET, which is the opposite of SAVE,
replaces data in the virtual storage window with data from the object. As with SAVE and MAP, the range to
be reset refers to the object rather than the virtual storage. RESET resets only windows that are within the
specified range, and it resets all the windows in the range that your program changed.

Do not specify RESET for a storage range that contains DREF storage.

Effect of RETAIN mode on RESET
You actually specify RETAIN on MAP, not on RESET, but the RETAIN mode of each individual window
affects how the system resets the window. The following table shows the effect that issuing RETAIN with
MAP has on RESET.

RETAIN= RESET results

NO (default) The data in the window matches the object data as of the last SAVE.

YES Unless saved, the data in the window become freshly obtained. Any pages
previously saved re-appear in their corresponding window. All other pages
appear freshly obtained.

The system resets the window as follows:

• If you specified RETAIN=NO with MAP, after the RESET, the data in the window matches the object data
as of the last SAVE. This applies to all the pages in the window.

• If you specified RETAIN=YES with MAP, the pages in the window acquire a freshly obtained status
after the RESET unless you have been doing SAVE operations on this window. Individual object blocks
changed by those SAVE operations re-appear after the RESET in their corresponding window pages,
together with the other pages. However, the other pages appear freshly obtained.

Note: Regardless of the RETAIN mode of the window, any window page that corresponds to a block
beyond the end of the object appears as a freshly obtained page.

The following example shows how to code the RESET service for a hiperspace or data set object:

 DIV RESET,ID=DIVOBJID,SPAN=SPANVAL,OFFSET=*,RELEASE=YES

ID: The ID parameter tells the RESET service what data object is being written to. Use ID to specify
the storage location containing the unique eight-byte name that was returned by IDENTIFY and used
with previous MAP requests. You must have previously accessed the object (with either MODE=READ or
MODE=UPDATE) under the same ID as the one currently specified for RESET.

OFFSET and SPAN: The OFFSET and SPAN parameters indicate the RESET range, the part of the object
that is to supply the data for the RESET. As with MAP and SAVE, OFFSET indicates the first object block in
the range, while SPAN indicates how many contiguous blocks make up the range, starting from the block
indicated by OFFSET. The first block of the object has an offset of zero.

To use OFFSET, specify the storage location containing the block offset of the first block to be reset.
To use SPAN, specify the storage location containing the number of blocks in the range to be RESET.
Specifying OFFSET=* or omitting OFFSET causes the system to use a default OFFSET of zero. Specifying

238 z/OS: z/OS MVS Assembler Services Guide

SPAN=* or omitting SPAN sets the default to the number of blocks needed to reset all the virtual storage
windows that are mapped under the specified ID starting only with the block number indicated by
OFFSET. Specifying both OFFSET=* and SPAN=* or omitting both resets all windows that are currently
mapped under the specified ID.

RELEASE: RELEASE=YES tells the system to release all pages in the reset range. RELEASE=NO does not
replace unchanged pages in the window with a new copy of pages from the object. It replaces only
changed pages. Another ID might have changed the object itself while you viewed data in the window.
Specify RELEASE=YES to reset all pages. Any subsequent reference to these pages causes the system to
load a new copy of the data page from the object.

The UNMAP service
Your program uses the UNMAP service to remove the association between a window in virtual storage and
the object. Each UNMAP request must correspond to a previous MAP request. Note that UNMAP has no
effect on the object. If you made changes in virtual storage but have not yet saved them, the system does
not save them on the object when you issue UNMAP. UNMAP has two required parameters: ID and AREA,
and two optional parameters: RETAIN and STOKEN.

The following examples show two ways to code the UNMAP service.

Hiperspace or data set object:

 DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1

Data set object:

 DIV UNMAP,ID=DIVOBJID,AREA=MAPPTR1,STOKEN=DSSTOK

ID: The ID parameter you specify is the address of an eight-byte field in storage. That field contains the
identifier associated with the object. The identifier is the same value that the IDENTIFY service returned,
which is also the same value you specified when you issued the corresponding MAP request.

AREA: The AREA parameter specifies the address of a four-byte field in storage that contains a pointer to
the start of the virtual storage to be unmapped. This address must point to the beginning of a window. It is
the same address that you provided when you issued the corresponding MAP request.

RETAIN: RETAIN specifies the state that virtual storage is to be left in after it is unmapped, that is, after
you remove the correspondence between virtual storage and the object.

Specifying RETAIN=NO with UNMAP indicates that the data in the unmapped window is to be freshly
obtained.

If your object is a hiperspace, you cannot specify RETAIN=YES. If your object is a data set, you can specify
RETAIN=YES.

Specifying RETAIN=YES on the corresponding UNMAP transfers the data of the object into the unchanged
pages in the window. In this case, RETAIN=YES with UNMAP specifies that the virtual storage area
corresponding to the unmapped window is to contain the last view of the object. After UNMAP, your
program can still reference and change the data in this virtual storage but can no longer save it on the
object unless the virtual area is mapped again.

Notes:

1. If you issue UNMAP with RETAIN=NO, and there are unsaved changes in the virtual storage window,
those changes are lost.

2. If you issue UNMAP with RETAIN=YES, and there are unsaved changes in the window, they remain in
the virtual storage.

3. Unmapping with RETAIN=YES has certain performance implications. It causes the system to read
unreferenced pages, and maybe some unchanged ones, from the object. You must not unmap with
RETAIN=YES if your object is a hiperspace.

Chapter 14. Data-in-virtual 239

4. If the window is in a deleted data space, UNMAP works differently depending on whether you specify
RETAIN=YES or RETAIN=NO. If you specify RETAIN=YES, the unmap fails and the program abends.
Otherwise, the unmap is successful.

STOKEN: If you issued multiple maps under the same ID with different STOKENs, use STOKEN with
UNMAP. If you do not specify STOKEN in this case, the system will scan the mapped ranges and unmap
the first range that matches the specified virtual area regardless of the data space it is in. Issuing
UNACCESS or UNIDENTIFY automatically unmaps all mapped ranges.

The UNACCESS and UNIDENTIFY services
Use UNACCESS to terminate your access to the object for the specified ID. UNACCESS automatically
includes an implied UNMAP. If you issue an UNACCESS with outstanding virtual storage windows, any
windows that exist for the specified ID are unmapped with RETAIN=NO. The ID parameter is the
sole parameter of the UNACCESS service, and it designates the same ID that you specified in the
corresponding ACCESS. As in the other services, use ID to specify the storage location containing the
unique eight-byte name that was returned by IDENTIFY.

Use UNIDENTIFY to notify the system that your use of an object under the specified ID has ended. If
the object is still accessed as an object under this ID, UNIDENTIFY automatically includes an implied
UNACCESS. The UNACCESS, in turn, issues any necessary UNMAPs using RETAIN=NO. The ID parameter
is the only parameter for UNIDENTIFY, and it must designate the same ID as the one specified in the
corresponding ACCESS. As in the other services, use ID to specify the storage location containing the
unique eight-byte name that was returned by IDENTIFY.

The following example shows how to code the UNACCESS and UNIDENTIFY services for a hiperspace or
data set object:

 DIV UNACCESS,ID=DIVOBJID
 DIV UNIDENTIFY,ID=DIVOBJID

Sharing data in an object
When a user issues IDENTIFY, the system returns an ID and establishes an association between the ID
and the user's task. All data-in-virtual services for a specific ID must be requested by the task that issued
the IDENTIFY and obtained the ID.

Any task can reference or change the data in a mapped virtual storage window, even if the window was
mapped by another task, and even if the object was identified and accessed by another task. Any task that
has addressability to the window can reference or change the included data. However, only the task that
issued the IDENTIFY can issue the SAVE to change the object.

When more than one user has the ability to change the data in a storage area, take the steps necessary to
serialize the use of the shared area.

Miscellaneous restrictions for using data-in-virtual
• When you attach a new task, you cannot pass ownership of a mapped virtual storage window to the

new task. That is, you cannot use the GSPV and GSPL parameters on ATTACH and ATTACHX to pass the
mapped virtual storage.

• You cannot invoke data-in-virtual services in cross memory mode. There are no restrictions, however,
against referencing and updating a mapped virtual storage window in cross memory mode.

• You cannot specify a non-shared standard hiperspace as a DIV object (DIV ACCESS) if you have
issued ALESERV ADD for that hiperspace. You cannot issue ALESERV ADD for a non-shared standard
hiperspace while it is a DIV object.

240 z/OS: z/OS MVS Assembler Services Guide

DIV macro programming examples
The programming examples illustrate how to code and execute a program that processes a data-in-virtual
object. You can find additional examples, including illustrations, in:

• “Example of mapping a data-in-virtual object to a data space” on page 275
• “Using data-in-virtual with hiperspaces” on page 287

General program description
This is a description of the program shown in “Data-in-virtual sample program code” on page 241.

1. The program issues a DIV IDENTIFY and DIV ACCESS for the data-in-virtual object. The ACCESS
returns the current size of the object in units of 4K bytes.

2. If the object contains any data (the size returned by ACCESS is non-zero), the program issues a
DIV MAP to associate the object with storage the program acquires using GETMAIN. The size of the
MAP (and the acquired storage area) is the same as the size of the object.

3. The program now processes the input statements from SYSIN. The processing depends upon the
function requests (S, D, or E). If the program encounters an end-of-file, it treats it as if an “E” function
was requested.

S function — Set a character in the object:
4. If the byte to change is past the end of the mapped area, the user asked to increase the size of the

object. Therefore:

a. If any changes have been made in the mapped virtual storage area but not saved to the object, the
program issues a DIV SAVE. This save writes the changed 4K pages in the mapped storage to the
object.

b. The program issues a DIV UNMAP for the storage area acquired with GETMAIN, and then releases
that area using FREEMAIN. The program skips this is step if the current object size is 0.

c. The program acquires storage using GETMAIN to hold the increased size of the object, and issues a
DIV MAP for this storage.

5. The program changes the associated byte in the mapped storage. Note that this does not change the
object. The program actually writes the changes to the object when you issue a DIV SAVE.

D function — Display a character in the object:
6. If the requested location is within the MAP size, the program references the specified offset into the

storage area. If the data is not already in storage, a page fault occurs. Data-in-virtual processing brings
the required 4K block from the object into storage. Then the storage reference is re-executed. The
contents of the virtual storage area (i.e. the contents of the object) are displayed.

E function — End the program:
7. If the program has made any changes in the mapped virtual storage area but has not saved them to

the object, the program issues a DIV SAVE.
8. The program issues a DIV UNIDENTIFY to terminate usage of the object. Note that data-in-virtual

processing internally generates a DIV UNMAP and DIV UNACCESS.
9. The program terminates.

Data-in-virtual sample program code
The first part of DIVSAMPL identifies the linear data set and accesses the object. If the object is not
empty, the program obtains the virtual storage required to view (MAP) the entire object. Then it opens the
input and message sequential data sets.

Chapter 14. Data-in-virtual 241

DIV TITLE 'Data-in-Virtual Sample Program'
DIVSAMP CSECT ,
DIVSAMP AMODE 31 Program runs in 31-bit mode
DIVSAMP RMODE 24 Program resides in 24-bit storage
 SAVE (14,12),,'DIVSAMP -- Sample Program'
 LR R11,R15 Establish base register
 USING DIVSAMP,R11 *
 LA R2,VSVEAREA Chain save areas together
 ST R13,4(,R2) *
 ST R2,8(,R13) *
 LR R13,R2 *
* IDENTIFY and ACCESS the object pointed to by DD 'DIVDD'.
* Save the object's token in VTOKEN, and its size in VSIZEP.
 DIV IDENTIFY,TYPE=DA,ID=VTOKEN,DDNAME=CDIVDD Specify DDNAME
 LA R2,1 Error code
 LTR R15,R15 IDENTIFY work ok ?
 BNZ LERROR * No -- quit
 DIV ACCESS,ID=VTOKEN,MODE=UPDATE,SIZE=VSIZEP Open the object
 LA R2,2 Error code
 LTR R15,R15 ACCESS work ok ?
 BNZ LERROR * No -- quit
* If object not empty (VSIZEP > 0), get workarea to hold the object,
* and issue a MAP to it. The area must start on page boundary.
* Referencing byte "n" of this workarea gets byte "n" of the object.
 L R2,VSIZEP Current size (in 4K blocks)
 SLA R2,12 Current size (in bytes)
 ST R2,VSIZEB VSIZEB = object size in bytes
 BZ LEMPTY If object not empty, get MAP area =
 GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE object size
 ST R1,VAREAPTR Save MAP area
 DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
 LA R2,3 Error code
 LTR R15,R15 MAP work ok ?
 BNZ LERROR * No -- quit
LEMPTY EQU * Mapped, unless empty
* OPEN the SYSIN input data set, and SYSPRINT listing data set.
* Must be in 24-bit mode for this. Then return to 31-bit mode.
 LA R4,L31B01 Return to L31B01 in 31-bit mode
 LA R1,L24B01 Go to L24B01 in 24-bit mode
 BSM R4,R1 R4 = A(X'80000000'+L31B01)
L24B01 OPEN (VSYSIN,(INPUT),VSYSPRT,(OUTPUT)) OPEN SYSIN/SYSPRINT
 BSM 0,R4 Return to 31-bit mode at next instr
L31B01 LA R2,4 Error code from SYSIN OPEN
 LTR R15,R15 OPEN ok ?
 BNZ LERROR * No -- quit

Data-in-virtual sample program code (continued)
The program reads statements from SYSIN until it reaches end-of-file, or encounters a statement with an
“E” in column 1. The program validates the location in the object to set or display, and branches to the
appropriate routine to process the request.

242 z/OS: z/OS MVS Assembler Services Guide

*
* Loop reading from SYSIN. Process the statements.
* Treat EOF as if the user specified "E" as the function to perform.
*
LREAD EQU * Read first/next card
 MVI VCARDF,C'E' EOF will appear as "E" function
 LA R4,L31B02 Return to L31B02 in 31-bit mode
 LA R1,L24B02 Go to L24B02 in 24-bit mode
 BSM R4,R1 R4 = A(X'80000000'+L31B02)
L24B02 GET VSYSIN,VCARD Get the next input request.
LEOF EQU * End-of-file branches here
 BSM 0,R4 Return to 31-bit mode at next instr
L31B02 EQU * Get here in 31-bit mode
*
* Process request:
* E - End processing
* S aaaaaaaa v - Set location X'aaaaaaaa' to v
* D aaaaaaaa - Display location X'aaaaaaaa'
*
 CLI VCARDF,C'E' EOF function or EOF on data set ?
 BE LCLOSE * Yes -- go cleanup and terminate
 TRT VCARDA,CTABTRT Ensure A-F, 0-9
 BNZ LINVADDV * If not, is error
 MVC VTEMP8,VCARDA Save address
 TR VTEMP8,CTABTR Convert to X'0A'-X'0F', X'00'-X'09'
 PACK VCHGADDR(5),VTEMP8(9) Make address
 L R1,VCHGADDR Address
 LA R1,0(,R1) Clear hi-bit
 ST R1,VCHGADDR Save address to change/display
 CLI VCARDF,C'D' Display requested ?
 BE LDISP * Yes -- go process
 CLI VCARDF,C'S' Set requested ?
 BNE LINVFUNC * No -- is invalid statement

Data-in-virtual sample program code (continued)
For a set request, the program determines whether the location to change does not extend past the
maximum object size allowed. If the location is past the end of the current window, the program saves
any existing changes to the object, and creates a window containing the page to be changed. It then
changes the data in storage (but not in the linear data set).

For a display request, the program ensures the location to display is in the linear object (that is, within the
mapped area).

Chapter 14. Data-in-virtual 243

* SET: See if the location to change is within the range of the current
* MAP. If not, save any changes, get a larger area and issue a new MAP.
 C R1,VSIZEB Area to change within current MAP?
 BL LGUPDCHR * Yes -- continue
 C R1,CSIZEMX Area to change within max allowed?
 BNL LINVADDR * No -- is error
 CLI VSWUPDT,0 Any updates to current MAP ?
 BE LNOSVE1 * Yes -- then
 DIV SAVE,ID=VTOKEN Save any changes
 LA R2,5 Error code from SAVE
 LTR R15,R15 SAVE ok ?
 BNZ LERROR * No -- quit
 MVI VSWUPDT,0 Clear update flag
LNOSVE1 L R3,VSIZEB Eliminate old map and storage
 LTR R3,R3 Any to free ?
 BZ LNOFREE * Yes -- then
 DIV UNMAP,ID=VTOKEN,AREA=VAREAPTR Release the MAP
 LA R2,6 Error code from UNMAP
 LTR R15,R15 UNMAP ok ?
 BNZ LERROR * No -- quit
 L R1,VAREAPTR R1 -> acquired storage
 FREEMAIN RU,A=(1),LV=(R3) Free the storage
LNOFREE L R2,VCHGADDR Address of byte to change
 SRL R2,12 R2 = page number - 1
 LA R2,1(,R2) R2 = page number to use
 ST R2,VSIZEP VSIZEP = MAP area in 4K units
 SLL R2,12 R2 = size in bytes
 ST R2,VSIZEB VSIZEB = MAP area in bytes
 GETMAIN RU,LV=(R2),LOC=(ANY,ANY),BNDRY=PAGE get MAP area
 ST R1,VAREAPTR Save MAP area
 DIV MAP,ID=VTOKEN,AREA=VAREAPTR,SPAN=VSIZEP
 LA R2,3 Error code
 LTR R15,R15 MAP work ok ?
 BNZ LERROR * No -- quit
LGUPDCHR L R1,VCHGADDR R1 = byte to change
 A R1,VAREAPTR R1 -> byte to change
 MVC 0(1,R1),VCARDV Change the byte
 MVI VSWUPDT,X'FF' Show change made
 B LGOODINP Go print accept message
LDISP EQU * Display location contents
 L R1,VCHGADDR R1 = location to display
 C R1,VSIZEB Ensure within current MAP
 BNL LINVADDR * If not, is error
 A R1,VAREAPTR R1 -> location to display
 MVC VCARDV,0(R1) Put into the card

Data-in-virtual sample program code (continued)
For both the set and display requests, the program displays the character at the specified location. For
an invalid request, the program displays an error message. For all requests, the program then goes to
process another statement.

When requested to terminate, the program saves any changes in the linear data set, terminates its use of
the object (using UNIDENTIFY), and returns to the operating system.

244 z/OS: z/OS MVS Assembler Services Guide

LGOODINP EQU *
 MVC M1A,VCARDA Address changed/displayed
 MVC M1B,VCARDV Storage value
 CLI M1B,X'00' If X'00' (untouched),
 BNE LGOODIN1 * change to "?".
 MVI M1B,C'?' *
LGOODIN1 LA R2,M1 R2 -> message to print
 B LTELL Go tell user status
LINVFUNC LA R2,M2 Unknown function
 B LTELL Go tell user status
LINVADDV LA R2,M3 Invalid address
 B LTELL Go tell user status
LINVADDR LA R2,M4 Address out of range
LTELL EQU * R2 -> message to print
 LA R4,L31B03 Return to L31B03 in 31-bit mode
 LA R1,L24B03 Go to L24B03 in 24-bit mode
 BSM R4,R1 R4 = A(X'80000000'+L31B03)
L24B03 PUT VSYSPRT,(R2) Print the message
 BSM 0,R4 Return to 31-bit mode at next instr
L31B03 B LREAD Continue
* End-of-file on SYSIN, or "E" function requested.
* Save any changes (DIV SAVE). Then issue UNIDENTIFY, which internally
* issues UNMAP and UNIDENTIFY.
LCLOSE EQU *
 CLI VSWUPDT,0 Any updates outstanding ?
 BE LCLOSE1 * No -- skip SAVE
 DIV SAVE,ID=VTOKEN Save any changes
 LA R2,5 Error code from SAVE
 LTR R15,R15 SAVE ok ?
 BNZ LERROR * No -- quit
LCLOSE1 DIV UNIDENTIFY,ID=VTOKEN All done with object
 LA R2,6 Error code from UNIDENTIFY
 LTR R15,R15 UNIDENTIFY ok ?
 BNZ LERROR * No -- quit
 L R13,4(,R13) Unchain save areas and return
 LM R14,R12,12(R13) *
 SR R15,R15 *
 BR R14 *
LERROR ABEND (R2),DUMP Take a dump

Data-in-virtual sample program code (continued)
These are the program's variables.

Chapter 14. Data-in-virtual 245

* Variables and constants for the program
VSVEAREA DC 18A(0) Save area
VTOKEN DC XL8'00' Object token
VAREAPTR DC A(*-*) -> MAP area
VSIZEP DC F'0' Size of MAP area, in pages (4K)
VSIZEB DC F'0' Size of MAP area, in bytes
VSWUPDT DC X'00' X'FF' -> map area updated
VCHGADDR DC A(*-*),C' ' Address of byte to change/display
VTEMP8 DC CL8' ',C' ' Temp area with buffer
VCARD DC CL80' ' Input card
VCARDF EQU VCARD+0,1 + Function (E/S/D)
VCARDA EQU VCARD+2,8 + Address to change/display
VCARDV EQU VCARD+11,1 + Character to change
CDIVDD DC X'5',C'DIVDD' Linear Data Set DD pointer
* CTABTRT to verify string only has A thru F and 0 thru 9 (hex chars)
CTABTRT DC (C'A')X'FF',6X'00',(C'0'-C'F'-1)X'FF',10X'00',6X'FF'
* CTABTR & next line convert chars A:F,0:9 -> X'0A0B...0F000102...09'
CTABTR EQU *-C'A'
 DC X'0A0B0C0D0E0F',(C'0'-C'F')X'00',X'010203040506070809'
CSIZEMX DC A(4096*1000) Max size allowed for the DIV object
M1 DC Y(M1E-*,0),C' Location '
M1A DC CL8' ',C' contains: '
M1B DC C' '
M1E EQU *
M2 DC Y(M2E-*,0),C' Unknown function (not E/S/D)'
M2E EQU *
M3 DC Y(M3E-*,0),C' Address not 8 hex characters'
M3E EQU *
M4 DC Y(M4E-*,0),C' Address too big to set or display'
M4E EQU *
VSYSIN DCB MACRF=GM,DSORG=PS,RECFM=FB,LRECL=80,DDNAME=SYSIN, *
 EODAD=LEOF
VSYSPRT DCB MACRF=PM,DSORG=PS,RECFM=VA,LRECL=133,DDNAME=SYSPRINT
R0 EQU 0 Registers
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END ,

Executing the program
The following JCL executes the program called DIVSAMPL. The function of DIVSAMPL is to change and
display bytes (characters) in the data-in-virtual object, DIV.SAMPLE, that was allocated in “Creating a
linear data set” on page 226.

//DIV JOB
//DIV EXEC PGM=DIVSAMPL
//STEPLIB DD DISP=SHR,DSN=DIV.LOAD
//DIVDD DD DISP=OLD,DSN=DIV.SAMPLE
//SYSABEND DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
S 00001000 A Changes byte X'1000' to "A"
D 00000F00 Displays "?" since byte X'F00' contains X'00'
S 00000F00 B Changes byte X'F00' to "B"
S 00010000 C Saves previous changes, gets new map,
 changes byte X'10000'
D 00001000 Displays "A" which was set by first statement
D 00000F00 Displays "B" which was set by third statement
E Saves changes since last save (stmt 4), and terminates pgm
/*

DIVSAMPL reads statements from SYSIN that tell the program what to do. The format of each statement
is f aaaaaaaa v, where:

246 z/OS: z/OS MVS Assembler Services Guide

f
Function to perform:
S

Set a character in the object.
D

Display a character in the object.
E

End the program.
aaaaaaaa

The hexadecimal address of the storage to set or display. Leading 0s are required. The value must be
less than X'003E8000'.

v
For Set, the character to put into the object.

Note: The program actually saves the change requested by the S function when either the user asks to
change a byte past the current size of the object, or the user asks to terminate the program (E function).

Chapter 14. Data-in-virtual 247

248 z/OS: z/OS MVS Assembler Services Guide

Chapter 15. Using access registers

For storing data, MVS offers a program the use of a virtual storage area called a data space. Assembler
instructions (such as Load, Store, Add, and Move Character) manipulate the data in a data space. When
you use instructions to manipulate data in a data space, your program must use the set of general
purpose registers (GPRs) plus another set of registers called access registers. This chapter describes how
to use access registers to manipulate data in data spaces.

Through access registers, your program can use assembler instructions to perform basic data
manipulation, such as:

• Moving data into and out of a data space, and within a data space
• Performing arithmetic operations with values that are located in data spaces

To fully understand how to use the macros and instructions that control data spaces and access registers,
you must first understand some concepts.

What is an access register (AR)? An AR is a hardware register that a program uses to identify an address
space or a data space. Each processor has 16 ARs, numbered 0 through 15, and they are paired one-to-
one with the 16 GPRs. When your program uses ARs, it must be in the address space control mode called
access register (AR) mode.

ARs are used when fetching and storing data, but they are not used when doing branches.

What is address space control (ASC) mode? The ASC mode controls where the system looks for the data
that the program is manipulating. Two ASC modes are available for your use: primary mode and access
register (AR) mode.

• In primary mode, your program can access data that resides in the program's primary address space.
When it resolves the addresses in data-referencing instructions, the system does not use the contents
of the ARs.

• In AR mode, your program can access data that resides in the address space or data space that the ARs
indicate. For data-referencing instructions, the system uses the AR and the GPR together to locate an
address in an address space or data space.

How does your program switch ASC mode? Use the SAC instruction to change ASC modes:

• SAC 512 sets the ASC mode to AR mode.
• SAC 0 sets the ASC mode to primary mode.

What does an AR contain? An AR contains a token, an access list entry token (ALET). An ALET is an index
to an entry on the access list. An access list is a table of entries, each one of which points to an address
space, data space, or hiperspace to which a program has access.

Figure 65 on page 250 shows an ALET in the AR and the access list entry that points to an address space
or a data space. It also shows the address in the GPR that points to the data within the address/data
space.

© Copyright IBM Corp. 1988, 2022 249

Figure 65. Using an ALET to Identify an Address Space or a Data Space

For programs in AR mode, when the GPR is used as a base register in an instruction, the corresponding AR
must contain an ALET. Conversely, when the GPR is not used as a base register, the corresponding AR is
ignored.

By placing an entry on an access list and obtaining an ALET for the entry, a program builds the connection
between the program and an address space, data space, or hiperspace. The process of building this
connection is called establishing addressability to an address space, data space, or hiperspace. To add
the entry to the access list, your program uses the ALESERV macro, which is described in “The ALESERV
macro” on page 255.

A program adds an entry to an access list so that it can:

• Gain access to a data space or an address space through assembler instructions.
• Obtain the ALET for a hiperspace. With that ALET, the program can use the HSPALET parameter on

HSPSERV to:

– Gain additional performance from the transfer of data to and from expanded storage. Information
on when and how you use an access list entry for hiperspaces is described in “Obtaining additional
HSPSERV performance” on page 283.

– Improve its ability to share hiperspaces with other programs. The subject of sharing hiperspaces is
described in “Shared and non-shared standard hiperspaces” on page 280.

For the rest of this information, assume that entries in access lists point to data spaces, not hiperspaces
or address spaces.

• The subject of inter-address space communication, appropriate only for programs in supervisor state or
with PSW key 0 - 7, is described in z/OS MVS Programming: Extended Addressability Guide.

• Because a program cannot use ARs to directly manipulate data in a hiperspace, the subject of how a
program uses ARs and access lists to access hiperspaces differs from the discussion in the rest of this
chapter.

Access lists
When the system creates an address space, it gives that address space an access list (PASN-AL) that is
empty. Programs add entries to the DU-AL and the PASN-AL. The entries represent the data spaces and
hiperspaces that the programs want to access.

Types of access lists
An access list can be one of two types:

• A dispatchable unit access list (DU-AL), the access list that is associated with the TCB

250 z/OS: z/OS MVS Assembler Services Guide

• A primary address space access list (PASN-AL), the access list that is associated with the primary
address space

Figure 66 on page 251 shows PGM1 that runs in AS1 under TCB A. The figure shows TCB A's DU-AL. It is
available to PGM1 (and to other programs that TCB A might represent). The DU-AL has an entry for Data
Space X, and PGM1 has the ALET for Data Space X. Therefore, PGM1 has access to Data Space X. PGM1
received an ALET for Space Y from another program. The PASN-AL has the entry for Space Y. Therefore,
PGM1 also has access to Data Space Y. Because it does not have the ALET for Space Z, PGM1 cannot
access data in Space Z.

Figure 66. An Illustration of a DU-AL

The differences between a DU-AL and a PASN-AL are significant and you need to understand them. The
following table summarizes the characteristics of DU-ALs and PASN-ALs as they relate to problem state
programs with PSW key 8 - F.

Table 25. Characteristics of DU-ALs and PASN-ALs

DU-AL PASN-AL

Each work unit (TCB and SRB) has its own unique
DU-AL. All programs associated with that work unit
can use its DU-AL.

Each address space has its own unique PASN-AL.
All programs that run in the primary address space
can use its PASN-AL.

A program that the work unit represents can add
and delete entries on the work unit's DU-AL for the
data spaces it created or owns.

A program can add entries for the data spaces it
owns or created to the PASN-AL, providing an entry
for the data space is not already on the PASN-
AL through the actions of another problem state
program with PSW 8 - F. A program can delete
entries for data spaces it owns or created.

Chapter 15. Using access registers 251

Table 25. Characteristics of DU-ALs and PASN-ALs (continued)

DU-AL PASN-AL

A program cannot pass its task's DU-AL to a
program running under another task, with one
exception: when a program issues an ATTACH
macro, it can pass a copy of its DU-AL to the
subtask. This allows the subtask to start with
a copy of the attaching task's DU-AL. After the
attach, the attaching task and the subtask can add
and delete entries on their own DU-ALs.

A PASN-AL cannot be passed from one address
space to another.

A DU-AL can have up to 509 entries. A PASN-AL can have up to 510 entries, some of
which are reserved for the type of space called
SCOPE=COMMON.

When the work unit terminates, the DU-AL is
purged.

When the owning jobstep task terminates, the
PASN-AL is purged.

Writing programs in AR mode
After your program has an entry on an access list and the ALET that indexes the entry, it must place
a value in an AR before it can use the data space. To understand how the system resolves addresses
in instructions for programs in AR mode, see Figure 67 on page 252. This figure shows how an MVC
instruction in AR mode moves data from location B in one data space to location A in another data space:

Figure 67. Using Instructions in AR Mode

GPR 1 is used as a base register to locate the destination of the data, and AR 1 is used to identify space
X. GPR 2 is used to locate the source of the data, and AR 2 identifies Space Y. In AR mode, a program can
use a single MVC instruction to move data from one address/data space to another.

Note: The address space that contains the MVC instruction does not have to be either Space X or Space Y.

In similar ways, you can use instructions that compare, test-under-mask, copy, move, and perform
arithmetic operations.

252 z/OS: z/OS MVS Assembler Services Guide

When the instructions reference data in the primary address space, the ALET in the AR must indicate that
the data is in that address space. For this purpose, the system provides a special ALET with a value of
zero. Other than using this value to identify the primary address space, a program should never depend on
the value of an ALET.

An ALET of zero designates the primary address space.

The “Loading the value of zero into an AR” on page 254 shows several examples of loading a value of zero
in an AR.

Coding instructions in AR mode
As you write your AR mode programs, use the advice and warnings in this information.

• For an instruction that references data, the system uses the contents of an AR to identify the address/
data space that contains the data that the associated GPR points to.

• Use ARs only for data reference; do not use them with branching instructions.
• Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for addressing.
• An AR should contain only ALETs; do not store any other kinds of data in an AR.

Because ARs that are associated with index registers are ignored, when you code assembler
instructions in AR mode, place the commas very carefully. In those instructions that use both a base
register and an index register, the comma that separates the two values is very important. Table 26
on page 253 shows four examples of how a misplaced comma can change how the processor resolves
addresses on the load instruction.

Table 26. Base and Index Register Addressing in AR Mode

Instruction Address Resolution

L 5,4(,3) or L 5,4(0,3) There is no index register. GPR 3 is the base register. AR 3 indicates the
address/data space.

L 5,4(3) or L 5,4(3,0) GPR 3 is the index register. Because there is no base register, data is fetched
from the primary address space.

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR 8 indicates the
address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR 6 indicates the
address/data space.

For the first two entries in Table 26 on page 253:

• In primary mode, the examples of the load instruction give the same result.
• In AR mode, the data is fetched using different ARs. In the first entry, data is fetched from the address/

data space represented by the ALET in AR 3. In the second entry, data is fetched from the primary
address space (because AR/GPR 0 is not used as a base register).

For the last two entries in Table 26 on page 253:

• In primary mode, the examples of the load instruction give the same result.
• In AR mode, the first results in a fetch from the address/data space represented by AR 8, while the

second results in a fetch from the address/data space represented by AR 6.

Manipulating the contents of ARs
Whether the ASC mode of a program is primary or AR, it can use assembler instructions to save, restore,
and modify the contents of the 16 ARs. The set of instructions that manipulate ARs include:

• CPYA — Copy the contents of an AR into another AR.

Chapter 15. Using access registers 253

• EAR — Copy the contents of an AR into a GPR.
• LAE — Load a specified ALET and address into an AR/GPR pair.
• SAR — Place the contents of a GPR into an AR.
• LAM — Load the contents of one or more ARs from a specified storage location.
• STAM — Store the contents of one or more ARs to a specified storage location.

For their syntax and help with how to use these instruction, see Principles of Operation.

Loading an ALET into an AR
An action that is very important when a program is in AR mode, is the loading of an ALET into an AR. The
following example shows how the LAM instruction loads an ALET into AR 2:

 LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
*
DSALET DS F DATA SPACE ALET

Loading the value of zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the contents of the ARs. For
instructions that reference data, the ARs must always contain the ALET that identifies the data space that
contains the data. When the data is in the primary address space, the AR that accompanies the GPR that
has the address of the data must contain the value zero.

The following examples show several ways of placing the value zero in an AR.

Example 1: Set AR 5 to value of zero, when GPR 5 can be changed.

 SLR 5,5 SET GPR 5 TO ZERO
 SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2: Set AR 5 to value of zero, without changing value in GPR 5.

 LAM 5,5,=F'0' LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:

 LAM 5,5,ZERO
ZERO DC F'0'

Example 3: Set AR 5 to value of zero, when AR 12 is already zero.

 CPYA 5,12 COPY AR 12 INTO AR 5

Example 4: Set AR 12 to zero and set GPR 12 to the address contained in GPR 15. This sequence is useful
to establish a program's base register GPR and AR from an entry point address contained in register 15.

 PGMA CSECT ENTRY POINT
 .
 .
 LAE 12,0(15,0) ESTABLISH PROGRAM'S BASE REGISTER
 USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as follows:

 LAE 12,0
 BASR 12,0
 USING *,12

254 z/OS: z/OS MVS Assembler Services Guide

Example 5: Set AR 5 and GPR 5 to zero.

 LAE 5,0(0,0) Set GPR and AR 5 to zero

The ALESERV macro
Use the ALESERV macro to add an entry to an access list and delete that entry. The information describes
the parameters on the ALESERV macro and gives examples of its use.

Adding an entry to an access list
The ALESERV ADD macro adds an entry to the access list. Two parameters are required: STOKEN, an input
parameter, and ALET, an output parameter.

• STOKEN - the eight-byte STOKEN of the address/data space represented by the entry. You might have
received the STOKEN from DSPSERV or from another program.

• ALET - index to the entry that ALESERV added to the access list. The system returns this value at the
address you specify on the ALET parameter.

The best way to describe how you add an entry to an access list is through an example. The following code
adds an entry to a DU-AL. Assume that the DSPSERV macro has created the data space and has returned
the STOKEN of the data space in DSPCSTKN and the origin of the data space in DSPCORG. ALESERV ADD
returns the ALET in DSPCALET. The program then establishes addressability to the data space by loading
the ALET into AR 2 and the origin of the data space into GPR 2.

* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
 USING DSPCMAP,2 INFORM ASSEMBLER
 .
 L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE
 USES AR/GPR 2 TO MAKE THE REFERENCE
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate data in the data space.

It is possible to use ALESERV ADD to obtain an entry for a hiperspace. For information on how
hiperspaces use ALETs, see “Obtaining additional HSPSERV performance” on page 283.

Deleting an entry from an access list
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter identifies the specific
entry. It is a good programming practice to delete entries from an access list when the entries are no
longer needed.

The following example deletes the entry that was added in the previous example.

 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

If the program does not delete an entry,

• An entry on the DU-AL remains on the access list until the work unit terminates. At that time, the system
frees the access list entry.

Chapter 15. Using access registers 255

• An entry on the PASN-AL remains on the access list until the owning jobstep task terminates. At that
time, the system frees the access list entry.

Issuing MVS macros in AR mode
Many MVS macro services support callers in both primary and AR modes. When the caller is in AR mode,
the macro service must generate larger parameter lists at assembly time. The increased size of the list
reflects the addition of ALET-qualified addresses. At assembly time, a macro service that needs to know
whether a caller is in AR mode checks the global indicator that SYSSTATE ASCENV=AR sets. The system
expects that you have issued SYSSTATE ASCENV=AR when a macro is issued while in AR mode. Then,
when the program returns to primary mode, issue SYSSTATE ASCENV=P to reset the global indicator.

When your program is in AR mode, keep in mind these two facts:

• Before you use a macro in AR mode, check the description of the macro in z/OS MVS Programming:
Assembler Services Reference ABE-HSP or z/OS MVS Programming: Assembler Services Reference IAR-
XCT. If the description of the macro does not specifically state that the macro supports callers in AR
mode, use the SAC instruction to change the ASC mode and use the macro in primary mode.

• ARs 14 - 1 are volatile across all macro calls, whether the caller is in AR mode or primary mode. Don't
count on the contents of these ARs being the same after the call as they were before.

Example of using SYSSTATE
Consider a program that changes ASC mode from primary to AR mode and while in AR mode, issues the
LINKX and STORAGE macros. When it changes ASC mode, it issues the following:

SAC 512
SYSSTATE ASCENV=AR

The LINKX macro generates different code and addresses, depending on the ASC mode of the caller.
During the assembly of LINKX, the LINKX macro service checks the setting of the global indicator.
Because the global indicator indicates that the caller is in AR mode, LINKX generates code and addresses
that are appropriate for callers in AR mode.

The STORAGE macro generates different code, depending on the ASC mode of the caller. During the
assembly of STORAGE, the STORAGE macro service checks the setting of the global indicator. Because
the global indicator indicates that the caller is in AR mode, STORAGE generates code that is appropriate
for callers in AR mode.

When the program changes back to primary mode, it issues the following:

SAC 0
SYSSTATE ASCENV=P

Using X-macros
Some macro services, such as LINK and LINKX, offer two macros, one for callers in primary mode and one
for callers in either primary or AR mode. The names of the two macros are the same, except the macro
that supports both primary and AR mode caller ends with an "X". This information refers to these macros
as "X-macros". The rules for using all X-macros, except ESTAEX, are:

• Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary mode. Some
parameters on the non X-macros are not valid for callers in AR mode. Check the macro descriptions
in z/OS MVS Programming: Assembler Services Reference ABE-HSP or z/OS MVS Programming: Assembler
Services Reference IAR-XCT for these exceptions.

• Callers in AR mode should issue the X-macro after issuing the SYSSTATE ASCENV=AR macro.

If a caller in AR mode issues the non X-macro, the system substitutes the X-macro and issues a
message during assembly that informs you of the substitution.

256 z/OS: z/OS MVS Assembler Services Guide

IBM recommends you always use ESTAEX unless your program and your recovery routine are in 24-bit
addressing mode, in which case, you should use ESTAE.

If your program issues macros while it is in AR mode, make sure the macros support AR mode callers and
that SYSSTATE ASCENV=AR is coded.

If you rewrite programs and use the X-macro instead of the non X-macro, you must change both the list
and execute forms of the macro. If you change only the execute form of the macro, the system will not
generate the longer parameter list that the X-macro requires.

Note that an X-macro generates a larger parameter list than the corresponding non X-macro. A program
using the X-macros must provide a larger parameter list than if it used the non X-macro.

Formatting and displaying AR information
The interactive problem control system (IPCS) can format and display AR data. Use the ARCHECK
subcommand to:

• Display the contents of an AR
• Display the contents of an access list entry

See z/OS MVS IPCS Commands for more information about the ARCHECK subcommand.

Chapter 15. Using access registers 257

258 z/OS: z/OS MVS Assembler Services Guide

Chapter 16. Data spaces and hiperspaces

For storing data, MVS offers a program a choice of two kinds of virtual storage areas for data only: data
spaces and hiperspaces. In making the decision whether to use a hiperspace or data space, you might
have the following questions:

• Does my program need virtual storage outside the address space?
• Which kind of virtual storage is appropriate for my program?

The first part of the chapter helps you make these decisions. Then, if you decide that one of these virtual
storage areas would benefit your program, use the following information to create, use, and delete the
area:

• “Creating and using data spaces” on page 264
• “Creating and using hiperspaces” on page 278

What are data spaces and hiperspaces?
Data spaces and hiperspaces are similar in that both are areas of virtual storage that the program can ask
the system to create. The size of this space can range from four kilobytes to two gigabytes, according to
the user's request. Unlike an address space, a data space or hiperspace contains only user data or user
programs stored as data. Program code cannot run in a data space or a hiperspace.

The following diagram shows, at an overview level, the difference between an address space and a data
space or hiperspace.

The major difference between a data space and a hiperspace is the way your program accesses data
in the two areas. This difference is described later in this chapter. But before you can understand the
differences, you need to understand what your program can do with these virtual storage areas.

What can a program do with a data space or a hiperspace?
Programs can use data spaces and hiperspaces to:

• Obtain more virtual storage than a single address space gives a user.
• Isolate data from other tasks in the address space.

Data in an address space is accessible to all programs executing in that address space. You might want
to move some data to a data space or hiperspace for security or integrity reasons. Use this space as a
way to separate your data logically by its own particular use.

© Copyright IBM Corp. 1988, 2022 259

• Provide an area in which to map a data-in-virtual object.

You can place all types of data in a data space or hiperspace, rather than in an address space or on DASD.
Examples of such data include:

• Tables, arrays, or matrixes
• Data base buffers
• Temporary work files
• Copies of permanent data sets

Because data spaces and hiperspaces do not include system areas, the cost of creating and deleting them
is less than that of an address space.

To help you decide whether you need this additional storage area, some important questions are
answered in the following topics.

How does a program obtain a data space and a hiperspace?
Data spaces and hiperspaces are created through the same system service: the DSPSERV macro. On this
macro, you request either a data space (TYPE=BASIC) or a hiperspace (TYPE=HIPERSPACE). You also
specify some characteristics of the space, such as its size and its name.

The DSPSERV macro service gives you contiguous 31-bit addressable virtual storage of the size you
specify and initializes the storage to binary zeros.

z/OS MVS Programming: Assembler Services Reference ABE-HSP contains the syntax and parameter
descriptions for the macros that are mentioned in this chapter.

How does a program move data into a data space or hiperspace?
One way to move data into a data space or a hiperspace is through buffers in the program's address
space. Another way avoids using address space virtual storage as an intermediate buffer area: through
data-in-virtual services, a program can move data into a data space or hiperspace directly. This second
way reduces the amount of I/O.

Who owns a data space or hiperspace?
Although programs create data spaces and hiperspaces, they do not own them. When a program creates
the space, the system assigns ownership to the TCB that represents the program, or to the TCB of the
job step task of the program, if you choose. You can assign ownership of the data space to the job step
TCB by specifying the TTOKEN option on the DSPSERV CREATE macro. All storage within a data space or
hiperspace is available to programs that run under that TCB and, in some cases, the storage is available to
other users. When the TCB terminates, the system deletes any data spaces or hiperspaces the TCB owns.
If you want the data space to exist after the creating TCB terminates, assign the space to the job step TCB.
The job step will continue to be active beyond the termination of the creating TCB.

Because data spaces and hiperspaces belong to TCBs, keep in mind the relationship between the
program and the TCB under which it runs. For simplicity, however, this chapter describes hiperspaces
and data spaces as if they belong to programs. For example, "a program's data space" means "the data
space that belongs to the TCB under which a program is running".

Can an installation limit the use of data spaces and hiperspaces?
The use of data spaces and hiperspaces consumes system resources such as expanded and auxiliary
storage. Programmers responsible for tuning and maintaining MVS can set limits on the amount of virtual
storage that programs in each address space can use for data spaces and hiperspaces. They can limit:

• The size of a single hiperspace or data space. (The default is 956K bytes, or 239 blocks.)
• The amount of storage available per address space for all hiperspaces and data spaces with a storage

key of 8 - F. (The default is 2²⁴ - 1 megabytes, or 16777215 megabytes.)

260 z/OS: z/OS MVS Assembler Services Guide

• The combined number of hiperspaces and data spaces with storage key 8 - F that can exist per address
space at one time. (The default is (2**32)-1 data spaces and hiperspaces.)

You should know the limits your installation establishes and the return codes that you can check to learn
why the DSPSERV macro might not create the data space or hiperspace you requested.

How does a program manage the storage in a data space or hiperspace?
Managing storage in data spaces or hiperspaces differs from managing storage in address spaces. Keep
the following advisory notes in mind when you handle your data space storage:

• When you create a data space or hiperspace, use the DSPSERV macro to request a large enough size to
handle your application.

The amount of storage you specify when you create a data space or a hiperspace is the maximum
amount the system will allow you to use in that space.

• You are responsible for keeping track of the allocating and freeing of data space and hiperspace storage.
You cannot use the services of virtual storage management (VSM), such as the STORAGE, GETMAIN,
or FREEMAIN macros, to manage this area. You can, however, use callable cell pool services to define
a cell pool within a data space. You can then obtain the cells, as well as expand and contract the cell
pool. “Using callable cell pool services to manage data space areas” on page 272 describes the use of
callable cell pool services for data spaces. Information on how to code the services is in Chapter 13,
“Callable cell pool services,” on page 215.

• If you are not going to use an area of a data space or hiperspace again, release that area.
• When you are finished using a data space or hiperspace, delete it.

Differences between data spaces and hiperspaces
Up to this point, the chapter has focused on similarities between data spaces and hiperspaces. By now,
you should know whether your program needs the kind of virtual storage that a data space or hiperspace
offers. Only by understanding the differences between the two types of spaces, can you decide which one
most appropriately meets your program's needs, or whether the program can use them both.

The main difference between data spaces and hiperspaces is the way a program references data. A
program references data in a data space directly, in much the same way it references data in an address
space. It addresses the data by the byte, manipulating, comparing, and performing arithmetic operations.
The program uses the same instructions (such as load, compare, add, and move character) that it would
use to access data in its own address space. To reference the data in a data space, the program must be in
the ASC mode called access register (AR) mode. Pointers that associate the data space with the program
must be in place and the contents of ARs that the instructions use must identify the specific data space.

Figure 68 on page 262 shows a program in AR ASC mode using the data space. The CLC instruction
compares data at two locations in the data space; the MVC instruction moves the data at location D in the
data space to location C in the address space.

Chapter 16. Data spaces and hiperspaces 261

Figure 68. Accessing Data in a Data Space

In contrast, a program does not directly access data in a hiperspace. MVS provides a system service, the
HSPSERV macro, to transfer the data between an address space and a hiperspace in 4K byte blocks. The
HSPSERV macro read operation transfers the blocks of data from a hiperspace into an address space
buffer where the program can manipulate the data. The HSPSERV write operation transfers the data
from the address space buffer area to a hiperspace for storage. You can think of hiperspace storage as a
high-speed buffer area where your program can store 4K byte blocks of data.

Figure 69 on page 262 shows a program in an address space using the data in a hiperspace. The program
uses the HSPSERV macro to transfer an area in the hiperspace to the address space, compares the
values at locations A and B, and uses the MVC instruction to move data at location D to location C. After
it finishes using the data in those blocks, the program transfers the area back to the hiperspace. The
program could be in either primary or AR ASC mode.

Figure 69. Accessing Data in a Hiperspace

On one HSPSERV macro, the program can transfer the data in more than one area between the hiperspace
and the address space.

262 z/OS: z/OS MVS Assembler Services Guide

Comparing data space and hiperspace use of physical storage
To compare the performance of manipulating data in data spaces with the manipulating of data in
hiperspaces, you should understand how the system "backs" these two virtual storage areas. (That is,
what kind of physical storage the system uses to maintain the data in virtual storage.) The system uses
the same resources to back data space virtual storage as it uses to back address space virtual storage: a
combination of central and expanded storage (if available) frames, and auxiliary storage slots. The system
can release low-use pages of data space storage to auxiliary storage and bring them in again when your
program references those pages. The paging activity for a data space includes I/O between auxiliary
storage paging devices and central storage.

The system backs hiperspace virtual storage with expanded storage (if available), and auxiliary storage
when expanded storage is not available. When you create a hiperspace, the system knows that the space
will not be the target of assembler instructions and therefore will not need the backing of real frames.
Therefore, data movement through HSPSERV does not include I/O activity between DASD and the storage
that backs the hiperspace pages. For this reason, hiperspaces are very efficient.

Which one should your program use?
If your program needs to manipulate or access data often by the byte, data spaces might be the answer.
Use a data space if the program frequently addresses data at a byte level, such as you would in a workfile.

If your program can easily handle the data in 4K byte blocks, a hiperspace might give you the best
performance. Use a hiperspace if the program needs a place to store data, but not to manipulate data. A
hiperspace has other advantages:

• The program can stay in primary mode and ignore the access registers.
• The program can benefit from the high-speed access.
• The system can use the unused processor storage for other needs.

An example of using a data space
Suppose an existing program updates several rate tables that reside on DASD. Updates are random
throughout the tables. The tables are too large and too many for your program to keep in contiguous
storage in its address space. When the program updates a table, it reads that part of the table into a buffer
area in the address space, updates the table, and writes the changes back to DASD. Each time it makes an
update, it issues instructions that cause I/O operations.

If the tables were to reside in data spaces, one table to each data space, the tables would then be
accessible to the program through assembler instructions. The program could move the tables to the data
spaces (through buffers in the address space) once at the beginning of the update operations and then
move them back (through buffers in the address space) at the end of the update operations.

If the tables are VSAM linear data sets, data-in-virtual can map the tables and move the data into the data
space where a program can access the data. Data-in-virtual can then move the data from the data space
to DASD. With data-in-virtual, the program does not have to move the data into the data space through
address space buffers, nor does it have to move the data to DASD through address space buffers.

An example of using a hiperspace
Suppose an existing program uses a data base that resides on DASD. The data base contains many
records, each one containing personnel information about one employee. Access to the data base is
random and programs reference but do not update the records. Each time the program wants to reference
a record, it reads the record in from DASD.

If the data base were to exist in a hiperspace, the program would still bring one record into its address
space at a time. Instead of reading from DASD, however, the program would bring in the records from the
hiperspace on expanded storage (or auxiliary storage, when expanded storage is not available.) In effect,
this technique can eliminate many I/O operations and reduce execution time.

Chapter 16. Data spaces and hiperspaces 263

Creating and using data spaces
A data space is an area of virtual storage that a program can ask the system to create. Its size can range
from 4K bytes to 2 gigabytes, according to the program's request. Unlike an address space, a data space
contains only user data. Program code cannot run in a data space.

The DSPSERV macro manages data spaces. The TYPE=BASIC parameter (the default) tells the system
that it is to manage a data space rather than a hiperspace. Use DSPSERV to:

• Create a data space
• Release an area in a data space
• Delete a data space
• Expand the amount of storage in a data space currently available to a program
• Load an area of a data space into central storage
• Page an area of a data space out of central storage

Before it describes how your program can perform these actions, this chapter describes how your
program will reference data in the data space it creates.

Manipulating data in a data space
Assembler instructions (such as load, store, add, and move character) manipulate the data in a data
space. When you use instructions to manipulate data in a data space, your program must use the set of
general purpose registers (GPRs) plus another set of registers called access registers. Chapter 15, “Using
access registers,” on page 249 describes how to use access registers to manipulate data in data spaces.

Rules for creating, deleting, and managing data spaces
The SCOPE parameter determines what kind of data space a program creates. The three kinds of data
spaces are SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON:

• SCOPE=SINGLE data spaces

All programs can create, use, and delete SCOPE=SINGLE data spaces. Your program would use data
spaces in much the same way as it uses private storage in an address space.

• SCOPE=ALL and SCOPE=COMMON data spaces

Supervisor state or PSW key 0 - 7 programs can create, use, and delete data spaces that they can share
with other programs. These data spaces have uses similar to MVS common storage.

To protect data in data spaces, the system places certain restrictions on problem state programs with
PSW key 8 - F. The problem state programs with PSW key 8 - F can use SCOPE=ALL and SCOPE=COMMON
data spaces, but they cannot create or delete them. They use them only under the control of supervisor
state or PSW key 0 - 7 programs. This chapter assumes that the data spaces your program creates, uses,
and deletes are SCOPE=SINGLE data spaces.

The following figure summarizes the rules for problem state programs with PSW key 8 - F:

Table 27. Rules for How Problem State Programs with Key 8-F Can Use Data Spaces

Function Rules

CREATE Can create SCOPE=SINGLE data spaces.

DELETE Can delete the data spaces it creates or owns, provided the PSW key of the
program matches the storage key of the data space.

RELEASE Can release storage in the data spaces it creates or owns, provided the PSW
key of the program matches the storage key of the data space.

EXTEND Can extend the current size of the data spaces it owns.

264 z/OS: z/OS MVS Assembler Services Guide

Table 27. Rules for How Problem State Programs with Key 8-F Can Use Data Spaces (continued)

Function Rules

Add entries to the DU-AL Can add entries to its DU-AL for the data spaces it created or owns.

Add entries to the PASN-
AL

Can add entries to the PASN-AL for the data spaces it created or owns,
providing an entry is not already on the PASN-AL as a result of an ALESERV
ADD by a problem state program with PSW key 8 - F. If the ALET is already on
the PASN-AL, the system does not create a duplicate entry, but the program
can still access the data space using the ALET that already exists.

Access a data space
through a DU-AL or
PASN-AL

Can access a data space through its DU-AL and PASN-AL. The entry for a
SCOPE=ALL or SCOPE=COMMON data space accessed through the PASN-AL
must have been added to the PASN-AL by a program in supervisor state or
PSW key 0 - 7. This program would have passed an ALET to the problem state
PSW key 8 - F program.

LOAD Can page areas into central storage from a data space created by any other
task in that address space.

OUT Can page areas out of central storage to a data space created by any other
task in that address space.

There are other things that programs can do with data spaces. To do them, however, your program must
be supervisor state or have a PSW key 0 - 7. For information on how these programs can use data spaces,
see z/OS MVS Programming: Extended Addressability Guide.

Creating a data space
To create a data space, issue the DSPSERV CREATE macro. MVS gives you contiguous 31-bit virtual
storage of the size you specify and initializes the storage to hexadecimal zeros.

On the DSPSERV macro, you are required to specify:

• The name of the data space (NAME parameter).

To ask DSPSERV to generate a data space name unique to the address space, use the GENNAME
parameter. DSPSERV will return the name it generates at the location you specify on the OUTNAME
parameter. See “Choosing the name of a data space” on page 266.

• A location where DSPSERV can return the STOKEN of the data space (STOKEN parameter).

DSPSERV CREATE returns a STOKEN that you can use to identify the data space to other DSPSERV
services and to the ALESERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

• The maximum size of the data space and its initial size (BLOCKS parameter). If you do not code BLOCKS,
the data space size is determined by defaults set by your installation. In this case, use the NUMBLKS
parameter to tell the system where to return the size of the data space. See “Specifying the size of a
data space” on page 266.

• A location where DSPSERV can return the address (either 0 or 4096) of the first available block of the
data space (ORIGIN parameter). See “Identifying the origin of a data space” on page 267.

• The TTOKEN of the caller's job step task. If you want the data space to exist after your task terminates,
or to be made concurrently available to any existing task in the job step as well as the creating task,
assign ownership of the data space to the job step task. “Sharing data spaces among problem-state
programs with PSW key 8-F” on page 273 describes a program that requests the TTOKEN of the job
step task and then assigns ownership of a data space to the job step task. To request the TTOKEN of the
job step task, issue the TCBTOKEN macro using the TYPE=JOBSTEP option.

Chapter 16. Data spaces and hiperspaces 265

Choosing the name of a data space
The names of data spaces and hiperspaces must be unique within an address space. You have a choice
of choosing the name yourself or asking the system to generate a unique name. To keep you from
choosing names that it uses, MVS has some specific rules for you to follow. These rules are listed in
the DSPSERV description under the NAME parameter in z/OS MVS Programming: Assembler Services
Reference ABE-HSP.

Use the GENNAME parameter to ask the system to generate a unique name. GENNAME=YES generates a
unique name that has, as its last one to three characters, the first one to three characters of the name you
specify on the NAME parameter.

Example 1: If PAY␢␢␢␢␢ is the name you supply on the NAME parameter and you code GENNAME=YES,
the system generates the following name:

nccccPAY

where the system generates the digit n and the characters cccc, and appends the characters PAY that you
supplied.

Example 2: If J␢␢␢␢␢␢␢ is the name you supply on the NAME parameter and you code GENNAME=YES,
the system generates the following name:

nccccJ

GENNAME=COND checks the name you supply on the NAME parameter. If it is already used for a data
space or a hiperspace, DSPSERV supplies a name with the format described for the GENNAME=YES
parameter.

To learn the unique name that the system generates for the data space or hiperspace you are creating,
use the OUTNAME parameter.

Specifying the size of a data space
When you create a data space or hiperspace, you tell the system on the BLOCKS parameter how large
to make that space, the largest size being 524,288 blocks. (The product of 524288 times 4K bytes is
2 gigabytes.) The addressing range for the data space or hiperspace depends on the processor. If your
processor does not support an origin of zero, the limit is actually 4096 bytes less than 2 gigabytes. Before
you code BLOCKS, you should know two facts about how an installation controls the use of virtual storage
for data spaces and hiperspaces.

• An installation can set limits on the amount of storage available for each address space for all data
spaces and hiperspaces with a storage key of 8 through F. If your request for this kind of space (either
on the DSPSERV CREATE or DSPSERV EXTEND) would cause the installation limit to be exceeded, the
system rejects the request with a nonzero return code and a reason code.

• An installation sets a default size for data spaces and hiperspaces; you should know this size. If you do
not use the BLOCKS parameter, the system creates a data space with the default size. (The IBM default
size is 239 blocks.)

The data spaces and hiperspaces your programs create have a storage key greater than 7. The system
adds the initial size of these spaces to the cumulative total of all data spaces and hiperspaces for the
address space and checks this total against the installation limit. For information on the IBM defaults, see
“Can an installation limit the use of data spaces and hiperspaces?” on page 260.

The BLOCKS parameter allows you to specify a maximum size and initial size value.

• The maximum size identifies the largest amount of storage you will need in the data space.
• An initial size identifies the amount of the storage you will immediately use.

As you need more space in the data space or hiperspace, you can use the DSPSERV EXTEND macro to
increase the available storage. The amount of available storage is called the current size. (At the creation
of a data space or hiperspace, the initial size is the same as the current size.) When it calculates the
cumulative total of data space and hiperspace storage, the system uses the current size.

266 z/OS: z/OS MVS Assembler Services Guide

If you know the default size and want a data space or hiperspace smaller than or equal to that size, use
the BLOCKS=maximum size or omit the BLOCKS parameter.

If you know what size data space or hiperspace you need and are not concerned about exceeding the
installation limit, set the maximum size and the initial size the same. BLOCKS=0, the default, establishes a
maximum size and initial size both set to the default size.

If you do not know how large a data space or hiperspace you will eventually need or you are concerned
with exceeding the installation limit, set the maximum size to the largest size you might possibly use and
the initial size to a smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system return the size of the space it creates for you.
You would use NUMBLKS, for example, if you did not specify BLOCKS and do not know the default size.

Figure 70 on page 267 shows an example of using the BLOCKS parameter to request a data space with
a maximum size of 100,000 bytes of space and a current size (or initial size) of 20,000 bytes. You would
code the BLOCKS parameter on DSPSERV as follows:

 DSPSERV CREATE,. . .,BLOCKS=(DSPMAX,DSPINIT)
 .
DSPMAX DC A((100000+4095)/4096) DATA SPACE MAXIMUM SIZE
DSPINIT DC A((20000+4095)/4096) DATA SPACE INITIAL SIZE

Figure 70. Example of Specifying the Size of a Data Space

As your program uses more of the data space storage, it can use DSPSERV EXTEND to extend the current
size. “Extending the current size of a data space” on page 270 describes extending the current size and
includes an example of how to extend the current size of the data space in Figure 70 on page 267.

Identifying the origin of a data space
Some processors do not allow the data space or hiperspace to start at zero; these spaces start at address
4096 bytes. When you use DSPSERV CREATE, you can count on the origin of the data space or hiperspace
staying the same within the same IPL. To learn the starting address, either:

• Create a data space 1 block larger than you need and then assume that the space starts at address
4096, or

• Use the ORIGIN parameter.

If you use ORIGIN, the system returns the beginning address of the data space or hiperspace at the
location you specify.

Unless you specify a size of 2 gigabytes and the processor does not support an origin of zero, the system
gives you the size you request, regardless of the location of the origin.

An example of the problem you want to avoid in addressing data space storage is as follows:

Chapter 16. Data spaces and hiperspaces 267

• Suppose a program creates a data space of 1 megabyte and assumes the data space starts at address 0
when it really begins at the address 4096. Then, if the program uses an address lower than 4096 in the
data space, the system abends the program.

Example of creating a data space
In the following example, a program creates a data space named TEMP. The system returns the origin of
the data space (either 0 or 4096) at location DSPCORG.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

Establishing addressability to a data space
Creating a data space does not give you access to the data space. You must use the ALESERV macro and
issue certain assembler instructions before you can use the data space. The ALESERV macro adds an
entry to an access list, either the DU-AL or the PASN-AL. The STOKEN parameter identifies the data space
and the ALET parameter tells ALESERV where to return the access list entry token (that is, the ALET).

Your program can add entries for the data spaces it created or owns to either the DU-AL or the PASN-AL.
Programs that the work unit represents can use the DU-AL. All programs running in the primary address
space can use the PASN-AL for that address space. If you want all programs in the address space to have
access to the data space entries, your program should put the entries on the PASN-AL. If you want to
restrict the use of the entries, your program should put the entries on the DU-AL. When you add an entry
to the PASN-AL, however, the system checks to see if an entry for that data space already exists on the
PASN-AL. If the ALET is already on the PASN-AL, the system does not create a duplicate entry, but the
program can still access the data space.

When your program wants to manipulate data in the data space, it places the ALET in an AR and changes
its ASC mode to AR mode. For examples of how to establish addressability to data spaces and manipulate
data in those data spaces, see Chapter 15, “Using access registers,” on page 249. “The ALESERV macro”
on page 255 describes how to add access list entries and gives an example.

Examples of moving data into and out of a data space
When using data spaces, you sometimes have large amounts of data to transfer between the address
space and the data space. This information contains examples of two subroutines, both named
COPYDATA, that show you how to use the Move (MVC) and Move Long (MVCL) instructions to move a
variable number of bytes into and out of a data space. (You can also use the examples to help you move
data within an address space.) The two examples perform exactly the same function; both are included
here to show you the relative coding effort required to use each instruction.

The use of registers for the two examples is as follows:

 Input: AR/GR 2 Target area location
 AR/GR 3 Source area location
 GR 4 Signed 32-bit length of area
 (Note: A negative length is treated as zero.)
 GR 14 Return address
 Output: AR/GR 2-14 Restored
 GR 15 Return code of zero

The routines can be called in either primary or AR mode; however, during the time they manipulate data
in a data space, they must be in AR mode. The source and target locations are assumed to be the same
length (that is, the target location is not filled with a padding character).

268 z/OS: z/OS MVS Assembler Services Guide

Example 1: Using the MVC Instruction: The first COPYDATA example uses the MVC instruction to move the
specified data in groups of 256 bytes:

COPYDATA DS 0D
 BAKR 14,0 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BALR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .

 LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
 BNP COPYDONE YES, RETURN TO CALLER
 .
 S 4,=F'256' SUBTRACT 256 FROM LENGTH
 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART

 .
COPYLOOP DS 0H
 MVC 0(256,2),0(3) COPY 256 BYTES
 LA 2,256(,2) ADD 256 TO TARGET ADDRESS
 LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
 S 4,=F'256' SUBTRACT 256 FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK

COPYLAST DS 0H
 LA 4,255(,4) ADD 255 TO LENGTH
 EX 4,COPYINST EXECUTE A MVC TO COPY THE
* LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE

COPYINST MVC 0(0,2),0(3) EXECUTED INSTRUCTION
COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 PR RETURN TO CALLER

Example 2: Using the MVCL Instruction: The second COPYDATA example uses the MVCL instruction to
move the specified data in groups of 1048576 bytes:

COPYDATA DS 0D
 BAKR 14,0 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BALR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .
 LA 6,0(,2) COPY TARGET ADDRESS
 LA 7,0(,3) COPY SOURCE ADDRESS
 LTR 8,4 COPY AND TEST LENGTH
 BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO
 .
 LAE 4,0(0,3) COPY SOURCE AR/GR
 L 9,COPYLEN GET LENGTH FOR MVCL
 SR 8,9 SUBTRACT LENGTH OF COPY
 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART
 .
COPYLOOP DS 0H
 LR 3,9 GET TARGET LENGTH FOR MVCL
 LR 5,9 GET SOURCE LENGTH FOR MVCL
 MVCL 2,4 COPY DATA
 ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
 ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
 LR 2,6 COPY NEW TARGET ADDRESS
 LR 4,7 COPY NEW SOURCE ADDRESS
 SR 8,9 SUBTRACT COPYLEN FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK
 .
COPYLAST DS 0H
 AR 8,9 ADD COPYLEN
 LR 3,8 COPY TARGET LENGTH FOR MVCL
 LR 5,8 COPY SOURCE LENGTH FOR MVCL

Chapter 16. Data spaces and hiperspaces 269

 MVCL 2,4 COPY LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE
COPYLEN DC F'1048576' AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 PR RETURN TO CALLER

Programming Notes for Example 2:

• The MVCL instruction uses GPRs 2, 3, 4, and 5.
• The ALR instruction uses GPRs 6, 7, 8, and 9.
• The maximum amount of data that one execution of the MVCL instruction can move is 2²⁴-1 bytes

(16777215 bytes).

Extending the current size of a data space
When you create a data space and specify a maximum size larger than the initial size, you can use
DSPSERV EXTEND to increase the current size as your program uses more storage in the data space. The
BLOCKS parameter specifies the amount of storage you want to add to the current size of the data space.

The system increases the data space by the amount you specify, unless that amount would cause the
system to exceed one of the following:

• The data space maximum size, as specified by the BLOCKS parameter on DSPSERV CREATE when the
data space was created

• The installation limit for the combined total of data space and hiperspace storage with storage key 8 -F
per address space. These limits are either the system default or are set in the installation exit IEFUSI.

If one of those limits would be exceeded, the VAR parameter tells the system how to satisfy the EXTEND
request.

• VAR=YES (the variable request) tells the system to extend the data space as much as possible, without
exceeding the limits set by the data space maximum size or the installation limits. In other words, the
system extends the data space to one of the following sizes, depending on which is smaller:

– The maximum size specified on the BLOCKS parameter
– The largest size that would still keep the combined total of data space and hiperspace storage within

the installation limit.
• VAR=NO (the default) tells the system to:

– Abend the caller, if the extended size would exceed the maximum size specified at the creation of the
data space

– Reject the request, if the data space has storage key 8 - F and the request would exceed the
installation limits.

If you use VAR=YES when you issue the EXTEND request, use the NUMBLKS parameter to find out the size
by which the system extended the data space.

Figure 70 on page 267 is an example of using the EXTEND request, where the current (and initial) size is
20,000 bytes and the maximum size is 100,000 bytes. If you want to increase the current size to 50,000
bytes, adding 30,000 blocks to the current size, you could code the following:

 DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSPDELTA
 .
DSPDELTA DC A((30000+4095)/4096) DATA SPACE ADDITIONAL SIZE
DSSTOK DS CL8 DATA SPACE STOKEN

The program can now use 50,000 bytes in the 100,000-byte data space, as shown in Figure 71 on page
271:

270 z/OS: z/OS MVS Assembler Services Guide

Figure 71. Example of Extending the Current Size of a Data Space

Because the example did not include the VAR parameter, the system uses the default, VAR=NO.

Releasing data space storage
Your program needs to release storage when it used a data space for one purpose and wants to reuse it
for another purpose, or when your program is finished using the area. To release the virtual storage of a
data space, use the DSPSERV RELEASE macro. (Data space release is similar to PGSER RELEASE for an
address space.) Specify the STOKEN to identify the data space and the START and BLOCKS parameters to
identify the beginning and the length of the area you need to release.

Releasing storage in a data space requires that a problem state program with PSW key 8 - F be the owner
or creator of the data space and have the PSW key that matches the storage key of the data space.

Use DSPSERV RELEASE instead of the MVCL instruction to clear large areas of data space storage
because:

• DSPSERV RELEASE is faster than MVCL for very large areas.
• Pages released through DSPSERV RELEASE do not occupy space in real, expanded, or auxiliary storage.

Paging data space storage areas into and out of central storage
If you expect to be processing through one or more 4K blocks of data space storage, you can use
DSPSERV LOAD to load these pages into central storage. By loading an area of a data space into central
storage, you reduce the number of page faults that occur while you sequentially process through that
area. DSPSERV LOAD requires that you specify the STOKEN of the data space (on the STOKEN parameter),
the beginning address of the area (on the START parameter), and the size of the area (on the BLOCKS
parameter). The beginning address has to be on a 4K-byte boundary, and the size has to be an increment
of 4K blocks. (Note that DSPSERV LOAD performs the same action for a data spaces as the PGSER macro
with the LOAD parameter does for an address space.)

Issuing DSPSERV LOAD does not guarantee that the pages will be in central storage; the system honors
your request according to the availability of central storage. Also, after the pages are loaded, page faults
might occur elsewhere in the system and cause the system to move those pages out of central storage.

If you finish processing through one or more 4K blocks of data space storage, you can use DSPSERV OUT
to page the area out of central storage. The system will make these real storage frames available for
reuse. DSPSERV OUT requires that you specify the STOKEN, the beginning address of the area, and the
size of the area. (Note that DSPSERV OUT corresponds to the PGSER macro with the OUT parameter.)

Chapter 16. Data spaces and hiperspaces 271

Any task in an address space can page areas into (and out of) central storage from (or to) a data space
created by any other task in that address space. Therefore, you can attach a subtask that can preload
pages from a data space into central storage for use by another subtask.

When your program has no further need for the data in a certain area of a data space, it can use DSPSERV
RELEASE to free that storage.

Deleting a data space
When a program does not need the data space any more, it should free the virtual storage and remove the
entry from the access list. The required parameter on the DSPSERV DELETE macro specifies the STOKEN
of the data space to be deleted. A problem-state program with PSW key 8 - F must be the owner or
creator of the data space and have a PSW key that matches the storage key of the data space.

IBM recommends that you explicitly delete a data space before the owning task terminates to free
resources as soon as they are no longer needed, and to avoid excess processing at termination time.
However, if you do not delete the data space, the system does it for you.

Using callable cell pool services to manage data space areas
You can use the callable cell pool services to manage the virtual area in a data space. Callable cell pool
services allow you to divide data space storage into areas (cells) of the size you choose. Specifically, you
can:

• Create cell pools within a data space
• Expand a cell pool, or make it smaller
• Make the cells available for use by your program or by other programs.

A cell pool consists of one anchor, up to 65,536 extents, and areas of cells, all of which are the same size.
The anchor and the extents allow callable cell pool services to keep track of the cell pool.

This information gives an example of one way a program would use the callable cell pool services. This
example has only one cell pool with one extent. In the example, you will see that the program has to
reserve storage for the anchor and the extent and get their addresses. For more information on how to
use the services and an example that includes assembler instructions, see Chapter 13, “Callable cell pool
services,” on page 215.

Example of Using Callable Cell Pool Services with a Data Space: Assume that you have an application that
requires up to 4,000 records 512 bytes in length. You have decided that a data space is the best place
to hold this data. Callable cell pool services can help you build a cell pool, each cell having a size of 512
bytes. The steps are as follows:

1. Create a data space (DSPSERV CREATE macro)

Specify a size large enough to hold 2,048,000 bytes of data (4000 times 512) plus the data structures
that the callable cell pool services need.

2. Add the data space to an access list (ALESERV macro)

The choice of DU-AL or PASN-AL depends on how you plan to share the data space.
3. Reserve storage for the anchor and obtain its address

The anchor (of 64 bytes) can be in the address space or the data space. For purposes of this example,
the anchor is in the data space.

4. Initialize the anchor (CSRPBLD service) for the cell pool

Input to CSRPBLD includes the ALET of the data space, the address of the anchor, the name you assign
to the pool, and the size of each cell (in this case, 512 bytes). Because the anchor is in the data space,
the caller must be in AR mode.

5. Reserve storage for the extent and obtain the address of the extent

272 z/OS: z/OS MVS Assembler Services Guide

The size of the extent is 128 bytes plus 1 byte for every eight cells. 128 bytes plus 500 (4000 ÷ 8)
bytes equals 628 bytes. Callable cell pool services rounds this number to the next doubleword — 632
bytes.

6. Obtain the address of the beginning of the cell storage

Add the size of the anchor (64 bytes) and the size of the extent (628 bytes) to get the location where
the cell storage can start. You might want to make this starting address on a given boundary, such as a
doubleword or page.

7. Add an extent for the cell pool and establish a connection between the extent and the cells (CSRPEXP
service)

Input to CSRPEXP includes the ALET for the data space, the address of the anchor, the address of the
extent, the size of the extent (in this case, 632 bytes), and the starting address of the cell storage.
Because the extent is in the data space, the caller must be in AR mode.

At this point, the cell pool structures are in place and users can begin to request cells. Figure 72 on page
273 describes the areas you have defined in the data space.

Figure 72. Example of Using Callable Cell Pool Services for Data Spaces

A program that has addressability to the data space can then obtain a cell (or cells) through the CSRPGET
service. Input to CSRPGET includes the ALET of the space and the address of the anchor. CSRPGET
returns the address of the cell (or cells) it allocates.

Programming Notes for the Example:

• The origin of the data space might not be zero for the processor the program is running on. To allow the
program to run on more than one processor, use an origin of 4K bytes or use the ORIGIN parameter on
DSPSERV to obtain the address of the origin.

• If you need more than one extent, you might have a field that contains the ending address of the last
cell pool storage. A program then could use that address to set up another extent and more cells.

• To use callable cell pool services, the caller must be executing in a state or mode or key in which it can
write to the storage containing the anchor and the extent data areas.

• The anchor and the extents must be in the same address space or data space. The cells can be in
another space.

Sharing data spaces among problem-state programs with PSW key 8-F
Problem-state programs with PSW key 8 - F can share data spaces with other programs in several ways:

• A problem-state program with PSW key 8 - F can create a data space and place an entry for the data
space on its DU-AL. Then the program can attach a subtask and pass a copy of its DU-AL to this subtask,
and pass the ALET. However, no existing task in the job step can use this new ALET value.

• A problem-state program with PSW key 8 - F can create a data space, add an entry to the PASN-AL, and
pass the ALET to other problem-state programs running under any task in the job step.

Chapter 16. Data spaces and hiperspaces 273

• A problem-state program with PSW key 8 - F can create a data space and pass the STOKEN to a
program in supervisor state. The supervisor-state program can add the entry to either of its access lists.

By attaching a subtask and passing a copy of the DU-AL, a program can share its existing data spaces with
a program that runs under the subtask. In this way, the two programs can share the SCOPE=SINGLE data
spaces that were represented on the DU-AL at the time of the attach. The ALCOPY=YES parameter on the
ATTACH or ATTACHX macro allows a problem-state program to pass a copy of its DU-AL to the subtask
the problem-state program is attaching. Passing only a part of the DU-AL is not possible.

A program can use the ETXR option on ATTACH or ATTACHX to specify the address of an end-of-task
routine to be given control after the new task is normally or abnormally terminated. The exit routine
receives control when the originating task becomes active after the subtask is terminated. The routine
runs asynchronously under the originating task. Upon entry, the routine has an empty dispatchable unit
access list (DU-AL). To establish addressability to a data space created by the originating task and shared
with the terminating subtask, the routine can use the ALESERV macro with the ADD parameter, and
specify the STOKEN of the data space.

In the following example, shown in Figure 73 on page 274, assume that program PGM1 (running under
TCBA) has created a SCOPE=SINGLE data space DS1 and established addressability to it. PGM1's DU-AL
has several entries on it, including one for DS1. PGM1 uses the ATTACHX macro with the ALCOPY=YES
parameter to attach subtask TCBB and pass a copy of its DU-AL to TCBB. It can also pass ALETs in a
parameter list to PGM2. Upon return from ATTACHX, PGM1 and PGM2 have access to the same data
spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data space.

Figure 73. Two Problem Programs Sharing a SCOPE=SINGLE Data Space

An example of the code that attaches TCBB and passes a copy of the DU-AL is as follows:

 DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK, *
 ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
 ATTACHX EP=PGM2,ALCOPY=YES
 .
 .
DSNAME DC CL8'TEMP ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE

The DU-ALs do not necessarily stay identical. After the attach, PGM1 and PGM2 can add and delete
entries on their own DU-ALs; these changes are not made to the other DU-AL.

If TCBA terminates, the system deletes the data space that belonged to TCBA and terminates PGM2.

274 z/OS: z/OS MVS Assembler Services Guide

Sharing data spaces through the PASN-AL
One way many problem-state programs with PSW key 8 - F can share the data in a data space is by
placing the entry for the data space on the PASN-AL and obtaining the ALET. In this way, the programs can
pass the ALET to other problem-state programs in the address space, allowing them to share the data in
the data space.

The following example describes a problem-state program with PSW key 8 - F creating a data space
and sharing the data in that space with other programs in the address space. Additionally, the program
assigns ownership of the data space to its job step task. This assignment allows the data space to
be used by other programs even after the creating program's task terminates. In the example, PGM1
creates a 10-megabyte data space named SPACE1. It uses the TTOKEN parameter on DSPSERV to assign
ownership to its job step task. Before it issued the DSPSERV CREATE, however, it had to find out the
TTOKEN of its job step task. To do this, it issued the TCBTOKEN macro.

TCBTOKEN TTOKEN=JSTTTOK,TYPE=JOBSTEP
 .
DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG,
 TTOKEN=JSTTTOK
ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=PASN
 .
 .
DSNAME DC CL8'SPACE1 ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE
JSTTTOK DS CL8 TTOKEN OF JOB STEP TASK

Unless PGM1 or a program running under the job step TCB explicitly deletes the data space, the system
deletes the data space when the job step task terminates.

Note that when PGM1 issues the ALESERV ADD to add the entry for DS1 to the PASN-AL, the system
checks to see if an entry for DS1 already exists on the PASN-AL. If an entry already exists, and a
problem-state program with PSW key 8 - F added the entry, the system rejects the ALESERV ADD request.
However, PGM1 can still access the data space. The system will simply not create a duplicate entry.

Example of mapping a data-in-virtual object to a data space
Through data-in-virtual, your program can map a VSAM linear data set to a data space. Use DIV macros
to set up the relationship between the object and the data space. Setting up this relationship is called
"mapping". In this case, the virtual storage area through which you view the object (called the "window")
is in the data space. The STOKEN parameter on the DIV MAP macro identifies the data space.

The task that issues the DIV IDENTIFY owns the pointers and structures associated with the ID that DIV
returns. Any program can use DIV IDENTIFY; however, the system checks the authority of programs that
try to use subsequent DIV services for the same ID.

For problem-state programs with PSW key 8 - F, data-in-virtual allows only the issuer of the DIV
IDENTIFY to use other DIV services for the ID. That means, for example, that if a problem-state program
with PSW key 8 issues the DIV IDENTIFY, another problem-state program with PSW key 8 cannot issue
DIV MAP for the same ID. The issuer of DIV IDENTIFY can use DIV MAP to map a VSAM linear data set to
a data space window, providing the program owns or created the data space.

Your program can map one data-in-virtual object into more than one data space. Or, it can map several
data-in-virtual objects within a single data space. In this way, data spaces can provide large reference
areas available to your program.

Mapping a data-in-virtual object to a data space
The following example maps a data-in-virtual object in a data space. The size of the data space is 10
megabytes, or 2560 blocks. (A block is 4K bytes.)

* CREATE A DATA SPACE, ADD AN ACCESS LIST ENTRY FOR IT
* AND MAP A DATA-IN-VIRTUAL OBJECT INTO DATA SPACE STORAGE

Chapter 16. Data spaces and hiperspaces 275

 .
 DSPSERV CREATE,NAME=DSNAME,STOKEN=DSSTOK,BLOCKS=DSSIZE,ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET,AL=WORKUNIT,ACCESS=PUBLIC
 .
* EQUATE DATA SPACE STORAGE TO OBJAREA
 .
 L 4,DSORG
 LAM 4,4,DSALET
 USING OBJAREA,4
 .

* MAP THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=OBJAREA,STOKEN=DSSTOK
 .
* USE THE ALET IN DSALET TO REFERENCE THE
* DATA SPACE STORAGE MAPPING THE OBJECT.

 .
* SAVE ANY CHANGES TO THE OBJECT WITH DIV SAVE
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=DSORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
 .

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSALET
 DSPSERV DELETE,STOKEN=DSSTOK
 .
DSNAME DC CL8'MYSPACE ' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET
DSORG DS F DATA SPACE ORIGIN
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME
OBJAREA DSECT WINDOW IN DATA SPACE
OBJWORD1 DS F
OBJWORD2 DS F

Using data spaces efficiently
Although a task can own many data spaces, it is important that it reference these data spaces carefully. It
is much more efficient for the system to reference the same data space ten times than it is to reference
each of ten data spaces one time. For example, an application might have a master application region that
has many users, each one having a data space. If each program completes its work with one data space
before it starts work with another data space, performance is optimized.

Example of creating, using, and deleting a data space
This information contains an example of a problem state program creating, establishing addressability
to, using, and deleting the data space named TEMP. The first lines of code create the data space and
establish addressability to the data space. To keep the example simple, the code does not include the
checking of the return code from the DSPSERV macro or the ALESERV macro. You should, however, always
check return codes.

The lines of code in the middle of the example illustrate how, with the code in AR mode, the familiar
assembler instructions store, load, and move a simple character string into the data space and move it
within the data space. The example ends with the program deleting the data space entry from the access
list, deleting the data space, and returning control to the caller.

DSPEXMPL CSECT
DSPEXMPL AMODE 31
DSPEXMPL RMODE ANY
 BAKR 14,0 SAVE CALLER'S STATUS ON STACK

276 z/OS: z/OS MVS Assembler Services Guide

 SAC 512 SWITCH INTO AR MODE
 SYSSTATE ASCENV=AR ENSURE PROPER CODE GENERATION
 .

 LAE 12,0 SET BASE REGISTER AR
 BASR 12,0 SET BASE REGISTER GPR
 USING *,12
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GPR2
 USING DSPCMAP,2 INFORM ASSEMBLER
 .
* MANIPULATE DATA IN THE DATA SPACE
 .
 L 3,DATAIN
 ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
 .
 MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE
* INTO THE DATA SPACE
 MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION
* IN THE DATA SPACE TO ANOTHER
 MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE
* INTO THE PRIMARY SPACE
 .
* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
 PR RETURN TO CALLER
 .

 DS 0D
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
DATAIN DC CL4'ABCD'
DATAOUT DS CL4
 .
DSPCMAP DSECT MAPPING OF DATA SPACE STORAGE
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3
 END

Note that you cannot code ACCESS=PRIVATE on the ALESERV macro when you request an ALET for a data
space; all data space entries are public.

Dumping storage in a data space
On the SNAPX macro, use the DSPSTOR parameter to dump storage from any addressable data space that
the caller can access.

For the syntax of SNAPX, see z/OS MVS Programming: Assembler Services Reference IAR-XCT.

Using checkpoint/restart
A program can use checkpoint/restart while it has one or more entries for a data space on its access list
(DU-AL or PASN-AL). If the program has specified on the ALESERV macro that the system is to ignore
entries made to the access list for the data space for checkpoint/restart processing (CHKPT=IGNORE),
the CHKPT macro processes successfully.

Chapter 16. Data spaces and hiperspaces 277

A program that specifies CHKPT=IGNORE assumes full responsibility for managing the data space
storage. Managing the data space storage includes the following:

• If any program depends on the contents of the data space and the data cannot be recreated or obtained
elsewhere, the responsible program must save the contents of the data space prior to the checkpoint
operation.

• Once the checkpoint operation has completed, the responsible program must perform the following
during restart processing to successfully manage the data space storage.

1. Ensure that the data space exists. The original data space might or might not exist. If the original
data space does not exist, the responsible program must issue DSPSERV CREATE to recreate the
data space.

2. Issue ALESERV ADD of the data space, original or recreated, to the program's access list to obtain a
new ALET.

3. If, in addition to having a dependency on the data space, any program also depends on the contents
of the data space storage, the responsible program must refresh the contents of the data space
storage. The program must use the new ALET to reference the data space.

4. The responsible program must make the new ALET available to any program that has a dependency
on the data space. The STOKEN, changed or unchanged, must be made available to any program that
needs to issue ALESERV ADD to access the data space.

See z/OS DFSMSdfp Checkpoint/Restart information about the CHKPT macro.

Creating and using hiperspaces
A hiperspace is a range of up to two gigabytes of contiguous virtual storage addresses that a program
can use as a buffer. Like a data space, a hiperspace holds only data, not common areas or system data;
code does not execute in a hiperspace. Unlike data in a data space, data in a hiperspace is not directly
addressable.

The DSPSERV macro manages hiperspaces. The TYPE=HIPERSPACE parameter tells the system that it is
to manage a hiperspace rather than a data space. Use DSPSERV to:

• Create a hiperspace
• Release an area in a hiperspace
• Delete a hiperspace
• Expand the amount of storage in a hiperspace currently available to a program.

To manipulate data in a hiperspace, your program brings the data, in blocks of 4K bytes, into a buffer area
in the address space. The program can use the data only while it is in the address space. You can think of
this buffer area as a "view" into the hiperspace. The HSPSERV macro read operation manages the transfer
of the data to the address space buffer area. If you make updates to the data, you can write it back to the
hiperspace through the HSPSERV write operation.

278 z/OS: z/OS MVS Assembler Services Guide

The data in the hiperspace and the buffer area in the address space must both start on a 4K byte
boundary.

This information helps you create, use, and delete hiperspaces. It describes some of the characteristics of
hiperspaces, how to move data in and out of a hiperspace; and how data-in-virtual can help you control
data in hiperspaces. In addition, z/OS MVS Programming: Assembler Services Reference ABE-HSP contains
the syntax and parameter descriptions for the macros that are mentioned in this information.

Standard hiperspaces
Your program can create a standard hiperspace, one that is backed with expanded storage (if available)
and auxiliary storage, if necessary. Through the buffer area in the address space, your program can view
or "scroll" through the hiperspace. Scrolling allows you to make interim changes to data without changing
the data on DASD. HSTYPE=SCROLL on DSPSERV creates a standard hiperspace. HSPSERV SWRITE and
HSPSERV SREAD transfer data to and from a standard hiperspace.

The data in a standard hiperspace is predictable; that is, your program can write data to a standard
hiperspace and count on retrieving it.

The best way to describe how your program can scroll through a standard hiperspace is through an
example. Figure 74 on page 280 shows a hiperspace that has four scroll areas, A, B, C, and D. After the
program issues an HSPSERV SREAD for hiperspace area A, it can make changes to the data in the buffer
area in its address space. HSPSERV SWRITE then saves those changes. In a similar manner, the program
can read, make changes, and save the data in areas B, C, and D. When the program reads area A again, it
finds the same data that it wrote to the area in the previous HSPSERV SWRITE to that area.

Chapter 16. Data spaces and hiperspaces 279

Figure 74. Example of Scrolling through a Standard Hiperspace

A standard hiperspace gives your program an area where it can:

• Store data, either generated by your program or moved (through the address space buffers) from DASD
• Scroll through large amounts of data

After you finish using the hiperspace, you can:

• Move the changed data (through address space buffers) to DASD, making the hiperspace data
permanent

• Delete the hiperspace data with the deletion of the hiperspace or the termination of the owner of the
hiperspace, treating the hiperspace data as temporary.

If your application wants to save a permanent copy of the data in the hiperspace, consider using the
services of data-in-virtual. See “Using data-in-virtual with hiperspaces” on page 287.

A second type of hiperspace, the expanded storage only (ESO) hiperspace is backed with expanded
storage only (if available) and is available to supervisor-state programs or programs with PSW key 0 - 7.
These hiperspaces are described in the books that are available to writers of authorized programs.

Shared and non-shared standard hiperspaces
Standard hiperspaces are either non-shared or shared. Your program can create and delete non-shared
standard hiperspaces; it can use HSPSERV to access the non-shared standard hiperspaces that it owns.
With help from a supervisor-state program or a program with PSW key 0 - 7, your program can also
access a non-shared standard hiperspace that it does not own. Shared standard hiperspaces can be
shared among programs in many address spaces. Although your programs can use the shared standard
hiperspaces, they cannot create and delete them. Therefore, the sharing of hiperspaces must be done
under the control of supervisor-state programs or programs with PSW key 0 - 7.

This information describes how you create and delete the non-shared standard hiperspaces and use
these hiperspaces for your own program. Shared standard hiperspaces and the subject of sharing
hiperspaces are described in the application development books that are available to writers of
authorized programs.

Table 28 on page 280 shows some important facts about non-shared standard hiperspaces:

Table 28. Facts about a Non-shared Standard Hiperspace

Question Answer

Can it map a VSAM linear data set? Yes

280 z/OS: z/OS MVS Assembler Services Guide

Table 28. Facts about a Non-shared Standard Hiperspace (continued)

Question Answer

Can it be a data-in-virtual object? Yes, if the hiperspace has not been
the target of ALESERV ADD.

How do you write data to the hiperspace? By using HSPSERV SWRITE

How do you read data from the hiperspace? By using HSPSERV SREAD

What happens to the data in the hiperspace when the system
swaps the owning address space out?

The system preserves the data.

Creating a hiperspace
To create a non-shared standard hiperspace, issue the DSPSERV CREATE macro with the
TYPE=HIPERSPACE and HSTYPE=SCROLL parameters. The HSTYPE parameter tells the system you want
a standard hiperspace. HSTYPE=SCROLL is the default. MVS allocates contiguous 31-bit virtual storage
of the size you specify and initializes the storage to hexadecimal zeros. The entire hiperspace has the
storage key 8. Because many of the same rules that apply to creating data spaces also apply to creating
hiperspaces, this information sometimes refers you to “Creating a data space” on page 265.

On the DSPSERV macro, you are required to specify:

• The name of the hiperspace (NAME parameter)

To ask DSPSERV to generate a hiperspace name unique to the address space, use the GENNAME
parameter. DSPSERV will return the name it generates at the location you specify on the OUTNAME
parameter. Specifying a name for a hiperspace follows the same rules as specifying a name for a data
space. See “Choosing the name of a data space” on page 266.

• A location where DSPSERV is to return the STOKEN of the hiperspace (STOKEN parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the hiperspace to other DSPSERV
services and to the HSPSERV and DIV macros.

Other information you might specify on the DSPSERV macro is:

• The maximum size of the hiperspace and its initial size (BLOCKS parameter). If you do not code
BLOCKS, the hiperspace size is determined by defaults set by your installation. In this case, use the
NUMBLKS parameter to tell the system where to return the size of the hiperspace. Specifying the size of
a hiperspace follows the same rules as specifying the size of a data space. See “Specifying the size of a
data space” on page 266.

• A location where DSPSERV can return the address (either 0 or 4096) of the first available block of the
hiperspace (ORIGIN parameter). Locating the origin of a hiperspace is the same as locating the origin of
a data space. See “Identifying the origin of a data space” on page 267.

Example of creating a standard hiperspace
The following example creates a non-shared standard hiperspace, 20 blocks in size, named SCROLLHS.

*
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=20,STOKEN=HSSTOKEN
*
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN OF THE HIPERSPACE

Transferring data to and from hiperspaces
Before it can reference data or manipulate data in a hiperspace, the program must bring the data into the
address space. The HSPSERV macro performs the transfer of data between the address space and the
hiperspace.

Chapter 16. Data spaces and hiperspaces 281

On the HSPSERV macro, the write operation transfers data from the address space to the hiperspace.
The read operation transfers the data from the hiperspace to the address space. HSPSERV allows
multiple reads and writes to occur at one time. This means that one HSPSERV request can read more
than one data area in a hiperspace to an equal number of data areas in an address space. Likewise, one
HSPSERV request can write data from more than one buffer area in an address space to an equal number
of areas in a hiperspace.

Figure 75 on page 282 shows three virtual storage areas that you identify on the HSPSERV macro when
you request a data transfer:

• The hiperspace
• The buffer area in the address space that is the source of the write operation and the target of the read

operation
• The data area in the hiperspace that is the target of the write operation and the source of the read

operation.

Figure 75. Illustration of the HSPSERV Write and Read Operations

On the HSPSERV macro, you identify the hiperspace and the areas in the address space and the
hiperspace:

• STOKEN specifies the STOKEN of the hiperspace.
• NUMRANGE specifies the number of data areas the system is to read or write.
• RANGLIST specifies a list of ranges that indicate the boundaries of the buffer areas in the address space

and the data area in the hiperspace.

HSPSERV has certain restrictions on these areas. Two restrictions are that the data areas must start on
a 4K byte boundary and their size must be in multiples of 4K bytes. Other requirements are listed in
the description of HSPSERV in z/OS MVS Programming: Assembler Services Reference ABE-HSP. Read the
requirements carefully before you issue the macro.

The system does not always preserve the data in the areas that are the source for the read and write
operations. Figure 75 on page 282 tells you what the system does with the areas after it completes the
transfer.

282 z/OS: z/OS MVS Assembler Services Guide

Read and write operations for standard hiperspaces
After the write operation for standard hiperspaces, the system does not preserve the data in the address
space. It assumes that you have another use for that buffer area, such as using it as the target of another
HSPSERV SREAD operation.

After the read operation for standard hiperspaces, the system gives you a choice of saving the source data
in the hiperspace. If you will use the data in the hiperspace again, ask the system to preserve the data;
specify RELEASE=NO on HSPSERV SREAD. Unless a subsequent SWRITE request changes the data in the
source area, that same data will be available for subsequent SREAD requests. RELEASE=NO provides your
program with a backup copy of the data in the hiperspace.

If you specify RELEASE=YES on HSPSERV SREAD, the system releases the hiperspace pages after the
read operation and returns the expanded storage (or auxiliary storage) that backs the source area in the
hiperspace. RELEASE=YES tells the system that your program does not plan to use the source area in the
hiperspace as a copy of the data after the read operation.

See “Example of creating a standard hiperspace and using it” on page 286 for an example of the
HSPSERV SREAD and HSPSERV SWRITE macros.

Obtaining additional HSPSERV performance
You can use HSPSERV to improve the performance of data transfer between central and expanded
storage. Specify the ALET of the hiperspace on the HSPALET parameter on HSPSERV.

To obtain the ALET, issue the following:

ALESERV ADD,ALET=. . .,STOKEN=. . .

STOKEN is the eight-byte identifier of the hiperspace, and ALET is the four-byte index into the DU-AL, the
access list that is associated with the task. The STOKEN is input to ALESERV ADD; the ALET is output.

Before you issue the HSPSERV macro with the HSPALET parameter, obtain a 144-byte workarea for the
HSPSERV macro service and place the address of this area in GPR 13 and a zero in AR 13.

Note: When the HSPALET parameter is specified, the application's RANGLIST data may be modified by
the system.

Do not specify RELEASE=YES with the HSPALET parameter.

Programming Notes for Obtaining ALETs for Hiperspaces:

• A program never uses an ALET to directly access data in a hiperspace as it would use the ALET to access
the data in a data space.

• To use hiperspaces, you do not need to switch into AR mode.
• When you are finished using the hiperspace, use ALESERV DELETE to delete the entry on the DU-AL.
• The system places certain restrictions on the combined use of hiperspaces and data-in-virtual. These

restrictions are listed in “Using data-in-virtual with hiperspaces” on page 287.
• By obtaining an ALET, you can share a hiperspace with a subtask in the same way you share a data

space. Use the ALCOPY parameter on the ATTACHX macro to pass a copy of your DU-AL to the subtask.
Follow the procedure suggested in “Sharing data spaces among problem-state programs with PSW key
8-F” on page 273.

Example of a HSPSERV with the HSPALET Parameter: The following example creates a non-shared
hiperspace. To get additional performance from HSPSERV, the program obtains an ALET from the
ALESERV macro and uses that ALET as input to HSPSERV. The example assumes the ASC mode is primary.

⋮
* DSPSERV CREATES A NON-SHARED STANDARD HIPERSPACE OF 20 4096-BYTE BLOCKS
*
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,BLOCKS=20, X
 STOKEN=HSSTOKEN,ORIGIN=HSORIG1
*
* ALESERV RETURNS AN ALET ON THE DU-AL FOR THE HIPERSPACE

Chapter 16. Data spaces and hiperspaces 283

*
 ALESERV ADD,STOKEN=HSSTOKEN,ALET=HSALET,AL=WORKUNIT
*
* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE,
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
* COPY INTO FIRST AND SECOND PAGES THE DATA TO BE WRITTEN TO HIPERSPACE
 .
 STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
 ST 1,ASPTR * SAVE ADDR SPACE STORAGE ADDRESS
 MVC 0(20,1),SRCTEXT1 * INIT FIRST ADDR SPACE PAGE
 A 1,ONEBLK * COMPUTE PAGE TWO ADDRESS
 MVC 0(20,1),SRCTEXT2 * INIT SECOND ADDR SPACE PAGE
 .
* SET UP THE SWRITE RANGE LIST TO WRITE FROM THE FIRST AND SECOND
* ADDRESS SPACE PAGES INTO THE HIPERSPACE
 .
 L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
 ST 1,ASPTR1 * PUT ADDRESS INTO RANGE LIST
 .
* SAVE CONTENTS OF AR/GPR 13 BEFORE RESETTING THEM FOR HSPSERV
 .
 ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
 EAR 13,13 * LOAD GPR 13 FROM AR 13
 ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13
 .
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES
* AND WRITE TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
 .
 SLR 13,13 * SET GPR 13 TO 0
 SAR 13,13 * SET AR 13 TO 0
 LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1,HSPALET=HSALET
 .
* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
 .

* RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .
 L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
 SAR 13,13 * RESET AR 13
 L 13,SAVER13 * RESET GPR 13
 .
* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES WHAT WAS PREVIOUSLY WRITTEN TO THE HIPERSPACE
 .
 MVC HSORIG2,HSORIG1 * COPY ORIGIN OF HIPERSPACE TO HSORIG2
 L 1,ASPTR * GET FIRST ADDR PAGE ADDRESS
 A 1,TWOBLKS * COMPUTE THIRD PAGE ADDRESS
 ST 1,ASPTR2 * PUT ADDRESS INTO RANGE LIST
 .
* SAVE CONTENTS OF AR/GPR 13
 .
 ST 13,SAVER13 * SAVE THE CONTENTS OF GPR 13
 EAR 13,13 * LOAD GPR 13 FROM AR 13
 ST 13,SAVEAR13 * SAVE THE CONTENTS OF AR 13
 .
* ESTABLISH ADDRESS OF 144-BYTE SAVE AREA, AS HSPALET ON HSPSERV REQUIRES,
* AND READ TWO BLOCKS OF DATA FROM THE HIPERSPACE INTO THE
* THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE USING HSPALET
 .
 SLR 13,13 * SET GPR 13 TO 0
 SAR 13,13 * SET AR 13 TO 0
 LA 13,WORKAREA * SET UP AR/GPR 13 TO WORKAREA ADDR
 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2,HSPALET=HSALET
 .
* RESTORE ORIGINAL CONTENTS OF AR/GPR 13
 .
 L 13,SAVEAR13 * SET GPR 13 TO SAVED AR 13
 SAR 13,13 * RESET AR 13
 L 13,SAVER13 * RESET GPR 13
 .
* FREE THE ALET, FREE ADDRESS SPACE STORAGE, AND DELETE THE HIPERSPACE
⋮
* DATA AREAS AND CONSTANTS
 .
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
HSALET DS CL4 * ALET FOR THE HIPERSPACE
ASPTR DS 1F * LOCATION OF ADDR SPACE STORAGE

284 z/OS: z/OS MVS Assembler Services Guide

SAVER13 DS 1F * LOCATION TO SAVE GPR 13
SAVEAR13 DS 1F * LOCATION TO SAVE AR 13
WORKAREA DS CL144 * WORK AREA FOR HSPSERV
ONEBLK DC F'4096' * LENGTH OF ONE BLOCK OF STORAGE
TWOBLKS DC F'8192' * LENGTH OF TWO BLOCKS OF STORAGE
SRCTEXT1 DC CL20' INVENTORY ITEMS '
SRCTEXT2 DC CL20' INVENTORY SURPLUSES'
 DS 0F
RANGPTR1 DC A(SWRITLST) * ADDRESS OF SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF SREAD RANGE LIST
 DS 0F

SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSORIG1 DS F * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' * NUMBER OF 4K BLOCKS IN SWRITE
 DS 0F
SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDR SPACE
HSORIG2 DS F * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' * NUMBER OF 4K BLOCKS IN SREAD
 DS 0F

Extending the current size of a hiperspace
When you create a hiperspace and specify a maximum size larger than the initial size, you can use
DSPSERV EXTEND to increase the current size as your program uses more storage in the hiperspace. The
BLOCKS parameter specifies the amount of storage you want to add to the current size of the hiperspace.
The VAR parameter tells the system whether the request is variable. For information about a variable
request and help in using DSPSERV EXTEND, see “Extending the current size of a data space” on page
270.

Releasing hiperspace storage
Your program needs to release storage when it used a hiperspace for one purpose and wants to reuse it
for another purpose, or when your program is finished using the area. To release the virtual storage of a
hiperspace, use the DSPSERV RELEASE macro. (Hiperspace release is similar to a PGSER RELEASE for an
address space.) Specify the STOKEN to identify the hiperspace and the START and BLOCKS parameters to
identify the beginning and the length of the area you need to release.

Releasing storage in a hiperspace requires that a program have the following authority:

• The program must be the owner of the hiperspace.
• The program's PSW key must equal the storage key of the hiperspace the system is to release.

Otherwise, the system abends the caller.

After the release, a released page does not occupy expanded (or auxiliary) storage until your program
references it again. When you again reference a page you have released, the page contains hexadecimal
zeroes.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks of storage to zeroes
because:

• DSPSERV RELEASE is faster than MVCL for very large areas.
• Pages released through DSPSERV RELEASE do not occupy space in expanded or auxiliary storage.

Deleting a hiperspace
When a program doesn't need the hiperspace any more, it can delete it. Your program can delete only the
hiperspaces it owns, providing the program's PSW key matches the storage key of the hiperspace.

Example of Deleting a Hiperspace: The following example shows you how to delete a hiperspace:

 DSPSERV DELETE,STOKEN=HSSTKN DELETE THE HS
 .
HSSTKN DS CL8 HIPERSPACE STOKEN

Chapter 16. Data spaces and hiperspaces 285

IBM recommends that you explicitly delete a hiperspace before the owning task terminates to free
resources as soon as they are no longer needed, and to avoid excess processing at termination time.
However, if you do not delete the hiperspace, the system automatically does it for you.

Example of creating a standard hiperspace and using it
The following example creates a standard hiperspace named SCROLLHS. The size of the hiperspace is 20
blocks. The program:

• Creates a standard hiperspace 20 blocks in size
• Obtains four pages of address space storage aligned on a 4K byte address
• Sets up the SWRITE range list parameter area to identify the first two pages of the address space

storage
• Initializes the first two pages of address space storage that will be written to the hiperspace
• Issues the HSPSERV SWRITE macro to write the first two pages to locations 4096 through 12287 in the

hiperspace

Later on, the program:

• Sets up the SREAD range list parameter area to identify the last two pages of the four-page address
space storage

• Issues the HSPSERV SREAD macro to read the blocks at locations 4096 through 12287 in the
hiperspace to the last two pages in the address space storage

Figure 76 on page 286 shows the four-page area in the address space and the two block area in the
hiperspace. Note that the first two pages of the address space virtual storage are unpredictable after the
SWRITE operation.

Figure 76. Example of Creating a Standard Hiperspace and Transferring Data

* DSPSERV CREATES A STANDARD TYPE HIPERSPACE OF 20 4096-BYTE BLOCKS
 .
 DSPSERV CREATE,NAME=HSNAME,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 BLOCKS=20,STOKEN=HSSTOKEN
 .
* THE STORAGE MACRO OBTAINS FOUR PAGES OF ADDRESS SPACE STORAGE.
* THE BNDRY=PAGE PARAMETER ALIGNS PAGES ON A 4K BOUNDARY
* - THE FIRST AND SECOND PAGES ARE THE SWRITE SOURCE
* - THE THIRD AND FOURTH PAGES ARE THE SREAD TARGET
 .
 STORAGE OBTAIN,LENGTH=4096*4,BNDRY=PAGE
 ST 1,ASPTR1 * SAVES THE SWRITE SOURCE ADDRESS
 MVC 0(20,1),SRCTEXT1 * INITIALIZES SOURCE PAGE ONE
 A 1,ONEBLOCK * COMPUTES SOURCE PAGE TWO ADDRESS
 MVC 0(20,1),SRCTEXT2 * INITIALIZES SOURCE PAGE TWO
 .

286 z/OS: z/OS MVS Assembler Services Guide

* HSPSERV WRITES TWO PAGES FROM THE ADDRESS SPACE TO THE HIPERSPACE
 .
 HSPSERV SWRITE,STOKEN=HSSTOKEN,RANGLIST=RANGPTR1
 .
* AFTER THE SWRITE, THE FIRST TWO ADDRESS SPACE PAGES MIGHT BE OVERLAID
 .

 .
* SET UP THE SREAD RANGE LIST TO READ INTO THE THIRD AND FOURTH
* ADDRESS SPACE PAGES
 .
 L 2,ASPTR1 * OBTAINS THE ADDRESS OF PAGE 1
 A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
 A 2,ONEBLOCK * COMPUTES THE SREAD TARGET ADDRESS
 ST 2,ASPTR2 * SAVES IN SREAD RANGE LIST
 .

* HSPSERV READS TWO BLOCKS OF DATA FROM THE HIPERSPACE TO THE
 THIRD AND FOURTH PAGES IN THE ADDRESS SPACE STORAGE
 .
 HSPSERV SREAD,STOKEN=HSSTOKEN,RANGLIST=RANGPTR2
 .

* DATA AREAS AND CONSTANTS
*
HSNAME DC CL8'SCROLLHS' * NAME FOR THE HIPERSPACE
HSSTOKEN DS CL8 * STOKEN FOR THE HIPERSPACE
ONEBLOCK DC F'4096' * LENGTH OF ONE BLOCK OF STORAGE
SRCTEXT1 DC CL20' INVENTORY ITEMS '
SRCTEXT2 DC CL20' INVENTORY SURPLUSES'
 DS 0F
RANGPTR1 DC A(SWRITLST) * ADDRESS OF THE SWRITE RANGE LIST
RANGPTR2 DC A(SREADLST) * ADDRESS OF THE SREAD RANGE LIST
 DS 0F

SWRITLST DS 0CL12 * SWRITE RANGE LIST
ASPTR1 DS F * START OF ADDRESS SPACE SOURCE
HSPTR1 DC F'4096' * TARGET LOCATION IN HIPERSPACE
NUMBLKS1 DC F'2' * NUMBER OF 4K BLOCKS IN SWRITE
 DS 0F
SREADLST DS 0CL12 * SREAD RANGE LIST
ASPTR2 DS F * TARGET LOCATION IN ADDRESS SPACE
HSPTR2 DC F'4096' * START OF HIPERSPACE SOURCE
NUMBLKS2 DC F'2' * NUMBER OF 4K PAGES IN SREAD

Using data-in-virtual with hiperspaces
Data-in-virtual allows you to map a large amount of data into a virtual storage area and then deal with the
portion of the data that you need. The virtual storage provides a "window" through which you can "view"
the object and make changes, if you want. The DIV macro manages the data object, the window, and the
movement of data between the window and the object.

You can use standard hiperspaces with data-in-virtual in two ways:

• You can map a VSAM linear data set to hiperspace virtual storage.
• You can map a non-shared hiperspace to virtual storage in an address space.

The task that issues the DIV IDENTIFY owns the pointers and structures associated with the ID that
DIV returns. Any program can use DIV IDENTIFY. However, the system checks the authority of programs
that try to use the other DIV services for the same ID. For problem-state programs with PSW key 8 - F,
data-in-virtual allows only the issuer of the DIV IDENTIFY to use subsequent DIV services for the same
ID. That means, for example, that if a problem-state program with PSW key 8 issues the DIV IDENTIFY,
another problem-state program with PSW key 8 cannot issue DIV MAP for the same ID.

Problem-state programs with PSW key 8 - F can use DIV MAP to:

Chapter 16. Data spaces and hiperspaces 287

• Map a VSAM linear data set to a window in a hiperspace, providing the program owns the hiperspace.
• Map a non-shared hiperspace object to an address space window, providing:

– The program owns the hiperspace,
– The program or its attaching task obtained the storage for the window, and
– No program has ever issued ALESERV ADD for the hiperspace

The rules for using data-in-virtual and HSPSERV with the HSPALET parameter (for additional
performance) are as follows:

• Your program can use HSPSERV with the HSPALET parameter with non-shared hiperspaces when a
data-in-virtual object is mapped to a hiperspace, providing a DIV SAVE is not in effect.

• Once any program issues ALESERV ADD for a hiperspace, that hiperspace cannot be a data-in-virtual
object.

• If a program issues ALESERV ADD for a hiperspace that is currently a data object, the system rejects the
request.

For information on the use of ALETs with hiperspaces, see “Obtaining additional HSPSERV performance”
on page 283.

Mapping a data-in-virtual object to a hiperspace
Through data-in-virtual, a program can map a VSAM linear data set residing on DASD to a hiperspace. The
program uses the read and write operations of the HSPSERV macro to transfer data between the address
space buffer area and the hiperspace window.

When a program maps a data-in-virtual object to a standard hiperspace, the system does not bring the
data physically into the hiperspace; it reads the data into the address space buffer when the program
uses HSPSERV SREAD for that area that contains the data.

Your program can map a single data-in-virtual object to several hiperspaces. Or, it can map several
data-in-virtual objects to one hiperspace.

An example of mapping a data-in-virtual object to a hiperspace
The following example shows how you would create a standard hiperspace with a maximum size of one
gigabyte and an initial size of 4K bytes. Figure 77 on page 288 shows the hiperspace with a window that
begins at the origin of the hiperspace.

Figure 77. Example of Mapping a Data-in-Virtual Object to a Hiperspace

288 z/OS: z/OS MVS Assembler Services Guide

Initially, the window in the hiperspace and the buffer area in the address space are both 4K bytes. (That
is, the window takes up the entire initial size of the hiperspace.) The data-in-virtual object is a VSAM linear
data set on DASD.

* CREATE A STANDARD HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL,NAME=HS1NAME, X
 STOKEN=HS1STOK,BLOCKS=(ONEGIG,FOURK),ORIGIN=HS1ORG
 .

* MAP THE HIPERSPACE TO THE OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=DA,DDNAME=OBJDD
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=HS1ORG,STOKEN=HS1STOK
 .
* OBTAIN A 4K BUFFER AREA IN ADDRESS SPACE TO BE
* USED TO UPDATE THE DATA IN THE HIPERSPACE WINDOW
 .
* DECLARATION STATEMENTS
 .
HS1NAME DC CL8'MYHSNAME' HIPERSPACE NAME
HS1STOK DS CL8 HIPERSPACE STOKEN
HS1ORG DS F HIPERSPACE ORIGIN
ONEGIG DC F'262144' MAXIMUM SIZE OF 1G IN BLOCKS
FOURK DC F'1' INITIAL SIZE OF 4K IN BLOCKS
OBJID DS CL8 DIV OBJECT ID
OBJDD DC AL1(7),CL7'MYDD ' DIV OBJECT DDNAME

The program can read the data in the hiperspace window to a buffer area in the address space through
the HSPSERV SREAD macro. It can update the data and write changes back to the hiperspace through
the HSPSERV SWRITE macro. For an example of these operations, see “Example of creating a standard
hiperspace and using it” on page 286.

Continuing the example, the following code saves the data in the hiperspace window on DASD and
terminates the mapping.

* SAVE THE DATA IN THE HIPERSPACE WINDOW ON DASD AND END THE MAPPING
 .
 DIV SAVE,ID=OBJID
 DIV UNMAP,ID=OBJID,AREA=HS1ORG
 DIV UNACCESS,ID=OBJID
 DIV UNIDENTIFY,ID=OBJID
 .
* PROGRAM FINISHES USING THE DATA IN THE HIPERSPACE
 .
* DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS1STOK
 .

Using a hiperspace as a data-in-virtual object
Your program can identify a non-shared standard hiperspace as a temporary data-in-virtual object,
providing the hiperspace has never been the target of an ALESERV ADD. In this case, the window must be
in an address space. Use the hiperspace for temporary storage of data, such as intermediate results of a
computation. The movement of data between the window in the address space and the hiperspace object
is through the DIV MAP and DIV SAVE macros. The data in the hiperspace is temporary.

Figure 78 on page 290 shows an example of a hiperspace as a data-in-virtual object.

Chapter 16. Data spaces and hiperspaces 289

Figure 78. A Standard Hiperspace as a Data-in-Virtual Object

When the hiperspace is a data-in-virtual object, data-in-virtual services transfer data between the
hiperspace object and the address space window. In this case, your program does not need to use,
and must not use, HSPSERV SREAD and HSPSERV SWRITE.

An example of a hiperspace as a data-in-virtual object
The program in this information creates a hiperspace for temporary storage of a table of 4K bytes that the
program generates and uses. The program cannot save this table permanently.

The following code creates a standard hiperspace and identifies it as a data-in-virtual object.

* CREATE A HIPERSPACE
 .
 DSPSERV CREATE,TYPE=HIPERSPACE,HSTYPE=SCROLL, X
 NAME=HS2NAME,STOKEN=HS2STOK,BLOCKS=ONEBLOCK
 .
* IDENTIFY THE HIPERSPACE AS A DATA-IN-VIRTUAL OBJECT
 .
 DIV IDENTIFY,ID=OBJID,TYPE=HS,STOKEN=HS2STOK
 DIV ACCESS,ID=OBJID,MODE=UPDATE
 DIV MAP,ID=OBJID,AREA=OBJAREA
 .

HS2NAME DC CL8'MHSNAME ' HIPERSPACE NAME
HS2STOK DS CL8 HIPERSPACE STOKEN
ONEBLOCK DC F'1' HIPERSPACE SIZE OF 1 BLOCK
OBJID DS CL8 DIV OBJECT ID
OBJAREA DS CL8 WINDOW IN ADDRESS SPACE

When the hiperspace is a data-in-virtual object, your program does not need to know the origin of the
hiperspace. All addresses refer to offsets within the hiperspace. Note that the example does not include
the ORIGIN parameter on DSPSERV.

After you finish making changes to the data in the address space window, you can save the changes back
to the hiperspace as follows:

* SAVE CHANGES TO THE OBJECT
 .
 DIV SAVE,ID=OBJID

The following macro refreshes the address space window. This means that if you make changes in the
window and want a fresh copy of the object (that is, the copy that was saved last with the DIV SAVE
macro), you would issue the following:

290 z/OS: z/OS MVS Assembler Services Guide

 DIV RESET,ID=OBJID

When you finish using the hiperspace, use the DSPSERV macro to delete the hiperspace.

* DELETE THE HIPERSPACE
 .
 DSPSERV DELETE,STOKEN=HS2STOK

Using checkpoint/restart
A program can use checkpoint/restart while it has one or more entries for a hiperspace on its access list
(DU-AL or PASN-AL). If the program has specified on the ALESERV macro that the system is to ignore
entries made to the access list for the hiperspace for checkpoint/restart processing (CHKPT=IGNORE),
the CHKPT macro processes successfully.

A program that specifies CHKPT=IGNORE assumes full responsibility for managing the hiperspace
storage. Managing the hiperspace storage includes the following:

• If any program depends on the contents of the hiperspace and the data cannot be recreated or obtained
elsewhere, the responsible program must save the contents of the hiperspace prior to the checkpoint
operation.

• Once the checkpoint operation has completed, the responsible program must perform the following
during restart processing to successfully manage the hiperspace storage.

1. Ensure that the hiperspace exists. The original hiperspace might or might not exist. If the
original hiperspace does not exist, the responsible program must issue DSPSERV CREATE
TYPE=HIPERSPACE to recreate the hiperspace.

2. Issue ALESERV ADD of the hiperspace, original or recreated, to the program's access list to obtain a
new ALET.

3. If, in addition to having a dependency on the hiperspace, any program also depends on the contents
of the hiperspace storage, the responsible program must refresh the contents of the hiperspace
storage. The program must use the new ALET to reference the hiperspace.

4. The responsible program must make the new ALET available to any program that has a dependency
on the hiperspace. The STOKEN, changed or unchanged, must be made available to any program that
needs to issue ALESERV ADD to access the hiperspace.

See z/OS DFSMSdfp Checkpoint/Restart information about the CHKPT macro.

Chapter 16. Data spaces and hiperspaces 291

292 z/OS: z/OS MVS Assembler Services Guide

Chapter 17. Window services

Callable window services enables assembler language programs to use the CALL macro to access data
objects. By calling the appropriate window services program, an assembler language program can:

• Read or update an existing permanent data object
• Create and save a new permanent data object
• Create and use a temporary data object

Window services enable your program to access data objects without your program performing any input
or output (I/O) operations. All your program needs to do is issue a CALL to the appropriate service
program. The service performs any I/O operations that are required to make the data object available
to your program. When you want to update or save a data object, window services again performs any
required I/O operations.

Data objects

Permanent
A permanent data object is a virtual storage access method (VSAM) linear data set that resides on DASD.
(This type of data set is also called a data-in-virtual object.) You can read data from an existing permanent
object and also update the content of the object. You can create a new permanent object and when you
are finished, save it on DASD. Because you can save this type of object on DASD, window services calls it a
permanent object. Window services can handle very large permanent objects that contain as many as four
gigabytes (4294967296 bytes).

Note: Installations whose high level language programs, such as FORTRAN, used data-in-virtual objects
prior to MVS/SP 3.1.0 had to write an Assembler language interface program to allow the FORTRAN
program to invoke the data-in-virtual program. Window services eliminates the need for this interface
program.

Temporary data objects
A temporary data object is an area of expanded storage that window services provides for your program.
You can use this storage to hold temporary data, such as intermediate results of a computation, instead
of using a DASD workfile. Or you might use the storage area as a temporary buffer for data that your
program generates or obtains from some other source. When you finish using the storage area, window
services deletes it. Because you cannot save the storage area, window services calls it a temporary
object. Window services can handle very large temporary objects that contain as many as 16 terabytes
(17592186044416 bytes).

Structure of a data object
Think of a data object as a contiguous string of bytes organized into blocks, each 4096 bytes long. The
first block contains bytes 0 to 4095 of the object, the second block contains bytes 4096 to 8191, and so
forth.

Your program references data in the object by identifying the block or blocks that contain the desired
data. Window services makes the blocks available to your program by mapping a window in your program
storage to the blocks. A window is a storage area that your program provides and makes known to window
services. Mapping the window to the blocks means that window services makes the data from those
blocks available in the window when you reference the data. You can map a window to all or part of a data
object depending on the size of the object and the size of the window. You can examine or change data
that is in the window by using the same instructions that you use to examine or change any other data in
your program storage.

© Copyright IBM Corp. 1988, 2022 293

The following figure shows the structure of a data object and shows a window mapped to two of the
object's blocks.

Figure 79. Structure of a Data Object

What does window services provide?
Window services allows you to view and manipulate data objects in a number of ways. You can have
access to one or more data objects at the same time. You can also define multiple windows for a given
data object. You can then view a different part of the object through each window. Before you can access
any data object, you must request access from window services.

When you request access to a permanent data object, you must indicate whether you want a scroll area.
A scroll area is an area of expanded storage that window services obtains and maps to the permanent
data object. You can think of the permanent object as being available in the scroll area. When you request
a view of the object, window services maps the window to the scroll area. If you do not request a scroll
area, window services maps the window directly to the object on DASD.

A scroll area enables you to save interim changes to a permanent object without changing the object on
DASD. Also, when your program accesses a permanent object through a scroll area, your program might
attain better performance than it would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of expanded storage. This
area of expanded storage is the temporary data object. When you request a view of the object, window
services maps the window to the temporary object. Window services initializes a temporary object to
binary zeroes.

Note:

1. Window services does not transfer data from the object on DASD, from the scroll area, or from the
temporary object until your program references the data. Then window services transfers the blocks
that contain the data your program requests.

2. The expanded storage that window services uses for a scroll area or for a temporary object is called a
hiperspace. A hiperspace is a range of contiguous virtual storage addresses that a program can use like
a buffer. Window services uses as many hiperspaces as needed to contain the data object.

The ways that window services can map an object
Window services can map a data object a number of ways. The following examples show how window
services can:

• Map a permanent object that has no scroll area
• Map a permanent object that has a scroll area
• Map a temporary object
• Map an object to multiple windows

294 z/OS: z/OS MVS Assembler Services Guide

• Map multiple objects

Example 1 — Mapping a permanent object that has no scroll area
If a permanent object has no scroll area, window services maps the object from DASD directly to your
window. In this example, your window provides a view of the first and second blocks of an object.

Figure 80. Mapping a Permanent Object That Has No Scroll Area

Example 2 — Mapping a permanent object that has a scroll area
If the object has a scroll area, window services maps the object from DASD to the scroll area. Window
services then maps the blocks that you wish to view from the scroll area to your window. In this example,
your window provides a view of the third and fourth blocks of an object.

Figure 81. Mapping a Permanent Object That Has A Scroll Area

Example 3 — Mapping a temporary object
Window services uses a hiperspace as a temporary object. In this example, your window provides a view
of the first and second blocks of a temporary object.

Chapter 17. Window services 295

Figure 82. Mapping a Temporary Object

Example 4 — Mapping multiple windows to an object
Window services can map multiple windows to the same object. In this example, one window provides a
view of the second and third blocks of an object, and a second window provides a view of the last block.

Figure 83. Mapping an Object To Multiple Windows

Example 5 — Mapping multiple objects
Window services can map multiple objects to windows in the same address space. The objects can be
temporary objects, permanent objects, or a combination of temporary and permanent objects. In this
example, one window provides a view of the second block of a temporary object, and a second window
provides a view of the fourth and fifth blocks of a permanent object.

296 z/OS: z/OS MVS Assembler Services Guide

Figure 84. Mapping Multiple Objects

Access to permanent data objects
When you have access to a permanent data object, you can:

• View the object through one or more windows. Depending on the object size and the window size, a
single window can view all or part of a permanent object. If you define multiple windows, each window
can view a different part of the object. For example, one window might view the first block of the
permanent object and another window might view the second block. You can also have several windows
view the same part of the object or have views in multiple windows overlap. For example, one window
might view the first and second blocks of a data object while another window views the second and
third blocks.

• Change data that appears in a window. You can examine or change data that is in a window by using
the same instructions you use to examine or change any other data in your program's storage. These
changes do not alter the object on DASD or in the scroll area.

• Save interim changes in a scroll area. After changing data in a window, you can have window services
save the changed blocks in a scroll area, if you have requested one. Window services replaces blocks in
the scroll area with corresponding changed blocks from the window. Saving changes in the scroll area
does not alter the object on DASD or alter data in the window.

• Refresh a window or the scroll area. After you change data in a window or save changes in the scroll
area, you may discover that you no longer need those changes. In that case, you can have window
services refresh the changed data. To refresh the window or the scroll area, window services replaces
changed data with data from the object as it appears on DASD.

• Replace the view in a window. After you finish using data that's in a window, you can have window
services replace the view in the window with a different view of the object. For example, if you are

Chapter 17. Window services 297

viewing the third, fourth, and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth blocks.

• Update the object on DASD. If you have changes available in a window or in the scroll area, you can save
the changes on DASD. Window services replaces blocks on DASD with corresponding changed blocks
from the window and the scroll area. Updating an object on DASD does not alter data in the window or in
the scroll area.

Access to temporary data objects
When you have access to a temporary data object, you can:

• View the object through one or more windows. Depending on the object size and the window size,
a single window can view all or part of a temporary object. If you define multiple windows, each
window can view a different part of the object. For example, one window might view the first block of
the temporary object and another window might view the second block. Unlike a permanent object,
however, you cannot define multiple windows that have overlapping views of a temporary object.

• Change data that appears in a window. This function is the same for a temporary object as it is for a
permanent object: you can examine or change data that is in a window by using the same instructions
you use to examine or change any other data in your address space. These changes do not alter the
object on DASD or in the scroll area.

• Update the temporary object. After you have changed data in a window, you can have window
services update the object with those changes. Window services replaces blocks in the object with
corresponding changed blocks from the window. The data in the window remains as it was.

• Refresh a window or the object. After you change data in a window or save changes in the object,
you may discover that you no longer need those changes. In that case, you can have window services
refresh the changed data. To refresh the window or the object, window services replaces changed data
with binary zeroes.

• Change the view in a window. After you finish using data that's in a window, you can have window
services replace the view in the window with a different view of the object. For example, if you are
viewing the third, fourth, and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth blocks.

Using window services
To use, create, or update a data object, you call a series of programs that window services provides. These
programs enable you to:

• Access an existing object, create and save a new permanent object, or create a temporary object
• Obtain a scroll area where you can make interim changes to a permanent object
• Define windows and establish views of an object in those windows
• Change or terminate the view in a window
• Update a scroll area or a temporary object with changes you have made in a window
• Refresh changes that you no longer need in a window or a scroll area
• Update a permanent object on DASD with changes that are in a window or a scroll area
• Terminate access to an object

The window services programs that you call and the sequence in which you call them depends on your
use of the data object. For descriptions of the window services, see z/OS MVS Programming: Assembler
Services Reference ABE-HSP. For an example of invoking window services from an assembler language
program, see “Window services coding example” on page 307.

The first step in using any data object is to gain access to the object. To gain access, you call CSRIDAC.
The object can be an existing permanent object, or a new permanent or temporary object you want to
create. For a permanent object, you can request an optional scroll area. A scroll area enables you to make
interim changes to an object's data without affecting the data on DASD. When CSRIDAC grants access, it

298 z/OS: z/OS MVS Assembler Services Guide

provides an object identifier that identifies the object. You use that identifier to identify the object when
you request other services from window service programs.

After obtaining access to an object, you must define one or more windows and establish views of the
object in those windows. To establish a view of an object, you tell window services which blocks you
want to view and in which windows. You can view multiple objects and multiple parts of each object at
the same time. To define windows and establish views, you call CSRVIEW or CSREVW. After establishing
a view, you can examine or change data that is in the window using the same instructions you use to
examine or change other data in your program's storage.

After making changes to the part of an object that is in a window, you will probably want to save those
changes. How you save changes depends on whether the object is permanent, is temporary, or has a
scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll area without affecting
the object on DASD. Later, you can update the object on DASD with changes saved in the scroll area. If the
object is permanent and has no scroll area, you can update it on DASD with changes that are in a window.
If the object is temporary, you can update it with changes that are in a window. To update an object on
DASD, you call CSRSAVE. To update a temporary object or a scroll area, you call CSRSCOT.

After making changes in a window and possibly saving them in a scroll area or using them to update a
temporary object, you might decide that you no longer need those changes. In this case, you can refresh
the changed blocks. After refreshing a block of a permanent object or a scroll area to which a window
is mapped, the refreshed block contains the same data that the corresponding block contains on DASD.
After refreshing a block of a temporary object to which a window is mapped, the block contains binary
zeroes. To refresh a changed block, you call CSRREFR.

After finishing with a view in a window, you can use the same window to view a different part of the object
or to view a different object. Before changing the view in a window, you must terminate the current view.
If you plan to view a different part of the same object, you terminate the current view by calling CSRVIEW.
If you plan to view a different object or will not reuse the window, you can terminate the view by calling
CSRIDAC.

When you finishing using a data object, you must terminate access to the object by calling CSRIDAC.

The following restrictions apply to using window services:

1. When you attach a new task, you cannot pass ownership of a mapped virtual storage window to the
new task. That is, you cannot use the ATTACH or ATTACHX keywords GSPV and GSPL to pass the
mapped virtual storage.

2. While your program is in cross-memory mode, your program cannot invoke data-in-virtual services;
however, your program can reference and update data in a mapped virtual storage window.

3. The task that obtains the ID (through DIV IDENTIFY) is the only one that can issue other DIV services
for that ID.

4. When you identify a data-in-virtual object using the IDENTIFY service, you cannot request a
checkpoint until you invoke the corresponding UNIDENTIFY service.

Obtaining access to a data object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate that you want to access
an object, by specifying BEGIN as the value for op_type.

Identifying the object
You must identify the data object you wish to access. How you identify the object depends on whether the
object is permanent or temporary.

Permanent Object: For a permanent object, object_name and object_type work together. For object_name
you have a choice: specify either the data set name of the object or the DDNAME to which the object is
allocated. The object_type parameter must then indicate whether object_name is a DDNAME or a data set
name:

Chapter 17. Window services 299

• If object_name is a DDNAME, specify DDNAME as the value for object_type.
• If object_name is a data set name, specify DSNAME as the value for object_type.

If you specify DSNAME for object_type, indicate whether the object already exists or whether window
services is to create it:

• If the object already exists, specify OLD as the value for object_state.
• If window services is to create the object, specify NEW as the value for object_state.

Requirement for NEW Objects: If you specify NEW as the value for object_state, your system must include
SMS, and SMS must be active.

Temporary Object: To identify a temporary object, specify TEMPSPACE as the value for object_type.
Window services assumes that a temporary object is new and must be created. Therefore, window
services ignores the value assigned to object_state.

Specifying the object's size
If the object is permanent and new or is temporary, you must tell window services the size of the object.
You specify object size through the object_size parameter. The size specified becomes the maximum
size that window services will allow for that object. You express the size as the number of 4096-byte
blocks needed to contain the object. If the number of blocks needed to contain the object is not an exact
multiple of 4096, round object_size to the next whole number. For example:

• If the object size is to be less than 4097 bytes, specify 1.
• If the object size is 5000 bytes, specify 2.
• If the object size is 410,000 bytes, specify 101.

Specifying the type of access
For an existing (OLD) permanent object you must specify how you intend to access the object. You specify
your intentions through the access_mode parameter:

• If you intend to only read the object, specify READ for access_mode.
• If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes you will update the
object. In these cases, window services ignores the value assigned to access_mode.

Obtaining a scroll area
A scroll area is storage that window services provides for your use. This storage is outside your program's
storage area and is accessible only through window services.

For a permanent object, a scroll area is optional. A scroll area allows you to make interim changes to
a permanent object without altering the object on DASD. Later, if you want, you can update the object
on DASD with the interim changes. A scroll area might also improve performance when your program
accesses a permanent object.

For a temporary object, the scroll area is the object. Therefore, for a temporary object, a scroll area is
required.

To indicate whether you want a scroll area, provide the appropriate value for scroll_area:

• To request a scroll area, supply a value of YES. YES is required for a temporary object.
• To indicate you do not want a scroll area, supply a value of NO.

Defining a view of a data object
To view all or part of a data object, you must provide window services with information about the object
and how you want to view it. You must provide window services with the following information:

300 z/OS: z/OS MVS Assembler Services Guide

• The object identifier
• Where the window is in your address space
• Window disposition — that is, whether window services is to initialize the window the first time you

reference data in the window
• Whether you intend to reference blocks of data sequentially or randomly
• The blocks of data that you want to view
• Whether you want to extend the size of the object

To define a view of a data object, call CSRVIEW or CSREVW. To determine which service you should
use, see “Defining the expected reference pattern” on page 302. Specify BEGIN as the value for
operation_type.

Identifying the data object
To identify the object you want to view, specify the object identifier as the value for object_id. Use the
same value CSRIDAC returned in object_id when you requested access to the object.

Identifying a window
You must identify the window through which you will view the object. The window is a virtual storage
area in your address space. You are responsible for obtaining the storage, which must meet the following
requirements:

• The storage must not be page fixed.
• Pages in the window must not be page loaded (must not be loaded by the PGLOAD macro).
• The storage must start on a 4096 byte boundary and must be a multiple of 4096 bytes in length.

To identify the window, use the window_name parameter. The value supplied for window_name must be
the symbolic name you assigned to the window storage area in your program.

Defining a window in this way provides one window through which you can view the object. To define
multiple windows that provide simultaneous views of different parts of the object, see “Defining multiple
views of an object” on page 303.

Defining the disposition of a window's contents
You must specify whether window services is to replace or retain the window contents. You do this by
selecting either the replace or retain option. This option determines how window services handles the
data that is in the window the first time you reference the data. You select the option by supplying a value
of REPLACE or RETAIN for disposition.

Replace option
If you specify the replace option, the first time you reference a block to which a window is mapped,
window services replaces the data in the window with corresponding data from the object. For example,
assume you have requested a view of the first block of a permanent object and have specified the replace
option. The first time you reference the window, window services replaces the data in the window with the
first 4096 bytes (the first block) from the object.

If you've selected the replace option and then call CSRSAVE to update a permanent object, or call
CSRSCOT to update a scroll area, or call CSRSCOT to update a temporary object, window services updates
only the specified blocks that have changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that's currently in an object.

Retain option
If you select the retain option, window services retains data that is in the window. When you reference a
block in the window the first time, the block contains the same data it contained before the reference.

Chapter 17. Window services 301

When you select the retain option, window services considers all of the data in the window as changed.
Therefore, if you call CSRSCOT to update a scroll area or a temporary object, or call CSRSAVE to update
a permanent object, window services updates all of the specified blocks to which a window or scroll area
are mapped.

Select the retain option when you want to replace data in an object without regard for the data that it
currently contains. You also use the retain option when you want to initialize a new object.

Defining the expected reference pattern
You must tell window services whether you intend to reference the blocks of an object sequentially or
randomly. An intention to access randomly tells window services to transfer one block (4096 bytes) of
data into the window at a time. An intention to access sequentially tells window services to transfer more
than one block into your window at one time. The performance gain is in having blocks of data already
in central storage at the time the program needs to reference them. You specify the intent on either
CSRVIEW or CSREVW, two services that differ on how to specify sequential access.

• CSRVIEW allows you a choice between random or sequential access.

If you specify RANDOM, when you reference data that is not in your window, window services brings in
one block — the one that contains the data your program references.

If you specify SEQ for sequential, when you reference data that is not in your window, window services
brings in up to 16 blocks — the one that contains the data your program requests, plus the next 15
consecutive blocks. The number of consecutive blocks varies, depending on the size of the window and
availability of central storage. Use CSRVIEW if you are going to do one of the following:

– Access randomly
– Access sequentially, and you are satisfied with a maximum of 16 blocks coming into the window at a

time.
• CSREVW is for sequential access only. It allows you to specify the maximum number of consecutive

blocks that window services brings into the window at one time. The number ranges from one block
through 256 blocks. Use CSREVW if you want fewer than 16 blocks or more than 16 blocks at one
time. Programs that benefit from having more than 16 blocks come into a window at one time reference
arrays that are greater than one megabyte. Often these programs perform significant amounts of
numerically intensive computations.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255 for pfcount. pfcount
represents the number of blocks window services will bring into the window, in addition to the one that it
always brings in.

Note that window services brings in multiple pages differently depending on whether your object is
permanent or temporary and whether the system has moved pages of your data from central storage to
make those pages of central available for other programs. The rule is that SEQ on CSRVIEW and pfcount
on CSREVW apply to:

• A permanent object when movement is from the object on DASD to central storage
• A temporary object when your program has scrolled the data out and references it again.

SEQ and pfcount do not apply after the system has moved data (either changed or unchanged) to auxiliary
or expanded storage, and your program again references it, requiring the system to bring the data back to
central storage.

End the view whether established with CSRVIEW or CSREVW, with CSRVIEW END.

Identifying the blocks you want to view
To identify the blocks of data you want to view, use offset and span. The values you assign to offset and
span, together, define a contiguous string of blocks that you want to view:

302 z/OS: z/OS MVS Assembler Services Guide

• The value assigned to offset specifies the relative block at which to start the view. An offset of 0 means
the first block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to view. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it means the view is to start at the
specified offset and extend until the currently defined end of the object.

The following table shows examples of several offset and span combinations and the resulting view in the
window.

Offset Span Resulting view in the window

0 0 view the entire object

0 1 view the first block only

1 0 view the second block through the last block

1 1 view the second block only

2 2 view the third and fourth blocks only

Extending the size of a data object
You can use offset and span to extend the size of an object up to the previously defined maximum size for
the object. You can extend the size of either permanent objects or temporary objects. For objects created
through CSRIDAC, the value assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that defines the current size
of the object.

For example, assume you have access to a permanent object whose maximum allowable size is four
4096-byte blocks. The object is currently two blocks long. If you define a window and specify an offset
of 1 and a span of 2, the window contains a view of the second block and a view of a third block which
does not yet exist in the permanent object. When you reference the window, the content of the second
block, as seen in the window, depends on the disposition you selected, replace or retain. The third block,
as seen in the window, initially contains binary zeroes. If you later call CSRSAVE to update the permanent
object with changes from the window, window services extends the size of the permanent object to three
blocks by appending the new block of data to the object.

Defining multiple views of an object
You might need to view different parts of an object at the same time. For a permanent object, you can
define windows that have non-overlapping views as well as windows that have overlapping views. For a
temporary object, you can define windows that have only non-overlapping views.

• A non-overlapping view means that no two windows view the same block of the object. For example, a
view is non-overlapping when one window views the first and second blocks of an object and another
window views the ninth and tenth blocks of the same object. Neither window views a common block.

• An overlapping view means that two or more windows view the same block of the object. For example,
the view overlaps when the second window in the previous example views the second and third blocks.
Both windows view a common block, the second block.

Non-overlapping views
To define multiple windows that have a non-overlapping view, call CSRIDAC once to obtain the object
identifier. Then call CSRVIEW or CSREVW once to define each window. On each call, specify BEGIN to
define the type of operation, and specify the same object identifier for object_id, and a different value for
window_name. Define each window's view by specifying values for offset and span that create windows
with non-overlapping views.

Overlapping views
To define multiple windows that have an overlapping view of a permanent object, define each window as
though it were viewing a different object. That is, define each window under a different object identifier.

Chapter 17. Window services 303

To obtain the object identifiers, call CSRIDAC once for each identifier you need. Only one of the calls to
CSRIDAC can specify an access mode of UPDATE. Other calls to CSRIDAC must specify an access mode of
READ.

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window. On each call, specify BEGIN
to define the operation, and specify a different object identifier for object_id, and a different value for
window_name. Define each window's view by specifying values for offset and span that create windows
with the required overlapping views.

To define multiple windows that have an overlapping view, define each window as though it were viewing
a different object. That is, define each window under a different object identifier. To obtain the object
identifiers, call CSRIDAC once for each identifier you need. Then call CSRVIEW or CSREVW once to define
each window. On each call, specify the value BEGIN for the operation type, and specify a different object
identifier for object_id, and a different value for window_name. Define each window's view by specifying
values for offset and span that create windows with the required overlapping views.

Saving interim changes to a permanent data object
Window services allows you to save interim changes you make to a permanent object. You must have
previously requested a scroll area for the object, however. You request a scroll area when you call
CSRIDAC to gain access to the object. Window services saves changes by replacing blocks in the scroll
area with corresponding changed blocks from a window. Saving changes in the scroll area does not alter
the object on DASD.

After you have a view of the object and have made changes in the window, you can save those changes in
the scroll area. To save changes in the scroll area, call CSRSCOT. To identify the object, you must supply
an object identifier for object_id. The value supplied for object_id must be the same value CSRIDAC
returned in object_id when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
save all changed blocks to which a window is mapped.

Window services replaces each block within the range specified by offset and span providing the block has
changed and a window is mapped to the block.

Updating a temporary data object
After making changes in a window to a temporary object, you can update the object with those changes.
You must identify the object and must specify the range of blocks that you want to update. To be updated,
a block must be mapped to a window and must contain changes in the window. Window services replaces
each block within the specified range with the corresponding changed block from a window.

To update a temporary object, call CSRSCOT. To identify the object, you must supply an object identifier
for object_id. The value you supply for object_id must be the same value CSRIDAC returned in object_id
when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; a offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
update all changed blocks to which a window is mapped.

304 z/OS: z/OS MVS Assembler Services Guide

Window services replaces each block within the range specified by offset and span providing the block has
changed and a window is mapped to the block.

Refreshing changed data
You can refresh blocks that are mapped to either a temporary object or to a permanent object. You must
identify the object and specify the range of blocks you want to refresh. When you refresh blocks mapped
to a temporary object, window services replaces, with binary zeros, all changed blocks that are mapped to
the window. When you refresh blocks mapped to a permanent object, window services replaces specified
changed blocks in a window or in the scroll area with corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. To identify the object, you must supply an object identifier for
object_id. The value supplied for object_id must be the same value CSRIDAC returned in object_id when
you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
refresh all changed blocks to which a window is mapped, or refresh all changed blocks that have been
saved in a scroll area.

Window services refreshes each block within the range specified by offset and span providing the
block has changed and a window or a scroll area is mapped to the block. At the completion of the
refresh operation, blocks from a permanent object that have been refreshed appear the same as the
corresponding blocks on DASD. Refreshed blocks from a temporary object contain binary zeroes.

Updating a permanent object on DASD
You can update a permanent object on DASD with changes that appear in a window or in the object's
scroll area. You must identify the object and specify the range of blocks that you want to update.

To update an object, call CSRSAVE. To identify the object, you must supply an object identifier for
object_id. The value you provide for object_id must be the same value CSRIDAC returned when you
requested access to the object.

To identify the blocks of the object that you want to update, use offset and span. The values assigned to
offset and span, together, define a contiguous string of blocks in the object:

• The value assigned to offset specifies the relative block at which to start. An offset of 0 means the first
block; an offset of 1 means the second block; an offset of 2 means the third block, and so forth.

• The value assigned to span specifies the number of blocks to save. A span of 1 means one block; a span
of 2 means two blocks, and so forth. A span of 0 has special meaning: it requests that window services
update all changed blocks to which a window is mapped, or update all changed blocks that have been
saved in the scroll area.

When there is a scroll area
When the object has a scroll area, window services first updates blocks in the scroll area with
corresponding blocks from windows. To be updated, a scroll area block must be within the specified
range, a window must be mapped to the block, and the window must contain changes. Window services
next updates blocks on DASD with corresponding blocks from the scroll area. To be updated, a DASD
block must be within the specified range and have changes in the scroll area. Blocks in the window remain
unchanged.

Chapter 17. Window services 305

When there is no scroll area
When there is no scroll area, window services updates blocks of the object on DASD with corresponding
blocks from a window. To be updated, a DASD block must be within the specified range, mapped to a
window, and have changes in the window. Blocks in the window remain unchanged.

Changing a view in a window
To change the view in a window so you can view a different part of the same object or view a different
object, you must first terminate the current view. To terminate the view, whether the view was established
by CSRVIEW or CSREVW, call CSRVIEW and supply a value of END for operation_type. You must also
identify the object, identify the window, identify the blocks you are currently viewing, and specify a
disposition for the data that is in the window.

To identify the object, supply an object identifier for object_id. The value supplied for object_id must be
the value you supplied when you established the view.

To identify the window, supply the window name for window_name. The value supplied for window_name
must be the same value you supplied when you established the view.

To identify the blocks you are currently viewing, supply values for offset and span. The values you supply
must be the same values you supplied for offset and span when you established the view.

To specify a disposition for the data you are currently viewing, supply a value for disposition. The value
determines what data will be in the window after the CALL to CSRVIEW completes.

• For a permanent object that has no scroll area:

– To retain the data that's currently in the window, supply a value of RETAIN for disposition.
– To discard the data that's currently in the window, supply a value of REPLACE for disposition. After

the operation completes, the window contents are unpredictable.

For example, assume that a window is mapped to one block of a permanent object that has no scroll
area. The window contains the character string AAA……A and the block to which the window is mapped
contains BBB……B. If you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA……A, and the mapped block contains BBB……B. If you specify a value of REPLACE, upon
completion of the CALL, the window contents are unpredictable and the mapped block still contains
BBB……B.

• For a permanent object that has a scroll area or for a temporary object:

– To retain the data that's currently in the window, supply a value of RETAIN for disposition. CSRVIEW
or CSREVW also updates the mapped blocks of the scroll area or temporary object so that they
contain the same data as the window.

– To discard the data that's currently in the window, supply a value of REPLACE for disposition. Upon
completion of the operation, the window contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary object. The window contains
the character string AAA……A and the block to which the window is mapped contains BBB……B. If you
specify a value of RETAIN, upon completion of the CALL, the window still contains AAA……A and the
mapped block of the object also contains AAA……A. If you specify a value of REPLACE, upon completion
of the CALL, the window contents are unpredictable and the mapped block still contains BBB……B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and the value you specify
for disposition determine whether CSRVIEW updates the mapped blocks. CSRVIEW updates the mapped
blocks of a temporary object or a permanent object's scroll area if you specify a disposition of RETAIN. In
all other cases, to update the mapped blocks, call the appropriate service before terminating the view:

• To update a temporary object, or to update the scroll area of a permanent object, call CSRSCOT.
• To update an object on DASD, call CSRSAVE.

306 z/OS: z/OS MVS Assembler Services Guide

Upon successful completion of the CSRVIEW operation, the content of the window depends on the value
specified for disposition. The window is no longer mapped to a scroll area or to an object, however. The
storage used for the window is available for other use, perhaps to use as a window for a different part of
the same object or to use as a window for a different object.

Terminating access to a data object
When you finish using a data object, you must terminate access to the object. When you terminate
access, window services returns to the system any virtual storage it obtained for the object: storage for
a temporary object or storage for a scroll area. If the object is temporary, window services deletes the
object. If the object is permanent and window services dynamically allocated the data set when you
requested access to the object, window services dynamically unallocates the data set. Your window is no
longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not update the object on
DASD with changes that are in a window or the scroll area. To update the object, call CSRSAVE before
terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a value of END for operation_type. To identify
the object, supply an object identifier for object_id. The value you supply for object_id must be the same
value CSRIDAC returned when you obtained access to the object.

Upon successful completion of the call, the storage used for the window is available for other use,
perhaps as a window for viewing a different part of the same object or to use as a window for viewing a
different object.

Link-editing callable window services
Any program that invokes window services must be link-edited with an IBM-provided linkage-assist
routine. The linkage-assist routine provides the logic needed to locate and invoke the callable services.
The linkage-assist routine resides in SYS1.CSSLIB. The following example shows the JCL needed to
link-edit a program with the linkage-assist routine.

//LINKJOB JOB 'accountinfo','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTP1 EXEC PGM=HEWL,PARM='LIST,LET,XREF,REFR,RENT,NCAL,
// SIZE=(1800K,128K)'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSNAME=userid.LOADLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
 INCLUDE OBJDD1(userpgm)
 LIBRARY OBJDD2(CSRIDAC,CSRREFR,CSREVW,CSRSCOT,CSRSAVE,CSRVIEW)
 NAME userpgm(R)
//OBJDD1 DD DSN=userid.OBJLIB,DISP=SHR
//OBJDD2 DD DSN=SYS1.CSSLIB,DISP=SHR

The example JCL assumes that the program you are link-editing is reentrant.

Window services coding example
This example shows the code needed to invoke window services from an assembler language program.
Use this example to supplement and reinforce information that is presented elsewhere in this chapter.

EXAMPLE1 CSECT
 STM 14,12,12(13) Save caller's registers in caller's
* save area
 LR 12,15 Set up R12 as the base register
 USING EXAMPLE1,12
* .
* .
* .
**
* Set up save area *
**

Chapter 17. Window services 307

 LA 15,SAVEAREA Load address of save area into R15
 ST 13,4(15) Save address of caller's save area
* into this program's save area
 ST 15,8(13) Save address of this program's save
* area into caller's save area
 LR 13,15 Load address of save area into R13
* .
* . Program continues....
* .
**
* Call CSRIDAC to identify and access an old data object, request *
* a scroll area, and get update access. *
**
 CALL CSRIDAC,(OPBEGIN,DDNAME,OBJNAME,YES,OLD,ACCMODE, *
 OBJSIZE,OBJID1,LSIZE,RC,RSN)
* .
* . Program continues....
* .
**
* Get 50 pages of virtual storage to use as a window *
**
 STORAGE OBTAIN,LENGTH=GSIZE,BNDRY=PAGE,ADDR=WINDWPTR
 L R3,WINDWPTR Move the address of the window into
* register 3
 USING WINDOW,R3 Sets up WINDOW as based off of reg 3
**
* Call CSRVIEW to set up a map of 50 blocks between the virtual *
* storage obtained through the STORAGE macro and the data object. *
**
 LA R4,ZERO LOAD A ZERO INTO REGISTER 4
 ST R4,OFFSET1 Initialize offset to 0 to indicate
* the beginning of the data object
 CALL CSRVIEW,(OPBEGIN,OBJID1,OFFSET1,SPAN1,(R3),ACCSEQ, *
 REPLACE,RC,RSN)
* .
* . Program continues....
* . write data in the window
* .

**
* Call CSRSAVE to write data in the window to the first 50 blocks *
* of the data object *
**
 CALL CSRSAVE,(OBJID1,OFFSET1,SPAN1,LSIZE,RC,RSN)
* .
* . Program continues....
* . change data in the window
* .
**
* Call CSRSCOT to write new data in the window to the first 50 *
* blocks of the scroll area *
**
 CALL CSRSCOT,(OBJID1,OFFSET1,SPAN1,RC,RSN)
* .
* . Program continues....
* . change data in the window
* .
**
* Call CSRREFR to refresh the window, that is, get back the last *
* SAVEd data in the data object *
**
 CALL CSRREFR,(OBJID1,OFFSET1,SPAN1,RC,RSN)
* .
* . Program continues....
* .
**
* Call CSRIDAC to unidentify and unaccess the data object *
**
 CALL CSRIDAC,(OPEND,DDNAME,OBJNAME,YES,OLD,ACCMODE, *
 OBJSIZE,OBJID1,LSIZE,RC,RSN)
* .
* . Program continues....
* .
 L 13,SAVEAREA+4
 LM 14,12,12(13)
 BR 14 End of EXAMPLE1
ZERO EQU 0 Constant zero
GSIZE EQU 204800 Storage for window of 50 pages (blocks)
R3 EQU 3 Register 3
R4 EQU 4 Register 4
 DS 0D

308 z/OS: z/OS MVS Assembler Services Guide

OPBEGIN DC CL5'BEGIN' Operation type BEGIN
OPEND DC CL4'END ' Operation type END
DDNAME DC CL7'DDNAME ' Object type DDNAME
OBJNAME DC CL8'MYDDNAME' DDNAME of data object
YES DC CL3'YES' Yes for a scroll area
OLD DC CL3'OLD' Data object already exists
ACCSEQ DC CL4'SEQ ' Sequential access
ACCMODE DC CL6'UPDATE' Update mode

REPLACE DC CL7'REPLACE' Replace data in window on a map
OBJSIZE DC F'524288' Size of data object is 2 gig
SPAN1 DC F'50' Set up a span of 50 blocks
OBJID1 DS CL8 Object identifier
LSIZE DS F Logical size of data object
OFFSET1 DS F Offset into data object
RC DS F Return code from service
RSN DS F Reason code from service
SAVEAREA DS 18F This program's save area
WINDWPTR DS F Address of window's storage
WINDOW DSECT Mapping of window to view the
 DS 204800C object data
 END

Chapter 17. Window services 309

310 z/OS: z/OS MVS Assembler Services Guide

Chapter 18. Sharing application data (name/token
callable services)

Name/token callable services allow you to share data between two programs running under the same
task, or between two or more tasks or address spaces. To share data, programs often need to locate
data or data structures acquired and built by other programs. These data structures and the programs
using them need not reside in the same address space. Name/token callable services provide a way for
programs to save and retrieve the information needed to locate this data.

Both unauthorized (problem state and PSW key 8-15) and authorized programs (supervisor state or
PSW key 0-7) can use name/token callable services. Name/token callable services provide additional
function that is available to authorized programs only. For a description of those functions, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Understanding name/token pairs and levels
Name/token callable services enable programs to save and retrieve 16 bytes of application-related data.
A program can associate a 16-byte character string (the name) with 16 bytes of user data (the token).
Later, the same or a different program can retrieve the token by using the name and calling a name/token
service.

By using the appropriate name/token callable service, a program can:

• Create a name/token pair (IEANTCR)
• Retrieve a token from a name/token pair (IEANTRT)
• Delete a name/token pair (IEANTDL).

Name/token pairs
A name/token pair consists of a 16-byte character string (name) with 16 bytes of user data (token). One
program creates the name/token pair, assigns the name, and initializes the token field. Typically, the token
is an address of a data structure.

Figure 85 on page 311 shows the name/token pair and indicates its intended use.

Figure 85. Using the Name and the Token

The bytes of the name can have any hexadecimal value and consist of alphabetic or numeric characters.
The name may contain blanks, integers, or addresses.

Names must be unique within a level. Here are some examples.

• Two task-level name/token pairs owned by the same task cannot have the same name. However, two
task-level name/token pairs owned by different tasks can have the same name.

© Copyright IBM Corp. 1988, 2022 311

• Two home-address-space-level name/token pairs in the same address space cannot have the same
name. However, two home-address-space-level name/token pairs in different address spaces can have
the same name.

Because of these unique requirements you must avoid using the same names that IBM uses for name/
token pairs. Do not use the following names:

• Names that begin with A through I
• Names that begin with X'00'.

The token can have any value.

Levels for name/token pairs
Name/token pairs have a level attribute associated with them. The level defines the relationship of the
creating program (that is, the program that creates the name/token pair) to the retrieving program (that
is, the program that retrieves the data). Depending on the level you select, the retrieving program can run
under the same task as the creating program, or in the same home address space, in the same primary
address space, or in the same system.

• A task-level name/token pair allows the creating program and retrieving program to run under the
same task.

• A home-address-space-level name/token pair allows the creating program and the retrieving program
to run in the same home address space.

• A primary-address-space-level name/token pair allows the creating program and the retrieving
program to run in the same primary address space.

• A system-level name/token pair allows the creating program and the retrieving program to run in the
same system. That is, the two programs run in separate address spaces.

The various name/token levels allow for sharing data between programs that run under a single task,
between programs that run within an address space, and between programs that run in different address
spaces. Some examples of using name/token levels are:

• Different programs that run under the same task can share data through the use of a task-level pair.
• Any number of tasks that run within an address space can share data through the use of an address-

space pair.

Determining what your program can do with name/token pairs
The following table shows the name/token callable services your program can use to manipulate different
levels of name/token pairs:

Table 29. Summary of What Programs Do with Name/Token Pairs

Service Level of pairs

Create (IEANTCR) • Task
• Home
• Primary

Retrieve (IEANTRT) • Task
• Home
• Primary
• System

312 z/OS: z/OS MVS Assembler Services Guide

Table 29. Summary of What Programs Do with Name/Token Pairs (continued)

Service Level of pairs

Delete (IEANTDL) • Task
• Home
• Primary

Note: Unauthorized programs cannot delete any pairs created by
authorized programs.

Note: The primary-address-space-level and system-level name/token pairs are intended to be used
in a cross-memory environment established by authorized programs. For complete descriptions of the
primary-level and system-level name/token pairs, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Deciding what name/token level you need
To determine the level to use, consider the relationship between the code that creates the pair and the
code that retrieves the pair:

• If the retrieving code will be running under the same task as the creator's code, use the task level
• If the retrieving code will have the same home address space but run under a different task, use the

home address space level.

Task-level name/token pair
A task-level name/token pair can be used to anchor data that relates to only one task. Your application
program can create and retrieve the data as often as needed.

Figure 86 on page 313 shows the task-level name/token pair for TASK 1.

Figure 86. Using the Task Level in a Single Address Space

In a single address space, TASK 1:

1. Creates the task-level name/token pair (N1,T1) using the IEANTCR callable service.
2. Retrieves the token at a later time by calling its name (N1) using the IEANTRT callable service.

Chapter 18. Sharing application data (name/token callable services) 313

3. Deletes the name/token pair by calling its name (N1) using the IEANTDL callable service.

Home-level name/token pair
A home-level name/token pair can anchor data for use by programs running in the creating program's
home address space.

Figure 87 on page 314 shows the name/token pairs associated with TASK 1 and TASK 2 running in the
address space.

Figure 87. Using Home-Level and Task-Level Name/Token Pairs

In Figure 87 on page 314, TASK 1:

1. Creates a task-level name/token pair (N1,T1) and a home-level name/token pair (N2,T2) using the
IEANTCR callable service. The home-level name/token pair is associated with the address space.

2. Retrieves the token from N1,T1 any time during the task's processing.

TASK 2 does the following:

1. Retrieves the home-level token from N2,T2 that was created by TASK 1. TASK 2 can retrieve that token
because both tasks are running in the same home address space.

314 z/OS: z/OS MVS Assembler Services Guide

2. Creates its own home-level name/token pair (N3,T3) that other tasks running in the home address
space can access.

Owning and deleting name/token pairs
Name/token pairs created by a program are automatically deleted by the system. The level of the pair
determines when the system deletes the pair:

Note: The words job step in this topic refers to the cross memory resource owning (CMRO) task. While the
CMRO task is generally the main job step task, at times it may be either the initiator task or started task
control task (such as between jobs).

• Task-level pairs are owned by the task that created them and are deleted when the owning task
terminates.

• Home-address-space-level name/token pairs are owned by the job step task of the home address
space that created them and are deleted when the job step task, rather than the creating task, in the
address space terminates; that is, home-level pairs created by subtasks of a task are not automatically
deleted when the subtask terminates.

• Primary-address-space-level name/token pairs are owned by the job step task of the primary address
space that created them and are deleted when the job step task, rather than the creating task,
in the address space terminates; that is, primary-level pairs created by subtasks of a task are not
automatically deleted when the subtask terminates.

Using checkpoint/restart with name/token pairs
A program cannot complete a checkpoint operation, by issuing the CHKPT macro, if certain name/token
pairs are owned by the program at the time of the checkpoint. The pairs are:

• Task-level name/token pairs not created with a persist_option value of 2 are owned by the task issuing
the CHKPT macro.

• Home- or primary-address-space-level name/token pairs owned by the job step task of the home
address space of the task issuing the CHKPT macro.

A checkpoint fails if task- or address-space-level pairs exist because the information in the pairs is not
saved in the checkpoint data set when the checkpoint is taken. Because the pair information is not saved,
the program cannot be restored when the restart occurs. For more information about checkpoint/restart,
see z/OS DFSMSdfp Checkpoint/Restart.

Link-editing name/token services
A program that calls the name/token services must be link-edited with IBM-provided name/token
linkage-assist routines. The linkage-assist routines reside in SYS1.CSSLIB. The following example shows
the JCL that can link-edit a reentrant program with the linkage-assist routines:

//userid JOB 'accounting-info','name',CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM='LIST,LET,XREF,REFR,RENT,SIZE=(1800K,128K)'
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *
 INCLUDE OBJLIB(userpgm)
 ENTRY userpgm
 NAME userpgm(R)
/*

Chapter 18. Sharing application data (name/token callable services) 315

316 z/OS: z/OS MVS Assembler Services Guide

Chapter 19. Processor storage management

The system administers the use of processor storage (that is, central and expanded storage) and it
directs the movement of virtual pages between auxiliary, expanded, and central storage in page size
(4096 byte or 4 K-byte) blocks. It makes all addressable virtual storage in each address space and data
space or hiperspace appear as central storage. Virtual pages necessary for program execution are kept in
processor storage while:

• The program references the pages frequently enough
• Other programs do not need that same central storage.

The system performs the paging I/O necessary to transfer pages in and out of central storage and also
provides DASD allocation and management for paging I/O space on auxiliary storage.

The system assigns real frames upon request from a pool of available real frames, which associates
virtual addresses with real addresses. A limit on the number of real frames that can be used by an address
space is related to its virtual storage limits and its memory limits. For more information on these limits,
see the Chapter 11, “Virtual storage management,” on page 187 section and the z/OS MVS Initialization
and Tuning Guide. Frames are repossessed upon termination of use, when freed by a user, when a
user is swapped-out, or when needed to replenish the available pool. While a virtual page occupies a
real frame, the page is considered pageable unless specified otherwise as a system page that must be
resident in central storage. The system also allocates virtual equals central (V=R) regions upon request by
those programs that cannot tolerate dynamic relocation. Such a region is allocated contiguously from a
predefined area of central storage and is not pageable. Programs in this region do run in dynamic address
translation (DAT) mode, although real and virtual addresses are equivalent.

This chapter describes how you can:

• Free the virtual storage in your address space and the virtual storage in any data space that you might
have access to

– FREEMAIN and STORAGE RELEASE frees specific portions of virtual storage in address spaces.
– DSPSERV DELETE frees all of the virtual storage in a data space or hiperspace.

• Release the central and expanded storage that holds the data that your program has in virtual storage.

– PGRLSE or PGSER RELEASE releases specified portions of virtual storage contents of an address
space.

– DSPSERV RELEASE releases specified portions of virtual storage contents of a data space or
hiperspace.

• Request that a range of virtual storage pages be made read-only or be made modifiable.

– PGSER PROTECT allows the caller to request that a range of virtual storage pages be made read-only.
– PGSER UNPROTECT allows the caller to request that a range of virtual storage pages be made

modifiable.
• Request that the system preload or page out central storage

– PGLOAD or PGSER LOAD loads specified virtual storage areas of an address space into central
storage.

– PGOUT or PGSER OUT pages out specified virtual storage areas of an address space from central
storage.

– DSPSERV LOAD loads specified virtual storage areas of a data space into central storage.
– DSPSERV OUT pages out specified virtual storage areas of a data space from central storage.

• Request that the system preload multiple pages on a page fault.

– REFPAT causes the system to preload pages according to a program's reference pattern. REFPAT is
intended for numerically intensive programs.

© Copyright IBM Corp. 1988, 2022 317

Freeing virtual storage
All storage obtained for your program by GETMAIN, STORAGE OBTAIN, or DSPSERV CREATE is
automatically freed by the system when the job step terminates. Freeing storage in this manner requires
no action on your part.

FREEMAIN or STORAGE RELEASE perform the equivalent of a page release for any resulting free page.
The page is no longer available to the issuer. FREEMAIN can free a page that has been protected through
the PGSER macro with the PROTECT option. DSPSERV DELETE performs the same action for a data space
that FREEMAIN and STORAGE RELEASE do for address space virtual storage except that for a data space
or hiperspace, all of the storage is released.

Releasing storage
When your program is finished using an area of virtual storage, it can release the storage to make the
central, expanded, or auxiliary storage that actually holds the data available for other uses. The decision
to release the storage depends on the size of the storage and when the storage will be used again:

• For large areas (over 100 pages, for example) that will not be used for five or more seconds of processor
time, consider releasing the storage. If you do not release those pages after you are finished using
them:

– Your program might be using central storage that could better be used for other purposes.
– Your program might have delays later when the system moves your pages from central storage to

expanded or auxiliary storage.
• Generally, for smaller amounts of storage that will be used again in five seconds or less, do not release

the storage.

Note that releasing storage does not free the virtual storage.

When releasing storage for an address space, use PGRLSE or PGSER with the RELEASE parameter. As
shown in Figure 88 on page 318, if the specified addresses are not on page boundaries, the low address is
rounded up and the high address is rounded down; then, the pages contained between the addresses are
released.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and PGFREE RELEASE=Y may ignore
some or all of the pages in the input range and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will be skipped, and processing
continues with the next page in the range:

• Storage is not allocated or all pages in a segment have not yet been referenced.
• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress or a nonzero FIX count.
• Pages with COMMIT in progress or with DISASSOCIATE in progress.

Figure 88. Releasing Virtual Storage

318 z/OS: z/OS MVS Assembler Services Guide

When releasing storage for a data space or hiperspace, use the DSPSERV RELEASE macro to release
the central, expanded or auxiliary storage that actually holds the data. PGSER RELEASE rejects any
attempt to release protected storage, including storage that is dynamically protected through PGSER
PROTECT. The starting address must be on a 4K-byte boundary and you can release data space storage
only in increments of 4K bytes.

For both address spaces and data spaces, the virtual space remains, but its contents are discarded. When
the using program can discard the contents of a large virtual area (one or more complete pages) and
reuse the virtual space without the necessity of paging operations, the page release function may improve
operating efficiency.

Protecting a range of virtual storage pages
The PROTECT option of PGSER makes a range of virtual storage pages read-only and helps to improve
data integrity. The UNPROTECT option of PGSER makes a range of virtual storage pages modifiable. You
can protect private storage both above and below 16 megabytes.

IBM recommends that you use PGSER PROTECT only for full pages of storage on page boundaries. This
usage avoids making other areas of storage read-only unintentionally. For instance, if you obtain a virtual
storage area smaller than a page and then issue PGSER PROTECT, the entire page is made read-only,
including the portion of the page that is not part of your storage area.

The system does not keep track of how many times a page has been protected or unprotected. One
UNPROTECT cancels all PROTECTs for a given page.

Loading/paging out virtual storage areas
The PGLOAD, PGSER LOAD, and DSPSERV LOAD essentially provide a page-ahead function. By loading
specified address space and data space areas into central storage, you can attempt to ensure that certain
pages will be in central storage when needed. Page faults can still occur, however, because these pages
may be paged out if not referenced soon enough.

Loading and paging for address spaces: With the page load function, you have the option of specifying that
the contents of the virtual area is to remain intact or be released. If you specify RELEASE=Y with PGLOAD
or PGSER LOAD, the current contents of entire virtual 4K pages to be brought in may be discarded and
new real frames assigned without page-in operations; if you specify RELEASE=N, the contents are to
remain intact and be used later. If you specify RELEASE=Y, the page release function will be performed
before the page load function. That is, no page-in is needed for areas defining entire virtual pages since
the contents of those pages are expendable.

Note: PGRLSE, PGSER RELEASE, PGSER FREE with RELEASE=Y, and PGFREE RELEASE=Y may ignore
some or all of the pages in the input range and will not notify the caller if this was done.

Any pages in the input range that match any of the following conditions will be skipped, and processing
continues with the next page in the range:

• Storage is not allocated or all pages in a segment have not yet been referenced.
• Page is in PSA, SQA or LSQA.
• Page is V=R. Effectively, it's fixed.
• Page is in BLDL, (E)PLPA, or (E)MLPA.
• Page has a page fix in progress or a nonzero FIX count.
• Pages with COMMIT in progress or with DISASSOCIATE in progress.

Loading and paging for data spaces: DSPSERV LOAD requests the starting address of the data space area
to be loaded and the number of pages that the system is to load. It does not offer a RELEASE=Y or a
RELEASE=N function.

PGOUT, PGSER OUT, and DSPSERV OUT initiate page-out operations for specified virtual areas that are in
central storage. For address spaces, the real frames will be made available for reuse upon completion of
the page-out operation unless you specify the KEEPREL parameter in the macro. An area that does not

Chapter 19. Processor storage management 319

encompass one or more complete pages will be copied to auxiliary storage, but the real frames will not be
freed. DSPSERV LOAD does not have the KEEPREL function.

The proper use of the page load and page out functions tend to decrease system overhead by helping the
system keep pages currently in use, or soon to be in use, in central storage. An example of the misuse of
the page load function is to load ten pages and then use only two.

For more information on DSPSERV LOAD and DSPSERV OUT, see “Paging data space storage areas into
and out of central storage” on page 271.

Virtual subarea list
The virtual subarea list (VSL) provides the basic input to the page service functions that use a 24-bit
interface: PGLOAD, PGRLSE, and PGOUT. The list consists of one or more doubleword entries, with each
entry describing an area of virtual storage. The list must be non-pageable and contained in the address
space of the subarea to be processed.

Each VSL entry has the following format. The flag bits that are described are the only flag bits that are
intended for customer use.

Table 30. Format of a virtual subarea list (VSL) entry

Byte: 0 1 2 3 4 5 6 7

Contents: Flags Start
Address

 Flags End
Address + 1

Byte
Contents

Byte 0
Flags:
Bit

Meaning when set
1...

Bit 0 indicates that bytes 1 - 3 are a chain pointer to the next VSL entry to be processed; bytes 4-7
are ignored. This feature allows several parameter lists to be chained as a single logical parameter
list.

Byte 1
Start address: The address of the origin of the virtual area to be processed.

Byte 3
Flags
Bit

Meaning when set
1...

Bit 0 indicates the last entry of the list. It is set in the last doubleword entry in the list.
.1..

Bit 1 indicates that this entry is to be ignored.
...1

Bit 3 indicates that a return code of 4 was issued from a page service function other than PGRLSE.
Byte 4

End address + 1: The address of the byte immediately following the end of the virtual area.

320 z/OS: z/OS MVS Assembler Services Guide

Page service list (PSL)
The page services list provides the basic input to the page service function for the PGSER macro. Specify
31-bit addresses in the PSL entries. Within a PSL entry, you can also nullify a service on a range of
addresses by indicating that you do not want to perform the service for that range.

Each 12-byte PSL entry has the following form:
Bytes

Meaning
0-3

Bit 0 of byte 0 must be 0. Each PSL entry specifies the range of addresses for which a service is to
be performed or points to the first PSL entry in a new list of concatenated PSL entries that are to be
processed.

4-7
Bit 0 of byte 4 must be 0. If bytes 0-3 contain the starting address, these bytes contain the address of
the last byte for which the page service is to be performed. You do not need to do anything with bytes
4-7 if you supplied a pointer in bytes 0-3.

8
Flags set by the caller as follows. The flag bits that are described are the only flag bits intended for
customer use.
Bit

Meaning
0

Set to 1 to indicate that this is the last PSL entry in a concatenation of PSL entries.
1

Set to 1 to indicate that no services are to be performed for the range of addresses specified.
2

Set to 1 to indicate that bytes 0-3 contain a pointer to the next PSL.
9-11

For IBM use only.

Defining the reference pattern (REFPAT)
The REFPAT macro allows a program to define a reference pattern for a specified area that the program is
about to reference. Additionally, the program specifies how much data it wants the system to attempt to
bring into central storage on a page fault. The system honors the request according to the availability of
central storage. By bringing in more data at a time, the system takes fewer page faults; fewer page faults
means possible improvement in performance.

Programs that benefit from REFPAT are those that reference amounts of data that are greater than one
megabyte. The program should reference the data in a sequential manner, either forward or backward. In
addition, if the program "skips over" certain areas, and these areas are of uniform size and are repeated
at regular intervals, REFPAT might provide additional performance improvement. Although REFPAT affects
movement of pages from auxiliary and expanded storage, the greatest gain is for movement of pages from
auxiliary storage.

There are two REFPAT services:

• REFPAT INSTALL identifies the data area and the reference pattern, and specifies the number of bytes
that the system is to try to bring into central storage at one time. These activities are called "defining the
reference pattern".

• REFPAT REMOVE removes the definition; it tells the system that the program has stopped using the
reference pattern for the specified data area.

Chapter 19. Processor storage management 321

A program might have a number of different ways of referencing a particular area. In this case, the
program can issue multiple pairs of REFPAT INSTALL and REFPAT REMOVE macros for that area.

Each pattern, as defined on REFPAT INSTALL, is associated with the task that represents the caller. A task
can have up to 100 reference patterns defined for multiple data areas at one time, but cannot have more
than one pattern defined for the same area. Other tasks can specify a different reference pattern for the
same data area. REFPAT REMOVE removes the association between the pattern and the task.

The data area can be in the primary address space or in a data space owned by a task that was dispatched
in the primary address space. If the data area is in a data space, identify the data space through its
STOKEN. You received the STOKEN either from DSPSERV or from another program.

Although REFPAT can be used for data structures other than arrays, for simplicity, examples in this
chapter use REFPAT for an array or part of an array.

Reference pattern services for high-level language (HLL) and assembler language programs provide
function similar to what REFPAT offers. For information about these services, see z/OS MVS Programming:
Callable Services for High-Level Languages.

How does the system handle the data in an array?
To evaluate the performance advantage REFPAT offers, you need to understand how the system handles
a range of data that a program references. Consider the two-dimensional array in Figure 89 on page 322
that is shown in row-major order and in order of increasing addresses. This array has 1024 columns and
1024 rows and each element is eight bytes in size. Each number in Figure 89 on page 322 represents one
element. The size of the array is 1048576 elements for a total of 8388608 bytes. For simplicity, assume
the array is aligned on a page boundary. Assume, also, that the array is not already in central storage.
The program references each element in the array in a forward direction (that is, in order of increasing
addresses) starting with the first element in the array.

Figure 89. Example of using REFPAT with a Large Array

First, consider how the system brings data into central storage without using the information REFPAT
provides. At the first reference of the array, the system takes a page fault and brings into central storage
the page (of 4096 bytes) that contains the first element. After the program finishes processing the 512th
element (4096 divided by 8) in the array, the system takes another page fault and brings in a second page.
To provide the data for this program, the system takes two page faults for each row. The following linear
representation shows the elements in the array and the page faults the system takes as the program
processes through the array.

322 z/OS: z/OS MVS Assembler Services Guide

By bringing in one page at a time, the system takes 2048 page faults (8388608 divided by 4096), each
page fault adding to the elapsed time of the program.

Suppose, through REFPAT, the system knew in advance that a program would be using the array in a
consistently forward direction. The system could then assume that the program's use of the pages of
the array would be sequential. To decrease the number of page faults, each time the program requested
data that was not in central storage, the system could bring in more than one page at a time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into central storage on
each page fault. In this case, the system takes not 2048 page faults, but 103 (8388608 divided by
81920=102.4). Page faults occur in the array as follows:

The system brings in successive pages only to the end of the array.

Consider another way of referencing this same array. The program references the first twenty elements in
each row, then skips over the last 1004 elements, and so forth through the array. REFPAT allows you to
tell the system to bring in only the pages that contain the data in the first 20 columns of the array, and not
the pages that contain only data in columns 21 through 1024. In this case, the reference pattern includes
a repeating gap of 8032 bytes (1004×8) every 8192 bytes (1024×8). The pattern looks like this:

The grouping of consecutive bytes that the program references is called a reference unit. The grouping
of consecutive bytes that the program skips over is called a gap. Reference units and gaps alternate
throughout the data area. The reference pattern is as follows:

• The reference unit is 20 elements in size — 160 consecutive bytes that the program references.
• The gap is 1004 elements in size — 8032 consecutive bytes that the program skips over.

Figure 90 on page 324 illustrates this reference pattern and shows the pages that the system does not
bring into central storage.

What pages does the system bring in when a gap exists?
When no gap exists, the system brings into central storage all the pages that contain the data in the
range you specify on REFPAT. When there is a gap, the answer depends on the size of the gap, the size
of the reference unit, and the alignment of reference units and gaps on page boundaries. The following
examples illustrate those factors.

Example 1: The following illustration shows the 1024-by-1024 array of eight-byte elements, where
the program references the first 20 elements in each row and skips over the next 1004 elements.
The reference pattern, therefore, includes a reference unit of 160 bytes and a gap of 8032 bytes. The
reference units begin on every other page boundary.

Chapter 19. Processor storage management 323

Figure 90. Illustration of a Reference Pattern with a Gap

Every other page of the data does not come into central storage; those pages contain only the "skipped
over" data.

Example 2: The reference pattern includes a reference unit of 4800 bytes and a gap of 3392 bytes. The
example assumes that the area to be referenced starts on a page boundary.

Because each page contains data that the program references, the system brings in all pages.

Example 3: The area to be referenced does not begin on a page boundary. The reference pattern includes
a reference unit of 2000 bytes and a gap of 5000 bytes. Because the reference pattern includes a gap, the
first byte of the reference pattern must begin a reference unit, as the following illustration shows:

Because the gap is larger than 4095 bytes, some pages do not come into central storage. Notice that the
system does not bring in the fifth page.

Summary of how the size of the gap affects the pages the system brings into central storage:

• If the gap is less than 4096 bytes, the system has to bring into central storage all pages of the array.
(See Example 2.)

• If the gap is greater than 4095 bytes and less than 8192, the system might not have to bring in certain
pages. Pages that contain only data in the gap are not brought in. (See Examples 1 and 3.)

• If the gap is greater than 8191 bytes, the system definitely does not have to bring in certain pages that
contain the gap.

Using the REFPAT macro
On the REFPAT macro, you tell the system:

• The starting and ending addresses of the data area to be referenced
• The reference pattern
• The number of reference units the system is to bring into central storage on a page fault.

324 z/OS: z/OS MVS Assembler Services Guide

Specify the reference pattern carefully on REFPAT. If you identify a pattern and do not adhere to it, the
system will have to work harder than if you had not issued the macro. “Defining the reference pattern” on
page 326 can help you define the reference pattern.

The system will not process the REFPAT macro unless the values you specify can result in a performance
gain for your program. To make sure the system processes the macro, ask the system to bring in more
than three pages (that is, 12288 bytes) on each page fault. “Choosing the number of bytes on a page
fault” on page 327 can help you meet that requirement.

Identifying the data area and direction of reference
On the PSTART and PEND parameters, you specify the starting and ending addresses of the area to
be referenced. If the reference is in a backward direction, the ending address will be smaller than the
starting address.

PSTART identifies the first byte of the data area that the program references with the defined pattern;
PEND identifies the last byte.

When a gap exists, define PSTART and PEND according to the following rules:

• If direction is forward, PSTART must be the first byte (low-address end) of a reference unit; PEND can be
any part of a reference unit or a gap.

• If direction is backward, PSTART must be the last byte (high-address end) of a reference unit; PEND can
be any part of a reference unit or a gap.

Figure 91 on page 325 illustrates a reference pattern that includes a reference unit of 2000 bytes and a
gap of 5000 bytes. When direction is forward, PSTART must be the beginning of a reference unit. PEND
can be any part of a gap or reference unit.

Figure 91. Illustration of Forward Direction in a Reference Pattern

Figure 92 on page 325 illustrates the same reference pattern and the same area; however, the direction is
backward. Therefore, PSTART must be the last byte of a reference unit and PEND can be any part of a gap
or reference unit.

Figure 92. Illustration of Backward Direction in a Reference Pattern

If the data area is in a data space, use the STOKEN parameter to identify the data space. You received the
STOKEN of the data space from another program or from the DSPSERV macro when you created the data
space. STOKEN=0, the default, tells the system that the data is in the primary address space.

Chapter 19. Processor storage management 325

Defining the reference pattern
This information assumes that your program's reference pattern meets the basic requirement of
consistent direction. Figure 93 on page 326 identifies tw o reference patterns that characterize most
of the reference patterns that REFPAT applies to. The marks on the line indicate referenced elements.

Figure 93. Two Typical Reference Patterns

How you define the reference pattern depends on whether your program's reference pattern is like
Pattern #1 or Pattern #2.

• With Pattern #1 where no uniform gap exists, the program uses every element, every other element,
or at least most elements on each page of array data. No definable gap exists. Do not use REFPAT if the
reference pattern is irregular and includes skipping over many areas larger than a page.

– The UNITSIZE parameter alone identifies the reference pattern. (Either omit the GAP parameter or
take the default, GAP=0.) UNITSIZE indicates the number of bytes you want the system to use as a
reference unit. Look at logical groupings of bytes, such as one row, a number of rows, or one element,
if the elements are large in size. Or, you might choose to divide up the total area, bringing in all the
data on a certain number of page faults.

– The UNITS parameter tells the system how many reference units to try to bring in on a page fault.
For a reference pattern that begins on a page boundary and has no gap, the total number of bytes
the system tries to bring into central storage at a time is the value on UNITSIZE times the number
on UNITS, rounded up to the nearest multiple of 4096. See “Choosing the number of bytes on a page
fault” on page 327 for more information on how to choose the total number of bytes.

• With Pattern #2 where a uniform gap exists, you tell the system the sizes of reference units and gaps.

– UNITSIZE and GAP parameters identify the reference pattern. Pattern #2 in Figure 93 on page 326
includes a reference unit of 20 bytes and a gap of 5000 bytes. Because the gap is greater than 4095,
some pages of the array might not come into central storage.

– The UNITS parameter tells the system how many reference units to try to bring into central storage
at a time. “What pages does the system bring in when a gap exists?” on page 323 can help you
understand how many bytes come into central storage at one time.

Although the system brings in pages 4096 bytes at a time, you do not have to specify GAP, UNITS, and
UNITSIZE values in increments of 4096.

326 z/OS: z/OS MVS Assembler Services Guide

Choosing the number of bytes on a page fault
An important consideration in using REFPAT is how many bytes to ask the system to bring in on a
page fault. To determine this, you need to understand some factors that affect the performance of your
program.

Pages do not stay in central storage if they are not referenced frequently enough and other programs need
that central storage. The longer it takes for a program to begin referencing a page in central storage, the
greater the chance that the page has been moved out to auxiliary storage before being referenced. When
you tell the system how many bytes it should try to bring into central at one time, you have to consider the
following:

1. Contention for central storage

Your program contends for central storage along with all other submitted jobs. The greater the size
of central storage, the more bytes you can ask the system to bring in on a page fault. The system
responds to REFPAT with as much of the data you request as possible, given the availability of central
storage.

2. Contention for processor time

Your program contends for the processor's attention along with all other submitted jobs. The more
competition, the less the processor can do for your program and the smaller the number of bytes you
should request.

3. The elapsed time of processing one page of your data

How long it takes a program to process a page depends on the number of references per page and the
elapsed time per reference. If your program uses only a small percentage of elements on a page and
references them only once or twice, the program completes its use of pages quickly. If the processing
of each referenced element includes processor-intensive operations or a time-intensive operation,
such as I/O, the time the program takes to process a page gets longer.

Conditions might vary between the peak activity of the daytime period and the low activity of other
periods. For example, you might be able to request a greater number in the middle of the night than
during the day.

What if you specify too many bytes? What if you ask the system to bring in so many pages that, by the time
your program needs to use some of those pages, they have left central storage? The answer is that the
system will have to bring them in again. This action causes an extra page fault and extra system overhead
and reduces the benefit of reference pattern services.

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages, at a time. But, by the
time your program begins referencing the data on the 30th page, the system has moved that page and
the ones after it out of central storage. (It moved them out because the program did not use them soon
enough.) In this case, your program has lost the benefit of moving the last 21 pages in. Your program
would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system will take more page faults
than it needs to and you are not taking full advantage of reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (10 pages) at a time. Your program's
use of each page is not time-intensive, meaning that the program finishes using the pages quickly. The
program can request a number greater than 10 without causing additional page faults.

IBM recommends that you use one of the following approaches, depending on whether you want to
involve your system programmer in the decision.

• The first approach is the easier one. Choose a conservative number of bytes, around 81920 (20 pages),
and run the program. Look for an improvement in the elapsed time. If you like the results, you might
increase the number of bytes. If you continue to increase the number, at some point you will notice a
diminishing improvement or even an increase in elapsed time. Do not ask for so much that your program
or other programs suffer from degraded performance.

• A second approach is for the program that needs very significant performance improvements — those
programs that require amounts in excess of 50 pages. If you have such a program, you and your system

Chapter 19. Processor storage management 327

programmer must examine the program's elapsed time, paging speeds, and processor execution times.
In fact, the system programmer can tune the system with your program in mind and provide needed
paging resources. See z/OS MVS Initialization and Tuning Guide for information on tuning the system.

REFPAT affects movement of pages from auxiliary and your system programmer will need the kind of
information that the SMF Type 30 record provides. A Type 30 record reports counts of pages moved
(between expanded and central and between auxiliary and central) in anticipation of your program's
use of those pages. It also provides elapsed time values. Use this information to calculate rates of
movement in determining whether to specify a very large number of bytes — for example, an amount
greater than 204800 bytes (50 pages).

Examples of using REFPAT to define a reference pattern
To clarify the relationships between the UNITSIZE, UNITS, and GAP parameters, this information contains
three examples of defining a reference pattern. So that you can compare the three examples with what
the system does without information from REFPAT, the following REFPAT invocation approximates the
system's normal paging operation:

REFPAT INSTALL,PSTART=. . .,PEND=. . .,UNITSIZE=4096,GAP=0,UNITS=1

Each time the system takes a page fault, it brings in 4096 bytes, the system's reference unit. It brings in
one reference unit at a time.

Example 1: The program processes an array in a consistently forward direction from one reference unit
to the next. The processing of each element is fairly simple. The program runs during the peak hours
and many programs compete for processor time and central storage. A reasonable value to choose for
the number of bytes to be brought into central storage on a page fault might be 80000 bytes (around 20
pages). A logical grouping of bytes (the UNITSIZE parameter) is 4000 bytes. The following REFPAT macro
communicates this pattern to the system:

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=4000,GAP=0,UNITS=20

Example 2: The program performs the same process as in the first example, except the program
references few elements on each page. The program runs during the night hours when contention for
the processor and for central storage is light. In this case, a reasonable value to choose for the number of
bytes to come into central storage on a page fault might be 200000 bytes (around 50 pages). UNITSIZE
can be 4000 bytes and UNITS can be 500. The following REFPAT macro communicates this pattern:

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=4000,GAP=0,UNITS=500

Example 3: The program references in a consistently forward direction through the same large array as
in the second example. The pattern of reference includes a gap. The program references 8192 bytes,
then skips the next 4096 bytes, references the next 8192 bytes, skips the next 4096 bytes, and so forth
throughout the array. The program chooses to bring in data eight pages at a time. Because of the size of
the gap and the placement of reference units and gaps on page boundaries, the system does not bring in
the data in the gaps. The following illustration shows this reference pattern:

The following REFPAT macro reflects this reference pattern:

REFPAT INSTALL,PSTART=FIRSTB,PEND=LASTB,UNITSIZE=8192,GAP=4096,UNITS=4

where the system is to bring into central storage 32768 (4×8192) bytes on a page fault.

328 z/OS: z/OS MVS Assembler Services Guide

Removing the definition of the reference pattern
When a program is finished referencing the data area in the way you specified on the REFPAT INSTALL
macro, use REFPAT REMOVE to tell the system to return to normal paging. On the PSTART and PEND
parameters, you specify the same values that you specified on the PSTART and PEND parameters that
defined the reference pattern for the area. If you used the STOKEN parameter on REFPAT INSTALL, use it
on REFPAT REMOVE.

The following REFPAT invocation removes the reference pattern that was defined in Example 3 in
“Examples of using REFPAT to define a reference pattern” on page 328:

REFPAT REMOVE,PSTART=FIRSTB,PEND=LASTB

Chapter 19. Processor storage management 329

330 z/OS: z/OS MVS Assembler Services Guide

Chapter 20. Sharing data in virtual storage
(IARVSERV macro)

With the shared pages function, which is available through the IARVSERV macro, you can define virtual
storage areas through which data can be shared by programs within or between address spaces or data
spaces. Also, the type of storage access can be changed.

Sharing reduces the amount of processor storage required and the I/O necessary to support data
applications that require access to the same data. For example, IARVSERV provides a way for a program
running below 16 megabytes, in 24-bit addressing mode, to access data above 16 megabytes that it
shares with 31-bit mode programs. IARVSERV allows the sharing of data without the central storage
constraints and processor overhead of other existing methods of sharing data.

The sharing of data benefits many types of applications, because data is available to all sharing
applications with no increase in storage usage. This function is useful for applications in either a sysplex
environment or a single-system environment. Additionally, IARVSERV allows you to control whether a
sharing program:

• Has read access only
• Has both read and write access and receives updates immediately
• Can modify the data without modifying the original, and without allowing the sharing programs to view

the updates
• Can modify the original while sharing programs see the change, but without allowing the sharing

programs to change the data
• Can change the current storage access

An additional macro, IARR2V, is provided as an aid to converting central storage addresses to virtual
storage addresses. See “Converting a central to virtual storage address (IARR2V macro)” on page 338 for
information on the IARR2V macro.

The IARVSERV topics described in this chapter are:

• Understanding the concepts of sharing data with IARVSERV
• Storage you can use with IARVSERV
• Obtaining storage for the source and target
• Defining storage for sharing data and access
• Changing storage access
• How to share and unshare data
• Accessing data in a sharing group
• Example of sharing storage with IARVSERV
• Use with data-in-virtual (DIV macro)
• Diagnosing problems with shared data

For coding information about the IARVSERV and IARR2V macros, see z/OS MVS Programming: Assembler
Services Reference IAR-XCT.

Understanding the concepts of sharing data with IARVSERV
As you read this information, refer to Figure 94 on page 332 for an illustration of the sharing data through
the IARVSERV macro.

© Copyright IBM Corp. 1988, 2022 331

Figure 94. Data Sharing with IARVSERV

Suppose that Addr Space A contains data that is required by programs in Addr Space B. A program in Addr
Space A can use IARVSERV to define that data to be shared; that data and the storage it resides in are
called the source. The program also defines storage in Addr Space B to receive a copy of the source; that
storage and its copy of source data are called the target.

The source and its corresponding target form a sharing group. A sharing group can consist of several
target areas and one source. For example, suppose another program in Addr Space A defines a portion of
data1 (in Addr Space A) as source, and defines a target in Data Space X. That target becomes a member of
the sharing group established previously.

All sharing of data is done on a page (4K) basis. If the source page is already a member of an existing
sharing group, the target becomes a member of that existing sharing group. A page is called a sharing
page if it is a member of a sharing group.

Programs that access the source or targets are called sharing programs. Each sharing program accesses
the shared virtual storage as it would any other storage, and may not need to know that the storage
is being shared. So, you can allow programs to share data through IARVSERV without having to rewrite
existing programs.

Storage you can use with IARVSERV
You can share data in address spaces and data spaces. You can use any storage to which you have valid
access, except for a hiperspace, a VIO window, a V=R region, the PSA or the nucleus (read-only, extended
read-only, read-write and extended read-write areas).

The maximum number of shared pages for a program in problem state with PSW key 8-15 is 32, unless
this number is modified by your installation. This number includes both the source and targets, so the
actual number of unique pages is 16.

In order to expedite the return of all internal control blocks for the shared storage back to the system,
IBM recommends issuing IARVSERV UNSHARE against all views for both source and target that are
originally shared. For an example of how to code the UNSHARE parameter, see z/OS MVS Programming:
Assembler Services Reference IAR-XCT.

Obtaining storage for the source and target
Before you can issue IARVSERV to define storage as shared, you must obtain or create both the source
and target areas. For address space storage, use the GETMAIN or STORAGE macro; for data space
storage, use the DSPSERV macro. The source and target areas must be as follows:

• Start on a page boundary,

332 z/OS: z/OS MVS Assembler Services Guide

• Have the same storage protect key and fetch-protection status (except for
TARGET_VIEW=UNIQUEWRITE or TARGET_VIEW=LIKESOURCE and the source has UNIQUEWRITE
view),

• Meet one of the following requirements:

– Reside within pageable private storage of an address space.
– Reside within the valid size of an existing data space and be pageable storage.

The source and the target must be two different storage areas. They must be different virtual storage
addresses or reside in different address or data spaces.

Then initialize the source with data. Make sure any storage you obtain or data space you create can
be accessed by the intended sharing programs. For example, if you want to allow sharing programs to
both read and modify a target, the programs' PSW key value must match or override the target's storage
protection key. For information on data spaces, see Chapter 16, “Data spaces and hiperspaces,” on page
259.

Note: Do not allocate key 8 or key 9 storage in the common area because it can be read or written by any
program in any address space.

Defining storage for sharing data and access
With the IARVSERV macro, you can define multiple types of data sharing and access. As you read this
information, use Figure 94 on page 332 to see how each IARVSERV parameter acts on the current state
of the data. Each type of data sharing access is called a specific view of the source data. A view is the
way your program accesses, or sees, the data. You define the view in the TARGET_VIEW parameter on
IARVSERV, by specifying one of the following:

• Read-only view (READONLY value) — where the target data may not be modified.
• Shared-write view (SHAREDWRITE value) — where the target data can be read and modified through the

view.
• Copy-on-write view (UNIQUEWRITE value) — where the source data modifications are not seen by other

source - sharing programs. Any attempt to modify the shared source data in this view causes MVS to
create a unique target copy of the affected page for that address or data space.

An example of two different cases:

– If the shared data is modified through a SHAREDWRITE view, the UNIQUEWRITE view gets an
unmodified copy of the data. Any remaining views sharing that data see the modified data.

– If the shared data is modified through a UNIQUEWRITE view, the UNIQUEWRITE view gets the
modified copy of the data. Any remaining views sharing that data see the unmodified data.

• Copy-on-write target view (TARGETWRITE value) — where the target data may be read and modified
through the source view. Any modification of a shared target page causes MVS to create a unique target
copy of the affected page for that address or data space.

An example for two different cases:

– If the shared data is modified through a SHAREDWRITE view, the TARGETWRITE view sees the
modified data.

– If the shared data is modified through a TARGETWRITE view, the TARGETWRITE view sees the
modified copy of the data. Any remaining views sharing that data see the unmodified data.

• Like source view (LIKESOURCE value) — where the target data is given the current view type of the
source data. If the source data is currently not shared, then its current storage attribute is given to the
target.

• Hidden view (HIDDEN value) — where the target will share the source data, but any attempt to access
the target data (HIDDEN value) will cause a program check. To access the target, the view type must be
changed to READONLY, SHAREDWRITE, UNIQUEWRITE, or TARGETWRITE.

When you specify a value for TARGET_VIEW, keep the following in mind:

Chapter 20. Sharing data in virtual storage (IARVSERV macro) 333

• The execution key (PSW key) of the caller must be sufficient for altering the target area. If
TARGET_VIEW=SHAREDWRITE is specified, the execution key must be sufficient for altering the source
area also.

• For TARGET_VIEW=UNIQUEWRITE, if the input source area is address space storage, and the storage
has not been obtained by GETMAIN or STORAGE OBTAIN, or the storage and fetch protect keys do not
match, then the SHARE is not performed for that area. The target will be all zeros (first reference), or it
will remain as pages that were not obtained by GETMAIN.

• For target views created with LIKESOURCE on IARVSERV SHARE, the system propagates explicit page
protection from the source to the target view.

• Page-fixed pages and DREF pages cannot be made TARGETWRITE, UNIQUEWRITE, or HIDDEN.

Changing storage access
With the IARVSERV macro, the SHARE and CHANGEACCESS parameters can change the views type of
storage access. For SHARE, the current storage attribute of the source data affects the outcome of the
target. Table 31 on page 334 shows the permitted target views for different combinations with the source.
A NO in the table means that an abend will occur if you request that target view with the current source
view. For CHANGEACCESS, all combinations are permitted.

Table 31. Allowed Source/Target View Combinations for Share

Current Requested Target View

Source View READONLY SHAREDWRITE UNIQUEWRITE TARGETWRITE HIDDEN LIKESOURCE

READONLY Yes No Yes Yes Yes Yes

SHAREDWRITE Yes Yes Yes Yes Yes Yes

UNIQUEWRITE Yes Yes Yes Yes Yes Yes

TARGETWRITE No No Yes No No Yes

HIDDEN (Shared) No No No No No Yes

Non-Shared Yes Yes Yes Yes Yes Yes

HIDDEN (Non-Shared) No No No No No Yes

The following apply when using IARVSERV SHARE when changing storage access:

• For source views to be either UNIQUEWRITE or TARGETWRITE, the processor must have the
Suppression-On-Protection (SOP) hardware feature, and a previous IARVSERV SHARE must have
created a view of UNIQUEWRITE or TARGETWRITE.

• For target views to be TARGETWRITE, the processor must have the SOP hardware feature. If a request is
made to create a TARGETWRITE view and the SOP feature is not installed, the request fails with a return
code of 8.

• For target views to be UNIQUEWRITE, the SOP hardware feature must be installed. Also, the request
must not specify COPYNOW. If the request specifies COPYNOW, or the SOP feature is not installed, a
UNIQUEWRITE view is not established, and a separate copy of the data is made.

• For target views created with LIKESOURCE on IARVSERV SHARE, the system propagates explicit page
protection from the source to the target view.

• For source pages that are not shared, if the page is page-protected, the view created for that page
is a SHAREDWRITE view, but the view is flagged as an explicitly protected view (one that cannot be
modified).

The following apply when changing the storage access with IARVSERV CHANGEACCESS:

• To remove hidden status, you must use an IARVSERV CHANGEACCESS, FREEMAIN, or DSPSERV
DELETE macro.

• To remove explicit read-only protection status, you must use an IARVSERV CHANGEACCESS,
FREEMAIN, DSPSERV DELETE, or PGSER UNPROTECT macro.

334 z/OS: z/OS MVS Assembler Services Guide

• If a hidden page is hidden because of loss of access to 'mapped' data (such as through DIV UNMAP),
and, if the page is changed from hidden, the data in the page might be lost.

• Hidden pages cannot be released via a PGSER RELEASE or DSPSERV RELEASE macro. An attempt would
result in an abend with the same reason code as is used for protected pages.

• Issuing an IARVSERV UNSHARE macro for the original mapped page causes the data to be retained for
that page. The data for the other sharing pages is lost. References to hidden pages cause an X'0C4'
abend, and references to lost pages cause in a X'028' abend.

• Page-fixed pages and DREF pages cannot be made TARGETWRITE, UNIQUEWRITE, or HIDDEN.

How to share and unshare data
With the IARVSERV macro, use the SHARE parameter to initiate sharing of data; use the UNSHARE
parameter to end sharing for the issuing program. This information discusses the additional IARVSERV
parameters that you can specify with SHARE or UNSHARE.

The RANGLIST parameter is always required for both SHARE and UNSHARE. It gives IARVSERV
information about the source and target addresses. The RANGLIST value is actually the address of the
list of addresses you must create using the mapping macro IARVRL. For the details of IARVRL, see z/OS
MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary). The following table lists the required IARVRL fields that you must supply for SHARE
or UNSHARE.

IARVRL Fields That You Must Initialize for
SHARE

IARVRL Fields That You Must Initialize for
UNSHARE

VRLSVSA
VRLSSTKN (for STOKEN)
VRLSALET (for ALET)
VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTALET (for ALET)

VRLNUMPG
VRLTVSA
VRLTSTKN (for STOKEN)
VRLTAKET (for ALET)

For IARVSERV SHARE, if the target area contains pages that belong to an existing sharing group, MVS
performs an implicit UNSHARE to pull those pages out of the existing sharing group before proceeding.
Also, MVS automatically performs an UNSHARE on any sharing page when the page is being freed by
FREEMAIN, STORAGE RELEASE, or DSPSERV DELETE, or when the page's address space is ended.

Also, when MVS finds that one page of a range is not acceptable for sharing, MVS will not complete the
SHARE request for that page, nor the rest of the range or ranges not already processed. You can assume
that all pages up to that point were processed successfully. An abend will be issued and GPR 2 and 3 will
contain the address range list associated with the error page and the storage address of the page in error,
respectively. To remove the SHARE on the successful pages, issue IARVSERV UNSHARE for the storage
ranges up to, but excluding, the error page.

The parameter TARGET_VIEW is required with SHARE only, to tell IARVSERV how you plan to share the
data contained in the source. You have three choices described in “Defining storage for sharing data and
access” on page 333.

• READONLY does not allow any program accessing the target area to write to it. An abend results if a
program attempts to write to a READONLY target.

• SHAREDWRITE allows any sharing program to write to the target. All those sharing the target area
instantly receive the updates. This view could be very useful as a communication method for programs.

• UNIQUEWRITE has the property of copy-on-write, which means that MVS creates a copy of a page for
the updating program once the program writes to that page. The only program that has the change is the
program that changed it; all others continue to use the original page unmodified. This is true whether
the program writes to a source or target page.

Chapter 20. Sharing data in virtual storage (IARVSERV macro) 335

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

A copy-on-write hardware facility is provided for additional performance improvement. If you need to
determine if your processor has the feature, you can use the CVT mapping macro, and test the CVTSOPF
bit. For details on the CVT mapping macro, see z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

RETAIN is a parameter available only with UNSHARE. RETAIN=NO requests that MVS remove the target
from sharing. The target data is lost. RETAIN=YES requests that MVS leave the data in the target
untouched.

Accessing data in a sharing group
Data is accessed in a sharing group just as it would be if sharing did not exist. Trying to write to a
READONLY view will cause an abend.

You can create a sharing group that permits programs in 24-bit addressing mode to access data above 16
megabytes. To do this, you would define the source in storage above 16 megabytes, and obtain a target in
storage below 16 megabytes. Then initialize the source with data, so programs in 24-bit mode can share
the data through the target.

Example of sharing storage with IARVSERV
Suppose you are updating a program called PGMA, that controls all the account deposits for a savings
bank. Your program must work with two older programs that are complex and do not have source code
available. The first program, called SUBPGMA, was updated six years ago and runs in 31-bit addressing
mode; it records deposits in money market accounts. It cannot use data spaces. The other program,
SUBPGMB, is much older and records deposits in standard savings accounts. It runs in 24-bit addressing
mode. See Figure 95 on page 337 for a representation of the storage.

Program PGMA, the main program, was written to keep all of its data in one large data space. PGMA
must continually obtain appropriate storage in the address space that is addressed by SUBPGMA and
SUBPGMB. After SUBPGMA and SUBPGMB finish, PGMA must copy all the updated data back to the data
space. This is degrading performance and needs to be fixed. By using IARVSERV, you can eliminate the
copying, and reduce the complexity of PGMA.

Your update to PGMA would cause the programs to work together this way:

1. PGMA creates a data space and initializes it with data.
2. Before PGMA calls SUBPGMA to do a money market deposit, PGMA issues GETMAIN for storage in the

private area for a buffer. This buffer is BUFFER31.
3. PGMA issues IARVSERV SHARE to share the source in the data space with the target, BUFFER31. Use

TARGET_VIEW=SHAREDWRITE so updates can be made directly into the data space.
4. PGMA now calls SUBPGMA to update the data, passing the address of BUFFER31 as the area to be

updated.
5. Once SUBPGMA updates the data in BUFFER31, PGMA issues IARVSERV UNSHARE followed by

FREEMAIN to release the storage.
6. When PGMA needs to call SUBPGMB to do a savings account deposit, the only difference is that PGMA

must obtain storage below 16 megabytes for the buffer. This buffer is BUFFER24.
7. PGMA again issues IARVSERV SHARE with TARGET_VIEW=SHAREDWRITE, but identifies the target as

BUFFER24.
8. PGMA calls SUBPGMB to update the data, passing the address of BUFFER24 as the area to be

updated.
9. Once SUBPGMB updates the data in BUFFER24, PGMA issues IARVSERV UNSHARE and FREEMAIN to

release the storage as before.

Note that all three programs could share the data in the data space at the same time. Sharing continues
until PGMA issues IARVSERV UNSHARE for that buffer area.

336 z/OS: z/OS MVS Assembler Services Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Figure 95. Sharing Storage with IARVSERV

Use with data-in-virtual (DIV macro)
There are several restrictions for programs that use data-in-virtual MAP service with data shared using
the IARVSERV SHARE service:

• A sharing page must reside in non-swappable storage and have a SHAREDWRITE view mode.
• Only one member of a sharing group can be mapped. Any attempt to map another member of the same

sharing group results in a X'08B' abend.
• You cannot use the IARVSERV macro to share data mapped to a hiperspace object.
• You cannot map a sharing page whose sharing group contains a page that is currently a fixed or disabled

reference page.
• If the owning address space of a sharing page that was mapped by DIV MAP terminates prior to a DIV

UNMAP, the data is lost. Any further reference to the shared data results in a X'028' abend.

There are also restrictions for programs that use the data-in-virtual UNMAP function.

If a sharing page is currently mapped, and the owner of the map issues DIV UNMAP with RETAIN for that
page, the value of RETAIN affects all sharing group members as follows:

• For RETAIN=NO, all pages of the target become unpredictable in content.
• For RETAIN=YES, all pages of the target get the data as it last appeared within the sharing page. This

can be useful for saving an instance of data, such as a check point. Use of RETAIN=YES can affect
performance if it consumes large amounts of central storage by repeated retaining of the storage.

Diagnosing problems with shared data
You can use IPCS reports to see how data is being shared through IARVSERV. The IPCS RSMDATA
subcommand with the SHRDATA parameter provides a detailed report on the status of IARVSERV data
sharing. The following RSMDATA reports also provide shared data information: ADDRSPACE, EXPFRAME,
REALFRAME, RSMREQ, SUMMARY, and VIRTPAGE. See z/OS MVS IPCS Commands for more information
about the SHRDATA subcommand.

You may also collect information about data shared through IARVSERV by issuing the DISPLAY command,
and by specifying certain optional parameters on the IARR2V macro. See z/OS MVS System Commands
and “Converting a central to virtual storage address (IARR2V macro)” on page 338 for more information.

Chapter 20. Sharing data in virtual storage (IARVSERV macro) 337

Converting a central to virtual storage address (IARR2V macro)
The IARR2V macro provides a simple method to obtain a virtual storage address from a central storage
address. This conversion can be useful, for example, when you are working with an I/O or diagnostic
program that provides central storage addresses, but you want to use virtual storage addresses.

The details of the syntax and parameters of IARR2V are in z/OS MVS Programming: Assembler Services
Reference IAR-XCT. In its simplest form, the IARR2V macro requires only the RSA parameter. The RSA
parameter specifies the central storage address that you want to convert.

The system returns the virtual storage address in a register or in a storage location you specify through
the VSA parameter. Also, you can request the system to return the ASID or STOKEN of the address space
or data space associated with the address.

If you require knowledge of whether the central storage address you have is being shared through
the IARVSERV macro, you can get that information using the WORKREG, NUMVIEW, and NUMVALID
parameters. To use the NUMVIEW and NUMVALID parameters, you must use the WORKREG parameter
to specify the work register for the system to use. The NUMVIEW parameter requests the total number
of pages sharing the view of your central storage address. NUMVALID requests the number of pages
currently addressable (accessed), which is called the number of valid views. With NUMVIEW and
NUMVALID, you can check how effectively programs are using shared storage. Pages that are not
accessed have not been read or updated by any program.

338 z/OS: z/OS MVS Assembler Services Guide

Chapter 21. Timing and communication

This chapter describes timing services and communication services. Use timing services to determine
whether the basic or extended time-of-day (TOD) clock is synchronized with an External Time Reference
hardware facility (ETR2), obtain the present date and time, convert date and time information to various
formats, or for interval timing. Interval timing lets you set a time interval, test how much time is left in the
interval, or cancel the interval. Use communication services to send messages to the system operator, to
TSO/E terminals, and to the system log.

Checking for timer synchronization
Several processors can share work in a data processing complex. Each of these processors has access to
a TOD clock. Thus, when work is shared among different processors, multiple TOD clocks can be involved.
However, these clocks might not be synchronized with one another. The External Time Reference (ETR) is
a single external time source that can synchronize the TOD clocks of all processors in a complex.

For programs that are dependent upon synchronized TOD clocks in a multi-system environment, it is
important that the clocks are in ETR synchronization. Use the STCKSYNC macro to obtain the TOD
clock contents and determine if the clock is synchronized with an ETR. STCKSYNC also provides an
optional parameter, ETRID, that returns the ID of the ETR source with which the TOD clock is currently
synchronized.

Note: IBM recommends the use of the STCKSYNC macro instead of the STCK instruction for all multi-
system programs that are dependent upon synchronized clocks.

Obtaining time of day and date
When an ETR is used, the time of day and date are set automatically at system initialization. In other
configurations, the operator is responsible for initially supplying the correct time of day and date in terms
of a 24-hour clock.

You can use the TIME macro to obtain the time of day and date for programs that require this information.
If you specify ZONE=UTC or GMT with TIME, the returned time of day and date will be for Universal
Coordinated Time. If you specify ZONE=LT or omit the ZONE parameter, the TIME macro returns the local
time of day and date. However, if you specify STCK or STCKE, the ZONE parameter has no meaning. When
you specify LINKAGE=SYSTEM with the TIME macro, you can select the format for the returned date by
using the DATETYPE parameter.

All references to time of day use the time-of-day (TOD) clock, either the basic format (unsigned 64-
bit binary number) or the extended format (unsigned 128-bit binary number). The TOD clock runs
continuously while the power is on, and the clock is not affected by system-stop conditions. Normally,
the clock is reset only when an interruption of processor power has caused the clock to stop, and
restoration of power has restarted the clock at a later time. When an ETR is used, the clock reset happens
automatically; in other configurations, the operator resets the clock. (For more information about the TOD
clock, see Principles of Operation.)

Converting between time of day and date and TOD clock formats
You can use the STCKCONV macro to convert a TOD clock value to time of day and date, specifying the
format in which the information will be returned. This conversion is useful, for example, for producing a
report that requires the time and date to be printed in a certain format.

You can use the CONVTOD macro to convert a time of day and date value to TOD or ETOD clock format.
The macro accepts a time of day and date value in any of the formats returned by the STCKCONV and
TIME macros, and converts that value to either TOD clock format.

2 External time reference (ETR) is the MVS generic name for the IBM Sysplex Timer.

© Copyright IBM Corp. 1988, 2022 339

It is recommended that you begin to convert your applications to using the ETOD format. The extended
time-of-day format was required both to address the time wrapping problem that would occur in the
year 2042 and also to provide inproved resolution necessary for the faster processors as they become
available.

Note that if you request ETOD information and your processor is not configured with the 128-bit
extended time-of-day clock, timer services will return the contents of the 64-bit TOD and will simulate
the remaining 64 bits of the ETOD. Conversely, if you request TOD information and your processor is
configured with the extended time-of-day clock, timer services will return only that portion of the 128-bit
ETOD that corresponds to the 64-bit TOD.

Interval timing
Time intervals can be established for any task in the job step through the use of the STIMER or STIMERM
SET macros. The time remaining in an interval established via the STIMER macro can be tested or
cancelled through the use of TTIMER macro. The time remaining in an interval established via the
STIMERM SET macro can be cancelled or tested through the use of the STIMERM CANCEL or STIMERM
TEST macros.

The value of the CPU timer can be obtained by using the CPUTIMER macro. The CPU timer is used to track
task-related time intervals.

The TASK, REAL, or WAIT parameters of the STIMER macro and the WAIT=YES|NO parameter of the
STIMERM SET macro specify the manner in which the time interval is to be decreased. REAL and WAIT
indicate the interval is to be decreased continuously, whether the associated task is active or not. TASK
indicates the interval is to be decreased only when the associated task is active. STIMERM SET can
establish real time intervals only.

If REAL or TASK is specified on STIMER or WAIT=NO is specified on STIMERM SET, the task continues to
compete with the other ready tasks for control; if WAIT is specified on STIMER, or WAIT=YES is specified
on STIMERM SET, the task is placed in a WAIT condition until the interval expires, at which time the task is
placed in the ready condition.

When TASK or REAL is specified on STIMER or WAIT=NO is specified on STIMERM SET, the address of an
asynchronous timer completion exit routine can also be specified. This routine is given control sometime
after the time interval completes. The delay is dependent on the system's work load and the relative
dispatching priority of the associated task. If an exit routine is not specified, there is no notification of the
completion of the time interval. The exit routine must be in virtual storage when specified, must save and
restore registers as well as return control to the address in register 14.

Timing services does not serialize the use of asynchronous timer completion routines.

When you cancel a timer request that specified a timer exit:

1. Specify the TU or MIC parameters to determine whether the cancel operation was successful. If the
STIMERM or TTIMER macro returns a value of zero to the storage area designated by TU or MIC, then
the asynchronous timer completion exit routine has run or will run because its interval expired before
the cancel operation completed.

2. It is your responsibility to set up a program to determine whether the timer exit has run; you can have
the exit set an indicator to tell you that it has run.

If the STIMERM or TTIMER macro returns a non-zero value to the storage area designated by TU or MIC,
then the time interval was cancelled and the asynchronous exit will not run.

Figure 96 on page 341 shows the use of a time interval when testing a new loop in a program. The
STIMER macro sets a time interval of 5.12 seconds, which is to be decreased only when the task is active,
and provides the address of a routine called FIXUP to be given control when the time interval expires. The
loop is controlled by a BXLE instruction.

340 z/OS: z/OS MVS Assembler Services Guide

 .
 .
 STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP ...
 TM TIMEXP,X'01' Test if FIXUP routine entered
 BC 1,NG Go out of loop if time interval expired
 BXLE 12,6,LOOP If processing not complete, repeat loop
 TTIMER CANCEL If loop completes, cancel remaining time
 .
 .
NG ...
 .
 .
 USING FIXUP,15 Provide addressability
FIXUP SAVE (14,12) Save registers
 OI TIMEXP,X'01' Time interval expired, set switch in loop
 .
 .
 RETURN (14,12) Restore registers
 .
 .
TIME DC X'00000200' Timer is 5.12 seconds
TIMEXP DC X'00' Timer switch

Figure 96. Interval Processing

The loop continues as long as the value in register 12 is less than or equal to the value in register 6. If the
loop stops, the TTIMER macro causes any time remaining in the interval to be canceled; the exit routine
is not given control. If, however, the loop is still in effect when the time interval expires, control is given
to the exit routine FIXUP. The exit routine saves registers and turns on the switch tested in the loop. The
FIXUP routine could also print out a message indicating that the loop did not go to completion. Registers
are restored and control is returned to the control program. The control program returns control to the
main program and execution continues. When the switch is tested this time, the branch is taken out of the
loop. Caution should be used to prevent a timer exit routine from issuing an STIMER specifying the same
exit routine. An infinite loop may occur.

The priorities of other tasks in the system may also affect the accuracy of the time interval measurement.
If you code REAL or WAIT, the interval is decreased continuously and may expire when the task is not
active. (This is certain to happen when WAIT is coded.) After the time interval expires, assuming the
task is not in the wait condition for any other reason, the task is placed in the ready condition and then
competes for CPU time with the other tasks in the system that are also in the ready condition. The
additional time required before the task becomes active will then depend on the relative dispatching
priority of the task.

Obtaining accumulated processor time
The TIMEUSED macro enables you to record execution times and to measure performance. TIMEUSED
returns the amount of processor or vector time a task has used since being created (attached).

Example of measuring performance with the TIMEUSED macro
Use TIMEUSED to measure the efficiency of a routine or other piece of code. If you need to sort data,
you may now code several different sorting algorithms, and then test each one. The logic for a test of one
algorithm might look like this:

1. Issue TIMEUSED
2. Save old time
3. Run sort algorithm
4. Issue TIMEUSED
5. Save new time
6. Calculate time used (new time - old time)
7. Issue a WTO with the time used and the algorithm used.

Chapter 21. Timing and communication 341

After running this test scenario for all of the algorithms available, you can determine which algorithm has
the best performance.

Note: The processor time provided by TIMEUSED does not include any activity for execution in SRB mode
(such as I/O interrupt processing).

Writing and deleting messages (WTO, WTOR, DOM, and WTL)
The WTO and the WTOR macros allow you to write messages to the operator. The WTOR macro also
allows you to request a reply from the operator. The DOM macro allows you to delete a message that is
already written to the operator. Only standard, printable EBCDIC characters, shown in Table 32 on page
342, appear on the MCS console. All other characters are replaced by blanks. If the terminal does not
have dual-case capability, it prints lowercase characters as uppercase characters.

Table 32. Characters Printed or Displayed on an MCS Console

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

40 (space) 7B # 99 r D5 N

4A > 7C @ A2 s D6 O

4B . 7D ’ A3 t D7 P

4C < 7E = A4 u D8 Q

4D (7F " A5 v D9 R

4E + 81 a A6 w E2 S

4F | 83 c A8 y E4 U

50 & 84 d A9 z E5 V

5A ! 85 e C1 A E6 W

5B $ 86 f C2 B E7 X

5C * 87 g C3 C E8 Y

5D) 88 h C4 D E9 Z

5E ; 89 i C5 E F0 0

5F ¬ 91 j C6 F F1 1

60 - 92 k C7 G F2 2

61 / 93 l C8 H F3 3

6B , 94 m C9 I F4 4

6C % 95 n D1 J F5 5

6D — 96 o D2 K F6 6

6E > 97 p D3 L F7 7

342 z/OS: z/OS MVS Assembler Services Guide

Table 32. Characters Printed or Displayed on an MCS Console (continued)

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

Hex
Code

EBCDIC
Character

6F ? 98 q D4 M F8 8

7A : A7 x E3 T F9 9

82 b

Note:

1. If the display device or printer is managed by JES3, the following characters are also translated to
blanks:

 | ! ; ¬ : "
2. The system recognizes the following hexadecimal representations of the U.S. national characters: @

as X'7C'; $ as X'5B'; and # as X'7B'. In countries other than the U.S., the U.S. national characters
represented on terminal keyboards might generate a different hexadecimal representation and cause
an error. For example, in some countries the $ character generates a X'4A'.

There are two basic forms of the WTO macro: the single-line form, and the multiple-line form.

The following should be considered when issuing multiple-line WTO messages (MLWTO).

• By default, only the first line of a multiple-line WTO message is passed to the installation-written WTO
exit routine. The user exit can request to see all subsequent lines of a multi-line message.

• When a console switch takes place, unended multiple-line WTO messages and multiple-line WTO
messages in the process of being written to the original console are not moved to the new console.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for an explanation of the parameters
in the single-line and multiple-line forms of the WTO macro.

Routing the message
You can route a WTO or WTOR message to a console by specifying one or more of the following keywords:

• ROUTCDE to route messages by routing code.
• CONSID to route messages by console ID.
• CONSNAME to route messages by console name.
• MCSFLAG to route messages by message type.

The ROUTCDE parameter is able to specify the routing code or codes for a WTO or WTOR message.
The routing codes determine which console or consoles receive the message. Each code represents a
predetermined subset of the consoles that are attached to the system, and can display the message. The
installation must define which routing codes are being received by each console.

You can also use either the CONSID or CONSNAME parameter to route messages. These mutually
exclusive parameters specify a 4-byte field or register that contains the ID or the pointer to a name
of the console that is to receive the message. When you issue a WTO or WTOR macro that uses either the
CONSID or CONSNAME parameters with the ROUTCDE parameter, the message or messages go to all of
the consoles specified by both parameters.

The MCSFLAG parameter specifies various attributes of the message, such as whether the message is:

• For a particular console
• For all active consoles
• A command response
• For the hardcopy log.

Chapter 21. Timing and communication 343

Control is returned to the issuer with a return code of X‘20’ and a reason code in register 0. The reason
code is equal to the number of active WTO buffers for the issuer's address space. WTO processing can
place the WTP invocation in a wait state until WTO buffers are again available.

Note: For the convenience of the operator, you can associate messages with individual keynames. A
keyname consists of 1 to 8 alphanumeric characters, and it appears with the message on the console. The
keyname can be used as an operand in the DISPLAY R console command, which operators can issue at
the console. Use the KEY parameter on the WTO or WTOR macro for this purpose.

During system initialization, each operator's console in the system is assigned routing codes that
correspond to the functions that the installation wants that console to perform. When any of the routing
codes that are assigned that are assigned that are to a message match any of the routing codes to a
console, the message is sent that console.

Disposition of the message is indicated through the descriptor codes that are specified in the WTO macro.
Descriptor codes classify WTO messages so that they can be properly presented on, and deleted from,
display devices. The descriptor code is not printed or displayed as part of the message text.

If the nonauthorized problem program supplies a descriptor code in the WTO macro, an indicator is
inserted at the start of the message. The indicators are an at sign (@) or a blank followed by a plus sign
(+). The indicator that is inserted in the message depends on the descriptor code that the user supplies.
Table 33 on page 344 shows the indicator that is used for each descriptor code.

Table 33. Descriptor Code Indicators

Descriptor Code Non-Authorized
Problem Program

1 @

2 @

3-10 blank+

11 @

12-13 blank+

A critical eventual action is an action that the operator must perform, as soon as possible, in response to a
critical situation during the operation of the system. For example, if the memory dump data set is full, the
operator is notified to mount a new tape on a specific unit. This is considered a critical action because no
memory dumps can be taken until the tape is mounted. It is eventual rather than immediate because the
system continues to run and processes jobs that do not require memory dumps.

Action messages to the operator can be individually suppressed by the installation. When a program
starts WTO or WTOR to send a message, the system determines whether the message is to be
suppressed. If the message is to be suppressed, the system writes the message to the hardcopy log,
and the operator does not receive it on the screen. For more information on suppressing messages, see
Suppressing messages in z/OS MVS Planning: Operations.

If a program issues a message with descriptor code of 1 or 2, the message is deleted at address space
or task termination. For more information on routing and descriptor codes, see any of the volumes of MVS
System Messages.

If an application that uses WTO needs to alter a message each time the message is issued, the list form of
the WTO macro can be useful. You can alter the message area, which is referenced by the WTO parameter
list, before you issue the WTO. The message length, which appears in the WTO parameter list, does not
need to be altered if you pad out the message area with blanks.

A sample WTO macro is shown in Figure 97 on page 345.

344 z/OS: z/OS MVS Assembler Services Guide

Single-line WTO 'BREAKOFF POINT REACHED. TRACKING COMPLETED.',
format ROUTCDE=14,DESC=7

Multiple- WTO ('SUBROUTINES CALLED',C),
line format ('ROUTINE TIMES CALLED',L),('SUBQUER',D),
(list form) ('ENQUER',D),('WRITER',D),
 ('DQUER',DE),
 ROUTCDE=(2,14),DESC=(7,8,9),MF=L

Figure 97. Writing to the Operator

Altering message text
If an application that uses WTO needs to alter the same message or numerous messages repetitively,
using the TEXT parameter on the WTO macro may be useful. You can alter the message or messages in
one of two ways:

• If you issue 3 different messages, all with identical parameters other than TEXT, you can create a
list form of the macro, move the text into the list form, then execute the macro. Using the TEXT
parameter you can use the standard form of the macro, and specify the address of the message text. By
reducing the number of list and execute forms of the WTO macro in your code, you reduce the storage
requirements for your program.

• If you need to modify a parameter in message text, using the TEXT parameter enables you to modify
the parameter in the storage that you define in your program to contain the message text, rather than
modify the WTO parameter list.

Using the TEXT parameter on WTO can reduce your program's storage requirements because of fewer
lines of code or fewer list forms of the WTO macro.

To use the WTOR macro, code the message exactly as designated in the single-line WTO macro. (The
WTOR macro cannot be used to pass multiple-line messages.) When the message is written, the system
adds a message identifier before the message to associate the reply with the message. The system also
inserts an indicator as the first character of all WTOR messages, thereby informing the operator that
immediate action is required. You must, however, indicate the response desired. In addition, you must
supply the address of the area in which the system is to place the reply, and you must indicate the
maximum length of the expected reply. The length of the reply may not be zero. You also supply the
address of an event control block which the system posts after the reply has been placed, left-adjusted, in
your designated area.

You can also supply a command and response token, or CART, with any message. You may have received
a CART as input in cases where you issued a message in response to a command. In these cases, you
should specify this CART on any messages you issue. Using the CART guarantees that these messages are
associated with the command.

A sample WTOR macro is shown in Figure 98 on page 345. The reply is not necessarily available at the
address you specified until the specified ECB has been posted.

 .
 .
 XC ECBAD,ECBAD Clear ECB
 WTOR 'STANDARD OPERATING CONDITIONS? REPLY YES OR NO',
 REPLY,3,ECBAD,ROUTCDE=(1,15)
 WAIT ECB=ECBAD
 .
 .
ECBAD DC F'0' Event control block
REPLY DC C'bbb' Answer area

Figure 98. Writing to the Operator With a Reply

When a WTOR macro is issued, any console receiving the message has the authority to reply. The first
reply received by the system is returned to the issuer of the WTOR, providing the syntax of the reply is

Chapter 21. Timing and communication 345

correct. If the syntax of the reply is not correct, another reply is accepted. The WTOR is satisfied when the
system moves the reply into the issuer's reply area and posts the event control block. Each console that
received the original WTOR also receives the accepted reply unless it is a security message. A security
message is a WTO or WTOR message with routing code 9. No console receives the accepted reply to a
security message. A console with master authority may answer any WTOR, even if it did not receive the
original message.

Writing a multiple-line message
To write a multiple-line message to one or more operator consoles, issue WTO or WTOR with all lines of
text.

Embedding label lines in a multiple-line message
Label lines provide column headings in tabular displays. You can change the column headings used to
describe different sections of a tabular display by embedding label lines in the existing multiple-line WTO
message for a tabular display.

Note: You cannot use the WTO macro to embed label lines. The WTO macro handles label lines at the
beginning of the message only.

Communicating in a sysplex environment
The WTO macro allows applications to send messages to consoles within a sysplex, without having to be
aware that more than one system is up and running.

You can direct a WTO message to a specific console by specifying the console ID or name when issuing
the message. For example, you can use the CONSID or CONSNAME parameter on the WTO macro to
direct the WTO message to consoles defined by those parameters. If the console is not active anywhere
within the sysplex, the system writes the message to the system log unless it is an important information
message, an action message or WTOR message. An important information message is a WTO or WTOR
message with descriptor codes 1, 2, 3, 11, or 12. Action messages, messages with descriptor code 12,
and WTORs are written to the system log.

You can also broadcast WTOs to all active consoles using MCSFLAG=BRDCST on the WTO macro.
Unsolicited messages are directed by routing code, message level, and message type to the appropriate
consoles anywhere within the sysplex. There may be some unsolicited messages that will not be queued
to any console at a receiving system. In this case, all of the messages are written to the system log.

Writing to the programmer
The WTO and the WTOR macros allow you to write messages to a programmer who is logged onto a TSO/E
terminal, as well as to the operator. However, only the operator can reply to a WTOR message.

To write a message to the programmer, you must specify ROUTCDE=11 in the WTO or the WTOR macro.

Writing to the system log
The system log consists of one SYSOUT data set on which the communication between the operator and
the system is recorded. You can send a message to the system log by coding the information that you wish
to log in the "text" parameter of the WTL macro.

The WTO macro with the MCSFLAG=HRDCPY parameter also writes messages to the system log. Because
WTO allows you to supply more information on the macro invocation than WTL, IBM recommends that
you use WTO instead of WTL.

The system writes the text of your WTL macro on the master console instead of on the system log if the
system log is not active.

346 z/OS: z/OS MVS Assembler Services Guide

Although when using the WTL macro you code the message within apostrophes, the written message
does not contain the apostrophes. The message can include any character that is valid for the WTO macro
and is assembled and written the same way as the WTO macro.

Note: The exact format of the output of the WTL macro varies depending on the job entry system (JES2 or
JES3) that is being used, the output class that is assigned to the log at system initialization, and whether
DLOG is in effect for JES3. If JES3 DLOG is being used, system log entries are preceded by a prefix
that includes a time stamp and routing information. If the combined prefix and message exceeds 126
characters, the log entry is split at the first blank or comma encountered when scanning backward from
the 126th character of the combined prefix and message. See z/OS JES3 Commands for information about
the DLOG format of the log entry when using JES3.

Deleting messages already written
The DOM macro deletes the messages that were created using the WTO or WTOR macros. Depending
on the timing of a DOM macro relative to the WTO or WTOR, the message may or may not have already
appeared on the operator's console.

• When a message already exists on the operator screen, it has a format that indicates to the operator
whether the message still requires that some action be taken. When the operator responds to a
message, the message format changes to remind the operator that a response was already given. When
DOM deletes a message, it does not actually erase the message. It only changes its format, displaying it
like a non-action message.

• If the message is not yet on the screen, DOM deletes the message before it appears. The DOM
processing does not affect the logging action. That is, if the message is supposed to be logged, it
will be, regardless of when or if a DOM is issued. The message is logged in the format of a message that
is waiting for operator action.

The program that generates an action message is responsible for deleting that message. To delete a
message, identify the message by using the MSG, MSGLIST, or TOKEN parameters on the DOM macro, and
issue DOM.

When you issued WTO or WTOR to write the message, the system returned a message ID in general
purpose register 1. Use this ID as input on the MSG or MSGLIST parameters on the DOM macro. MSGLIST
(message list) associates several message IDs with the delete request. The number of message IDs in
the message list is defined by the COUNT parameter or it is defined by a 1 in the high-order bit position
of the last message ID in the list. The COUNT parameter cannot exceed 60. If you specified the TOKEN
parameter on WTO to generate your own message ID, use the same value on the TOKEN parameter on
DOM to delete that message.

Retrieving console information (CONVCON and CnzConv macros)
Programs that either process commands or issue messages might need information about MCS, SMCS or
extended MCS consoles. CONVCON and CnzConv obtain information about these consoles.

IBM recommends using the CnzConv macro to retrieve console information. The CONVCON service will no
longer be enhanced. Future enhancement will be provided only on the CnzConv service.

You can use both the CnzConv and CONVCON macros to do the following tasks:

• Obtain the console name associated with an input console ID.
• Obtain the console ID associated with an input console name.
• Obtain the status of a console (active or inactive) of an input console ID or name.
• Obtain the system name on which the queried console is active.

In addition to these tasks, you can use the CnzConv macro to obtain the following information, with an
input console ID or name:

• The console type (MCS, SMCS, EMCS, Subsystem, or Special).
• The console subtype (Internal, Instream, or Unknown. Applies to a console type of special only).

Chapter 21. Timing and communication 347

• The logical unit of an SMCS console.
• The owner name of a subsystem console.
• The ASID of a Subsystem console.

You must set up a parameter list before invoking the macros. Depending upon the information you want,
you must initialize certain fields in the parameter list, and the macros return information in other fields of
the parameter list. For more information on the CONVCON parameter list, which is mapped by IEZVG200,
see z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosInternetLibrary).

The following topics describe possible uses for the CnzConv and CONVCON macroS, and tell you how to
fill in the parameter list for each use. The parameter list values for both macros are discussed in z/OS MVS
Programming: Assembler Services Reference ABE-HSP.

Using console names instead of console IDs
Installation operators and programmers previously referred to MVS consoles only by console IDs. IBM
now requires that you use names when referring to MCS consoles. Using names can help operators and
programmers:

• Remember which console they want to reference in commands or programs. For example, if your
installation establishes one console to receive information about tapes, and uses the console name
TAPE, operators and programmers can more easily remember TAPE than a console ID such as 03.

• Connect information in messages and the hardcopy log to the correct console. If your installation
uses console IDs, operators and programmers might have difficulty identifying the console to which
messages and hardcopy log information applies, because the system uses console names in messages
and the hardcopy log.

Using console names rather than IDs can also avoid confusion when a console ID might change. If your
installation has set up a sysplex environment, and uses console IDs to identify consoles, those IDs can
change from one IPL to the next, or when systems are added or removed from the sysplex. A console ID is
not guaranteed to be associated with one console for the life of a sysplex.

Determining the name or ID of a console
You can use both CnzConv and CONVCON macros to determine the name or ID of a console.

Using CnzConv: To obtain the console ID for an input console name, do the following steps:

1. Clear the CnzConv parameter list by setting it to zeros.
2. Specify the following parameters:

• CnzConv InConsoleName=MyConsoleName
• OutConsoleId=OutConsoleId
• Rtncode=CnzConvReturnCode
• Rsncode=CnzConvReasonCode

3. Issue the CnzConv macro.

When CnzConvReturnCode is equal to CnzConvRc0_Ok, OutConsoleId contains the output console id.

To obtain the console name for an input console ID, do the following steps:

1. Clear the CnzConv parameter list by setting it to zeros.
2. Specify the following parameters:

• CnzConv InConsoleId=MyConsoleId
• OutConsoleName=OutConsoleName
• Rtncode=CnzConvReturnCode
• Rsncode=CnzConvReasonCode

348 z/OS: z/OS MVS Assembler Services Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

3. Issue the CnzConv macro.

When CnzConvReturnCode is equal to CnzConvRc0_Ok, OutConsoleName contains the output console
name.

Using CONVCON: To obtain the console ID for an input console name, do the following steps:

1. Clear the CONVCON parameter list by setting it to zeros.
2. Initialize the following fields in the parameter list:

• The version ID (CONVVRSN)
• The acronym (CONVACRO)
• The console ID (CONVID)
• The flag indicating that you are supplying the console ID (flag CONVPID in CONVFLGS)

3. Issue the CONVCON macro.

When CONVCON completes, the console name is in the parameter list field CONVNAME, and register 15
contains a return code.

To obtain the console name for an input console ID, do the following steps:

1. Clear the CONVCON parameter list by setting it to zeros.
2. Initialize the following fields in the parameter list:

• The version ID (CONVVRSN)
• The acronym (CONVACRO)
• The console name (CONVFLD)
• The flag bit indicating that you are supplying the console name (flag CONVPFLD in CONVFLGS)

If the console name in CONVFLD is less than 10 characters, pad the name with blanks.

The installation defines console names at initialization time in the CONSOLxx member of parmlib. You
can use the DISPLAY CONSOLES command to receive a list of defined names.

3. Issue the CONVCON macro.

When CONVCON completes, the console ID will be in the parameter field CONVID.

Validating a console name or ID and obtaining the active system name
Before issuing a message to a specific console, you might want to validate if it has been defined. An active
console is one that is defined and running. An application can use the CnzConv or CONVCON macro to
obtain the console status (active or inactive) and the active system name, with an input console name or
ID.

Using CnzConv: To obtain the console status and active system name of an input console name or ID, do
the following steps:

1. Clear the CnzConv parameter list by setting it to zeros.
2. Specify the following parameters:

• CnzConv InConsoleName=MyConsoleName or CnzConv InConsoleId=MyConsoleId, depending on
what information you currently have

• ConsoleStatus=OutConsoleStatus
• SysName=OutSysName
• Rtncode=CnzConvReturnCode
• Rsncode=CnzConvReasonCode

3. Issue the CONVCON macro.

Chapter 21. Timing and communication 349

When CnzConvReturnCode is equal to CnzConvRc0_Ok, the input console name or id is defined. If
OutConsoleStatus is equal to CnzConv_kStatus_Active, OutSysName contains the system on which the
console is active.

Using CONVCON: To obtain the console status and active system name of an input console name or ID, do
the following steps:

1. Clear the CONVCON parameter list by setting it to zeros.
2. Initialize the following fields in the parameter list:

• The version ID (CONVVRSN)
• The acronym (CONVACRO)
• Either the console name (CONVFLD) or the console ID (CONVID) depending on what information

you currently have. The installation defines console names at initialization time in the CONSOLxx
member of Parmlib. You can use the DISPLAY CONSOLES command to receive a list of defined
names.

• The appropriate flag in CONVFLGS indicating whether you are specifying the console name
(CONVPFLD) or the ID (CONVPID) as input.

3. Issue the CONVCON macro.

When CONVCON completes, CONVSYSN contains the name of the system to which the console is
attached, if the console you specified is active. Register 15 contains a return code. If you receive the
following return codes, check the reason code in CONVRSN for an explanation.

• Return code 0 indicates that the console name or ID is valid and the console is active.
• Return code 4 indicates that the name or ID is valid, but the console is not active.
• Return code 8 indicates that the console name is incorrect.
• Return code 0C indicates that the console ID is incorrect.

See z/OS MVS Programming: Assembler Services Reference ABE-HSP for an explanation of all return codes.

350 z/OS: z/OS MVS Assembler Services Guide

Chapter 22. Translating messages

The MVS message service (MMS) provides a method of translating message text, and provides a
convenient method of storing message text.

• MMS enables you to translate U.S. English messages into other languages. These messages can be
IBM-supplied messages or application messages. An application can format message text for any
language, including English, by issuing the TRANMSG macro.

• MMS enables you to store message text in MMS message files rather than in the application code. By
using MMS to store message text, you eliminate the need to include the message text as part of the
application code. Any program that needs to issue a particular message can get it from one place: a
run-time message file. A run-time message file contains messages in a format that MMS can use. You
can also update your messages in the install message files rather than in the source code. An install
message file is a partitioned data set (PDS) that contains message skeletons. A message skeleton
contains message text and substitution data.

Applications running on TSO/E can have their messages translated automatically if the primary language
associated with the TSO/E session is the same language as the language of the run-time message file. A
primary language is one that is defined in your TSO/E profile. Therefore, even if you are issuing messages
by using the WTO macro, you can present a message in the primary language associated with the TSO/E
session. If you are routing system messages to a TSO/E extended MCS console, and MMS is active, users
of extended MCS consoles on TSO/E can select available languages for message translation and the
system will display translated messages on the user's screen.

Applications based on products not already using MMS must translate their own messages by invoking the
TRANMSG macro.

MMS can handle multi-line and multiple format messages. Multi-line messages are messages displayed
over a number of lines on an output device. Multiple format messages are messages that have the same
message ID, but have differing text content depending on the circumstances under which they are issued.

Preparing IBM-supplied messages for translation: To prepare IBM messages for translation, perform the
following tasks:

1. Ensure that the appropriate IBM-supplied system install message files have been installed on your
system.

For MVS messages (MVS, JES2, TSO/E), IBM provides an install message file for U.S. English
messages. IBM will also supply Japanese versions of those messages, if requested. When you install
MVS, these messages are automatically put into install message files. The U.S. English file is called
SYS1.MSGENU.

2. Create a system run-time message file for each language by running the system's install message files
through the message compiler. See “Compiling message files” on page 357 for details on using the
compiler.

Preparing application messages for translation: To prepare an application's messages for translation,
perform the following tasks.

1. Create a PDS for the English version, and a PDS for the translated version of the application's
messages. To make it easy to locate and update messages, group messages for each program,
component, or other category into separate PDS members. These data sets are the application's install
message files. The logical record length of the data set should be variable length of 259, and the block
size 23476. IBM recommends that you put IBM messages first in a PDS concatenation. If you are not
translating IBM messages, you can still use the same recommended logical record length and block
size.

2. Validate the application's install message files by running each PDS through the message compiler.
See “Compiling message files” on page 357 for details on using the compiler. The MMS message

© Copyright IBM Corp. 1988, 2022 351

compiler replaces the entire run-time message file, so create a test run-time message file for each
language, using names different from those containing IBM-supplied messages. Creating a test run-
time message file enables you to verify the new messages without disturbing the existing system
run-time message files and current message translation.

3. After a clean compile, add your PDS members into the system's install message files as new members.
4. Update the system run-time message files by running the system's install message files through the

message compiler. See “Updating the system run-time message files” on page 360 for details on
updating the system run-time message files.

Figure 99 on page 352 illustrates the process of preparing messages for translation.

Figure 99. Preparing Messages for Translation

Translating application messages using the MVS message service: To use MMS in an application, modify
the application to exploit the translation service that MMS provides:

• Use the QRYLANG macro to determine which languages are currently available at your installation. For
more information on QRYLANG, see “Determining which languages are available (QRYLANG macro)” on
page 360.

• Use the TRANMSG macro to obtain from MMS the translated version or the complete U.S. English
message text of an application's message or messages. For more information on TRANMSG, see
“Retrieving translated messages (TRANMSG macro)” on page 361.

The installation can translate messages into more than one language. See “Support for additional
languages” on page 364.

352 z/OS: z/OS MVS Assembler Services Guide

Allocating data sets for an application
For an application whose messages will be translated, you must allocate a PDS for each language in which
the messages might appear. For example, if you want the messages to be available in both English and
Japanese, you must allocate two data sets: one to contain the English message skeletons, and one to
contain the Japanese.

See z/OS MVS JCL User's Guide and z/OS MVS JCL Reference for information about allocating data sets.

Creating install message files
Each install message file must contain a version record and one or more message skeletons, and may
contain any number of comment records throughout. The message compiler treats any record with the
characters ".*" in columns 1 and 2 as a comment line and ignores it.

Creating a version record
The version record must be the first non-comment record in each install message file, and have the format
shown in Table 34 on page 353. If you are translating MVS messages, you can use the contents of the
version record fields for informational purposes. If you are creating messages for an application program,
you need only to supply input to columns 1 through 6. Columns 7 through 38 can be blanks.

Table 34. Format of Version Record Fields

Columns Contents and Description

1 & 2 ".V" Identifies this record as a version record.

3-5 Three-character language code of the messages.

6 Character field containing a Y or N, indicating whether this language contains a double-byte
character set (DBCS).

7-14 Field maintenance identifier (FMID) applicable to the messages within the member, padded on
the right with blanks.

15-22 Product identifier applicable to the messages within the member, padded on the right with
blanks.

23-38 Service level applicable to the member, padded on the right with blanks.

The following is an example of a version record.

 .VENUNJBB44N1 5695-047005

Table 35 on page 353 explains the previous example of the version record.

Table 35. Version Record Example

Columns Example Description

1 & 2 .V Version record

3-5 ENU Three-character language code

6 N DBCS indicator

7-14 JBB44N1␢ FMID

15-22 5695-047 Product identifier

23-38 005 Service level information

Creating message skeletons
The rest of each install message file consists of message skeletons.

Chapter 22. Translating messages 353

Each message requires one or more message skeletons. A message skeleton consists of a message key
and message text, which can include substitution tokens. A message key consists of a message identifier,
format number, and line number.

Note: If the message skeleton you are creating contains a TIME, DATE, or DAY substitution token, the
format must be defined in the system configuration member, CNLcccxx, for the language. See z/OS MVS
Initialization and Tuning Reference for more information on these substitution tokens.

Message skeleton format
Each message skeleton must follow the column format shown in Table 36 on page 354.

Table 36. Message Skeleton Fields

Columns Contents and Description

1-10 Message identifier (msgid). A message identifier can be 1 to 10 characters long, padded with EBCDIC blanks, if
necessary, so that it totals ten characters. The first character must be alphabetic. A message identifier cannot
contain double-byte characters and cannot contain embedded blanks.

Ensure that the message identifiers for your application program messages do not conflict with existing MVS
message identifiers. To avoid conflict, do not begin a message identifier with the letters A through I.

Examples of message identifiers are:

• IKJ52301I
• IEF12345W
• HASP000
• IEF123I
• OLDMSGID

Note that MMS will remove the first character of any message identifier in the form xmsgid before processing, and
will replace it after processing. "x" is any character that is not uppercase alphabetic, such as $ or 1.

11 & 12 Line number (ll). If the message is a single-line message, leave columns 11 and 12 blank. For a multi-line message,
assign line numbers sequentially within the message. Line numbers do not have to be contiguous. Valid numbers
are 01 to 99.

Ensure that message line numbers for a translated skeleton match the line numbers of the corresponding U.S.
English message skeleton.

Note: Ensure that corresponding skeletons (same message identifier and line number) of multi-line messages
contain the same substitution tokens. For example, if substitution tokens &1. and &2=date. are on line 01 of
a two-line U.S. English message skeleton, these tokens must appear on line 01 of a translated skeleton. The
following is an example of a multi-line message skeleton:

MSGID01 01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
MSGID01 02 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
MSGID01 03 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

13-15 Format number (fff). If only one format is defined for a particular message identifier, leave columns 13-15 blank.

Use format numbers to maintain compatibility with existing messages. Using format numbers for new messages is
not recommended.

Format numbers distinguish among message skeletons that have one message identifier but have several different
text strings or substitution tokens. The message identifier alone cannot identify the message as unique in these
cases. The format number, together with the message identifier, identifies the message.

If more than one format is defined for a particular message identifier, assign a unique format number to each
skeleton for that message identifier. Valid numbers are 001 to 999. You do not have to assign the numbers
sequentially. Ensure that the format number in the translated skeleton matches the format number in the U.S.
English message skeleton.

Each message ID might have several format numbers if that message has variable text.

16 Blank (␢). Column 16 must contain an EBCDIC blank.

354 z/OS: z/OS MVS Assembler Services Guide

Table 36. Message Skeleton Fields (continued)

Columns Contents and Description

17 & 18 Translated line number (mm).

If one line of a U.S. English message translates into more than one line of text in another language, you must
provide additional lines for the translated version. Create one or more skeletons in the other language and assign a
translated line number to each translated line. Valid translated line numbers are 01 to 99.

Example:

IEFP0001 MAXIMUM PASSWORD ATTEMPTS BY SPECIAL
 USER &1. AT TERMINAL &2.

IEFP0001 01 LE USER SPECIALE &1. A TERMINAL &2.
 02 ONT ENTRER PASSWORD TROP DE TEMPS

You can also use translated line numbers for English message skeletons if your input to the TRANMSG macro is
an MPB (message parameter block). In this case, TRANMSG will return all message lines in English for a given
message ID.

If a line of a U.S. English message translates to only one line, leave the translated line number blank.

19 EBCDIC blank indicates no extended function.

One (1) indicates that this skeleton line is the start of a multi-line message and the next line contains a message ID
that is to be used to locate the correct message skeleton.

20 + Message text. See “Message text in a skeleton” on page 355

The following are examples of message skeletons.

msgid llfff␢mm text

HASP001 ACCESS TO DATASET &DSN DENIED

IACT0012W 001 DATASET &DSN1 NOT FOUND
IACT0012W 002 COULD NOT FIND DATASET &FILE

HASP999I 01 ACCESS TO DATASET &X-1 DENIED:
HASP999I 02 USER INFORMED AT &2;=DATE02. ON TERMINAL &X-3
HASP999I 03 LEADING BLANKS ARE OK

IEFA003F 001 USER &USERID VIOLATED ACCESS RIGHTS TO
 DATASET &X-2 AT &3;=TIME.
IEFA003F 002 &1;=TIME.: USER &X-2 VIOLATED ACCESS RIGHTS TO DATASET &X-3

Message text in a skeleton
Message text in a message skeleton must conform to certain format standards. The standards are as
follows:

• Message text can be up to 255 bytes long including the message identifier, line number, and other
fields.

• Message text can be upper-, lower-, or mixed case.
• Message text can be all single-byte character set (SBCS), all double-byte character set (DBCS), or a

combination of both. Blanks are valid characters, and are acceptable as any part of the message text.
Message text can contain substitution tokens.

A substitution token is a "place marker," identifying substitution data to MMS. MMS does not translate
substitution tokens in the target language skeleton, but rather replaces them with actual substitution
data.

Both &DSN1 and &FILE in the following examples are substitution tokens.

IACT0012W 001 DATASET &DSN1. NOT FOUND
IACT0012W 002 COULD NOT FIND DATASET &FILE;

Chapter 22. Translating messages 355

Substitution tokens indicate substitution, or variable, data, such as a data set name or a date in the
message text. Substitution tokens must start with a token start trigger character, an ampersand (&), and
end with a token end trigger character, a period (.). These characters are part of the token and are not
included in the message text display. You may include an ampersand (&) in the text as long as it does
not have a period following it in the format of a substitution token. Substitution tokens must be SBCS
characters and follow the form &name[=format] where:
name

is the name of the substitution token. This name is an alphanumeric SBCS string. The name must not
contain imbedded blanks or DBCS characters.

format
is an optional format descriptor for the substitution token. Format descriptors are:

• TEXT for tokens other than dates and times (default format)
• DATExxxxxx for dates
• TIMExxxxxx for times
• DAY for the day of the week

If you use these format descriptors, you must also define them in the CNLcccxx parmlib member
for the language. See z/OS MVS Initialization and Tuning Reference for more information on format
descriptors.

The total length of name and =format must not be greater than 16 bytes.

If you do not include a format descriptor for a particular substitution token, the MVS message service
treats the token as TEXT.

The date and time tokens are formatted according to the language. There are no defaults. You must
supply your own formats in the CNLcccxx member.

Examples of substitution tokens are:

&1.
&USERID.
&1=DATE1.
&5=TIMESHORT.

Validating message skeletons
After creating message skeletons for both the U.S. English and translated version of each message,
validate the skeletons. To validate the skeletons, run each of the application's install message files
through the message compiler for syntax checking. Otherwise you might be adding incorrect skeletons to
the files that MMS uses, and your messages might be either incorrectly translated or untranslatable. You
should also validate skeletons when you add or change skeletons in an existing install message file.

To make sure your message skeletons are valid, complete the following process for each install message
file:

1. Allocate storage for run-time message files, which the compiler produces as output.
2. Compile the install message file by invoking the compiler.
3. Check the return code from the message compiler.

If the return code does not indicate a clean compile, use the compiler error messages to correct any
errors in the skeletons. The compiler writes its error messages to the SYSPRINT data set. Then compile
the install message file again.

The return code and error messages from the compiler are the only output you need to determine
whether the message skeletons are correct. However, compiling an application's install message file also
produces formatted run-time message files. Before invoking the compiler, you must allocate storage for
these run-time files, but you cannot use them as input for MMS. To make your application's messages
available for translation, you must add your PDS to the system's install message files, and run those files
through the compiler again.

356 z/OS: z/OS MVS Assembler Services Guide

Allocating storage for validation run-time message files
The data set you create for the run-time message files must be a linear VSAM data set that can be
used as a data-in-virtual object. You must create one run-time file for each install message file for your
application.

The amount of storage you will need to allocate for a validation run-time message file cannot be
determined exactly. The amount of storage depends on the number of skeletons, the size of the skeletons,
the number of substitution tokens within the skeletons, and the types of messages represented by
the skeletons (single-line, multi-line, or multi-format). IBM recommends that, for a validation run-time
message file, you allocate twice the amount of storage required for the install message file you are
compiling. In most cases, this storage should be adequate.

To create the data set for the run-time message files, you need to specify the DEFINE CLUSTER
function of access method services (IDCAMS) with the LINEAR parameter. When you code the
SHAREOPTIONS parameter for DEFINE CLUSTER, use SHAREOPTIONS (1,3). For a complete explanation
of SHAREOPTIONS, see z/OS DFSMS Using Data Sets.

The following is a sample job that invokes IDCAMS to create the linear data set named SYS1.ENURMF
on the volume called MMSPK1. When IDCAMS creates the data set, it is empty. Note that there is no
RECORDS parameter; linear data sets do not have records.

//DEFCLUS JOB MSGLEVEL=(2,0),USER=IBMUSER
//*
//* DEFINE DIV CLUSTER
//*
//DCLUST EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//MMSPK1 DD UNIT=3380,VOL=SER=MMSPK1,DISP=OLD
//SYSIN DD *
 DELETE (SYS1.ENURMF) CL PURGE
 DEFINE CLUSTER (NAME(SYS1.ENURMF) -
 VOLUMES(MMSPK1) -
 CYL(1 1) -
 SHAREOPTIONS(1,3) -
 LINEAR) -
 DATA (NAME(SYS1.ENURMF.DATA))
/*

Figure 100. Sample job to invoke IDCAMS to obtain a data set for the run-time message files

Compiling message files
The message compiler creates run-time message files from an install message file. You need to run the
message compiler once for each language you install and each time you update the application's install
message files. The compiler expects a PDS or a concatenation of PDSs as input. If the compiler cannot
process a message skeleton, it issues an error message. It also sets a return code. See “Checking the
message compiler return codes” on page 360 for a description of compiler return codes.

Invoking the message compiler
The message compiler is an executable program. You can use JCL, a TSO/E CLIST, or a REXX EXEC to
invoke the message compiler. The syntax for each type of invocation follows. The meaning of the variables
(shown in lowercase in the examples) follows the examples.

 //COMPILE EXEC PGM=CNLCCPLR,
 // PARM=(lang,dbcs)
 //SYSUT1 DD DSN=msg_pds,DISP=SHR
 //SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP)
 //SYSPRINT DD SYSOUT=*

Figure 101. Using JCL to Invoke the Compiler with a single PDS as input

Chapter 22. Translating messages 357

 //COMPILE EXEC PGM=CNLCCPLR,
 // PARM=(lang,dbcs)
 //SYSUT1 DD DSN=msg_pds1,DISP=SHR
 // DD DSN=msg_pds2,DISP=SHR
 :
 :
 // DD DSN=msg_pdsn,DISP=SHR
 //SYSUT2 DD DSN=msg_div_obj,DISP=(OLD,KEEP,KEEP)
 //SYSPRINT DD SYSOUT=*

Figure 102. Using JCL to Invoke the Compiler with a concatenation of partitioned Data Sets as input

 PROC 0
 FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE DD'S */
 ALLOC DD(SYSUT1) DSN('msg_pds') SHR /* ALLOC INPUT FILE */
 ALLOC DD(SYSUT2) DSN('msg_div_obj') OLD /* ALLOC OUTPUT FILE */
 ALLOC DD(SYSPRINT) DSN(*) /* ALLOC SYSPRINT */
 CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'
 /* CALL MESSAGE COMPILER */
 SET &RCODE = &LASTCC /* SET RETURN CODE */
 FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE FILES */
 EXIT CODE(&RCODE) /* EXIT */

Figure 103. Using a TSO/E CLIST to Invoke the Compiler with a single PDS input

 PROC 0
 FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE DD'S */
 ALLOC DD(SYSUT1) DSN('msg_pds1' + /* ALLOC INPUT FILE */
 ALLOC DD(SYSUT1) DSN 'msg_pds1' + /* ALLOC INPUT FILE */
 :
 :
 ALLOC DD(SYSUT1) DSN 'msg_pdsn') SHR /* ALLOC INPUT FILE */
 ALLOC DD(SYSUT2) DSN('msg_div_obj') OLD /* ALLOC OUTPUT FILE */
 ALLOC DD(SYSPRINT) DSN(*) /* ALLOC SYSPRINT */
 CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'
 /* CALL MESSAGE COMPILER */
 SET &RCODE = &LASTCC /* SET
 RETURN CODE */
 FREE DD(SYSUT1,SYSUT2,SYSPRINT) /* FREE FILES */
 EXIT CODE(&RCODE) /* EXIT */

Figure 104. Using a TSO/E CLIST to Invoke the Compiler with a concatenation of partitioned Data Set as
input

/* MESSAGE COMPILER INVOCATION EXEC */

MSGCMPLR:

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN('"msg_pds"') SHR"
"ALLOC DD(SYSUT2) DSN('"msg_div_obj"') OLD"
"ALLOC DD(SYSPRINT) DSN(*)"

"CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'"

compiler_rc=rc

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

return(compiler_rc)

Figure 105. Using a REXX exec to Invoke the Compiler with a single PDS as input

358 z/OS: z/OS MVS Assembler Services Guide

/* MESSAGE COMPILER INVOCATION EXEC */

MSGCMPLR:

"FREE DD(SYSUT1,SYSUT2,SYSPRINT)"

"ALLOC DD(SYSUT1) DSN('msg_pds1',",
 "'msg_pds2',",
 :
 :
 "'msg_pdsn') SHR"

"ALLOC DD(SYSUT2) DSN('"msg_div_obj"') OLD"
"ALLOC DD(SYSPRINT) DSN(*)"

"CALL 'SYS1.LINKLIB(CNLCCPLR)' 'lang,dbcs'"

compiler_rc=rc

"FREE DD(MSGIN,MSGOUT,SYSPRINT)"

return(compiler_rc)

Figure 106. Using a REXX exec to Invoke the Compiler with a concatenation of partitioned Data Sets as
input

The lowercase variables used in the preceding examples are defined as follows:

msg_pds
is the name of the install message file containing all the application's message skeletons for a specific
language. msg_pds must be a partitioned data set.

msg_pds1
is the name of the install message file containing the the first application's message skeletons for a
specific language. msg_pds1 must be a partitioned data set.

msg_pds2
is the name of the install message file containing the the second application's message skeletons for a
specific language. msg_pds2 must be a partitioned data set.

msg_pdsn
is the name of the install message file containing the the last application's message skeletons, in the
message skeleton PDS concatenation, for a specific language. msg_pdsn must be a partitioned data
set.

Note: When you specify a concatenation of partitioned data set as input to the MVS message service
(MMS) compiler, all members within the partitioned data set will be processed. The MMS compiler will
process all members within the concatenation of partitioned data sets without regard to uniqueness
of member names. If two partitioned data sets specified in the concatenation have members with the
same name, both members will be processed by the MMS compiler.

msg_div_obj
specifies the name of the run-time message file that is to contain the compiled message skeletons for
the language. msg_div_obj must be a linear VSAM data set suitable for use as a data-in-virtual object.

lang,dbcs
specifies two parameters. lang is the 3-character language code of the messages contained in the
install message file. dbcs indicates whether this language contains double-byte characters. The
values for dbcs are y for yes and n for no.

After creating run-time message files by compiling the install message file, determine the amount of
storage the run-time message files used. This calculation is necessary when compiling these messages in
the system's run-time message files. The following JCL example shows you how to run a report showing
the storage used.

//LISTCAT JOB MSGLEVEL=(1,1)
//MCAT EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

Chapter 22. Translating messages 359

 LISTCAT LEVEL(msg_div_obj) ALL
/*

Checking the message compiler return codes
The message compiler generates a return code in register 15. The return codes are as follows:

Code Meaning

0 Successful completion.

4 Processing complete. Run-time message files are complete but the compiler generated
warnings.

8 Processing complete. The run-time message files are usable but incomplete.

12 Processing ended prematurely. The run-time message files are unusable.

You should correct all errors and recompile if you receive any return code other than 0.

Updating the system run-time message files
After validating your application install message files, update the system run-time message files. The
TRANMSG macro can retrieve messages from the run-time message files. You need to do the following:

• Add the application's install message files to the system's install message files, or add a DD statement
to the JCL used to compile the system's install message files.

• Allocate a data set for the new system run-time message files. Assign unique names to the run-time
message files, ensuring that the names are different from those your installation is currently using. Use
the storage requirements you received from running the IDCAMS report.

• Compile the system's install message files into new system run-time message files using the message
compiler for each install message file. See “Compiling message files” on page 357.

• Identify your new run-time message files to the system by creating a new MMSLSTxx parmlib member.
See z/OS MVS Initialization and Tuning Reference for information on creating a parmlib member.

• Activate your new parmlib member and run-time message files by issuing the SET MMS=xx command.
See z/OS MVS System Commands for information on the SET MMS=xx command.

You are using the same invocations to update the system run-time message files as you do to verify
message skeletons. The difference is that the resulting system run-time message files are what MMS can
use to translate messages for the system and applications.

Using MMS translation services in an application
After you have compiled the translated messages and updated the system run-time message files, your
program can use MMS services to retrieve translated message text from the system run-time message
files. You need to do the following:

• Determine the language in which you want the application's messages translated, and use the
QRYLANG macro to check its availability.

• Retrieve translated messages using the TRANMSG macro.

You must also determine the action the application will take if the requested function does not complete,
or if an output device cannot support the language.

Determining which languages are available (QRYLANG macro)
You need to determine if the language in which you want to issue messages is available to MMS. The
message query function (QRYLANG) allows you to verify that the language you want is active, and also to
receive a list of all available languages.

360 z/OS: z/OS MVS Assembler Services Guide

QRYLANG returns the information you request in the language query block (LQB), mapped by CNLMLQB.
This block contains the following:

• The standard 3-character code for the language
• The name of the language
• A flag indicating whether the language contains double-byte characters

If you ask for a list of all available languages, QRYLANG returns an LQB with one language entry for each
language.

You need to define storage for an LQB before issuing QRYLANG. To determine how much storage you need
for the LQB if you want a list of all active languages:

• Calculate the length of the header section in mapping macro CNLMLQB.
• Determine the total number of languages by looking in the MCAALCNT (active language count) field of

the MCA, mapped by CNLMMCA. Your program must be in 31-bit addressing mode to reference the
MCA.

• Multiply the total number of languages you intend to query by the LQBEBL (the length of one entry). This
will give you the length of the LQB substitution data area.

• Add the length of the LQB substitution data area to the length of the header.

To determine how much storage you need for the LQB if you want to query one language:

• Calculate the length of the header section in mapping macro CNLMLQB.
• Add the length of the LQB substitution data area to the length of the header.

Retrieving translated messages (TRANMSG macro)
TRANMSG takes the application messages that you provide, and retrieves the corresponding translated
messages from the system run-time message files. TRANMSG returns the translated message in a
message text block (MTB).

If the requested language is not available, TRANMSG returns the message unchanged. To check the
availability of specific languages, use the QRYLANG macro described in “Determining which languages are
available (QRYLANG macro)” on page 360.

In your application, call TRANMSG as close to the point of message presentation as possible to
avoid presenting a translated version of the message to MVS functions (for example, installation exits,
automation CLISTs, MCS consoles) that expect English text.

A message input/output block (MIO), mapped by CNLMMIO, serves as both input to and output from
TRANMSG. You can either build the MIO yourself or have TRANMSG do it for you. If you do not supply
a formatted MIO, TRANMSG constructs one by using the information you supply through the macro
parameters. Build the MIO yourself if you are translating multi-line messages that have continuation lines.
You will need to set the MIOCONT flag in the MIO.

If you build the MIO yourself, the MIO must contain the following when you issue TRANMSG:

• The code of the language into which you want the message translated
• The addresses of the messages you want translated
• The address of an output buffer in the calling program's address space where TRANMSG is to return the

translated message or messages.

For a mapping of the MIO, see z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosInternetLibrary).

The application's input messages can be in one of the following forms:

• Message text blocks (MTBs, mapped by CNLMMTB)
• Message parameter blocks (MPBs, mapped by CNLMMPB)
• Self-defined text (a 2-byte length field followed by message text)

Chapter 22. Translating messages 361

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

• A combination of any of the three.

When TRANMSG completes, the MIO contains the address of the translated message in the output buffer.
The translated message is in the form of an MTB.

Translating a multi-line message is a little different from translating a single-line message. You must take
one of the following steps in preparing the multi-line message for translation:

• Add the message identifier to the beginning of the message text for each line subsequent to the first.
You can invoke TRANMSG once for all message lines, or once for each message line. For the previous
example, the modified message would appear as follows:

MSGID01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
MSGID01 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
MSGID01 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

When you invoke TRANMSG, MMS will process this message as three separate lines of text.
• Set the MIOCONT flag on the MIO message entry structure for lines subsequent to the first (lines two

and three in the following example). The MIOCONT flag informs MMS that a specific line of text is
associated with the previous line of text. MMS associates the message identifier of the first line with the
message text of the subsequent lines. z/OS MVS Programming: Assembler Services Reference IAR-XCT
provides a coding example that translates a multi-line message.

The following is an example of a multi-line message that contains continuation lines, that is, only the
first line contains a message identifier in the skeleton. You must include all lines in the TRANMSG
invocation.

MSGID01 THIS IS LINE ONE OF THIS MULTI-LINE MESSAGE
 THIS IS LINE TWO OF THIS MULTI-LINE MESSAGE
 THIS IS LINE THREE OF THIS MULTI-LINE MESSAGE

Figure 107 on page 362 shows how an application program uses the TRANMSG macro.

Figure 107. Using the TRANMSG Macro

Example of displaying messages
The following table shows two ways a general application program (a program not using WTO to issue
messages) can display messages.

362 z/OS: z/OS MVS Assembler Services Guide

Displaying a message without using MMS Displaying a message using MMS

• Build a buffer for an English message containing
a message ID, fixed text, and substitution data.

• Display the English message (for example, by
using TSO/E PUTLINE). The application supports
only English.

• Build a buffer for an English message. You
must match the message format of the English
message buffer to the format of the English
message skeleton.

• Issue the TRANMSG macro using the English
message buffer as input, and getting a translated
message buffer as output.

• Present the translated message, ensuring
that your output device supports the chosen
language. By "presenting" a message, you might
choose to write the message to a data set, or
write it to a screen.

OR

• Build an MPB. See “Using message parameter
blocks for new messages (BLDMPB and
UPDTMPB macros)” on page 363 for information
on creating and MPB.

• Issue the TRANMSG macro using an MPB as
input. TRANMSG will format the substitution data
contained in the MPB. The output is a Japanese
message buffer (if language code is JPN). You
should not use WTO to issue the translated
message.

Using message parameter blocks for new messages (BLDMPB and
UPDTMPB macros)

You can create message parameter blocks (MPBs) instead of storing messages in your application code.
MPBs contain a message identifier, and, if needed, a format number, line number, and any substitution
data. The actual message text resides only in the message skeletons in the run-time message file. Using
MPBs provides the convenience of having to modify only the install message file if any of your message
text requires a change. It also allows you to have a single repository for message text.

If you use message text blocks (MTBs) or self-defined text as input to the TRANMSG macro, and your
message text requires a change, you will have to change it in both the message skeleton and the MTB or
self-defined text. Modifying just the existing run-time message files to adapt changed message text can
result in unpredictable errors when using the TRANSMSG service.

To build a message parameter block (MPB), allocate storage for the MPB, and issue BLDMPB and
UPDTMPB. BLDMPB initializes the MPB and adds the fixed message data (called the message header),
and UPDTMPB adds one substitution token to the MPB for each invocation.

Issue BLDMPB once for each MPB you will build and before you issue UPDTMPB. Issue UPDTMPB once
for each substitution token in the message. You can also use UPDTMPB to replace or change the value
of a particular substitution token in an existing MPB. However, you must ensure that the new value is
not longer than the original value to maintain the integrity of the MPB. You might use UPDTMPB if you
want to invoke TRANMSG several times with one MPB. For example, if you have an MPB associated with a
message that you will translate in several languages, you can change only the language code in the MIO,
and issue TRANMSG.

Once you have built an MPB for a message, you can issue TRANMSG to return the text of the message in
a message text block (MTB). If the requested language is not available, TRANMSG returns the message
number and its substitution data as a text string in the output area.

Chapter 22. Translating messages 363

Support for additional languages
You can also translate messages into languages not currently available through IBM. You can do this in
the following way:

• Select the language code in Table 37 on page 364 that matches the language into which you plan to
translate messages. Though you may supply your own language code, IBM recommends that you use
these codes. You will need that language code for the version record. Table 37 on page 364 is not an
all-inclusive list of languages.

• If the messages you want to translate are MVS system messages, there may already be U.S. English
skeletons for them, so all you need to supply are the translated skeletons. If the messages are from an
application you have written, you need to supply both the English and translated skeletons. Follow the
procedures described in “Creating install message files” on page 353, “Validating message skeletons”
on page 356, and “Updating the system run-time message files” on page 360.

• Ask the installation's system programmer to:

– Modify the parmlib member, MMSLSTxx, adding the language code.
– Create a new config member, CNLcccxx, for the new language.
– Restart MMS using the SET MMS command.

See z/OS MVS Initialization and Tuning Reference for more information on setting up config members, and
parmlib members.

Table 37. Languages Available to MVS Message Service. These languages may not necessarily be
available to your installation.

Code Language Name Country or Region

CHS Simplified Chinese China (PRC)

CHT Traditional Chinese Taiwan

DAN Danish Denmark

DEU German Germany

DES Swiss German Switzerland

ELL Greek Greece

ENG UK English United Kingdom

ENU US English United States

ESP Spanish Spain

FIN Finnish Finland

FRA French France

FRB Belgian French Belgium

FRC Canadian French Canada

FRS Swiss French Switzerland

ISL Icelandic Iceland

ITA Italian Italy

ITS Swiss Italian Switzerland

JPN Japanese Japan

KOR Korean Korea

364 z/OS: z/OS MVS Assembler Services Guide

Table 37. Languages Available to MVS Message Service. These languages may not necessarily be
available to your installation. (continued)

Code Language Name Country or Region

NLD Dutch Netherlands

NLB Belgian Dutch Belgium

NOR Norwegian Norway

PTG Portuguese Portugal

PTB Brazil Portuguese Brazil

RMS Rhaeto-Romanic Switzerland

RUS Russian Russian Federation

SVE Swedish Sweden

THA Thai Thailand

TRK Turkish Turkey

For more information on translation, see NLS Reference Manual.

Example of an application that uses MMS translation services
The following example builds and updates and MPB, then invokes the MMS translate function to obtain
the translated message. There are more examples for each MMS macro (BLDMPB, QRYLANG, TRANMSG,
UPDTMPB) in the z/OS MVS Programming: Assembler Services Reference ABE-HSP and the z/OS MVS
Programming: Assembler Services Reference IAR-XCT.

TRANSMPB CSECT
TRANSMPB AMODE 31
TRANSMPB RMODE ANY
 STM 14,12,12(13)
 BALR 12,0
 USING *,12
 ST 13,SAVE+4
 LA 15,SAVE
 ST 15,8(13)
 LR 13,15
*

* OBTAIN WORKING STORAGE AREA *

 GETMAIN RU,LV=STORLEN,SP=SP230
 LR R4,R1
*

* CREATE MPB HEADER SECTION *

*
 BLDMPB MPBPTR=(R4),MPBLEN=MPBL,MSGID=MSGID, C
 MSGIDLEN=MIDLEN
*

* ADD SUBSTITUTION DATA TO MPB FOR DAY 3, TUESDAY *

*
 LR R2,R4
 A R2,MPBL
 USING VARS,R2
*
 UPDTMPB MPBPTR=(R4),MPBLEN=MPBL,SUBOOFST=VARS, C
 TOKEN=TOKN,TOKLEN=TOKL,TOKTYPE=TOKT, C
 SUBSDATA=SDATA,SUBSLEN=SDATAL
*
 USING MIO,R3
 LA R3,VARSLEN OBTAIN LENGTH OF VARS AREA
 AR R3,R2 CALCULATE ADDRESS MIO

Chapter 22. Translating messages 365

 LA R5,MLEN GET LENGTH OF MIO
 AR R5,R3 CALCULATE ADDRESS OF OUTPUT BUFFER
 ST R4,VARSINBF CREATE ADDRESS LIST
*

* ISSUE TRANSLATE TO OBTAIN MESSAGE TEXT REPRESENTED BY THE *
* CREATED MPB *

*
 TRANMSG MIO=MIO,MIOL=MIOLEN,INBUF=(VARSINBF,ONE), C
 OUTBUF=(R5),OUTBUFL=OUTAREAL,LANGCODE=LC
*

* FREE STORAGE AREA *

*
 FREEMAIN RU,LV=STORLEN,SP=SP230,A=(4)
*
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
 DROP

MPBL DC A(MPBLEN)
MSGID DC CL10'MSGID2'
MIDLEN DC A(MIDL)
TOKN DC CL3'DAY'
TOKL DC F'3'
TOKT DC CL1'3'
SDATA DC CL1'3'
SDATAL DC A(SDL)
MIOLEN DC A(MLEN)
OUTAREAL DC A(STORLEN-(MPBLEN+VARSLEN+MLEN))
ONE DC F'1'
LC DC CL3'JPN'
SAVE DC 18F'0'
SP230 EQU 230
STORLEN EQU 512
SDL EQU 6
MIDL EQU 6
MPBLEN EQU (MPBVDAT-MPB)+(MPBMID-MPBMSG)+(MPBSUB-MPBSB)+MIDL+SDL
MLEN EQU (MIOVDAT-MIO)+MIOMSGL
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5

 DSECT
 CNLMMPB
 CNLMMCA
 CNLMMIO
VARS DSECT
VARSINBF DS F
VARSAREA DS CL24
VARSLEN EQU *-VARS
 END TRANSMPB

366 z/OS: z/OS MVS Assembler Services Guide

Chapter 23. Data compression and expansion
services

z/OS supports compression using two different algorithms. The first algorithm exploits the occurrence of
repeated characters in a data stream. Encoded data contains a combination of symbols that represent
strings of repeated characters and the original characters that are not repeated. The CSRCESRV service
uses this algorithm to compress data.

Data that contains many repeat characters can exploit these services most effectively. Examples include:

• Data sets with fixed field lengths that might contain many blanks
• 80-byte source code images of assembler language programs.

Using these services with other types of data might not result in appreciable data volume reduction. In
some cases, data volume might even be increased.

The second algorithm encodes data by replacing strings of characters with shorter fixed-length symbols.
A key component of this technique is the symbol table, usually referred to as a dictionary. Encoded data
contains symbols that correspond to entries in the dictionary. The CSRCMPSC service uses this algorithm
to compress data.

This service requires more storage than the CSRCESRV services, but is a good choice if you know what
your data looks like and storage is not a concern.

Services provided by CSRCESRV
Data compression and expansion services, which your program invokes through the CSRCESRV macro, are
described as follows:

• Data Compression Service

This service compresses a block of data that you identify and stores that data in compressed form
in an output area. The service uses an algorithm called run length encoding, which is a compression
technique that compresses repeating characters, such as blanks. In some cases, the service uses an
interim work area.

• Data Expansion Service

This service expands a block of data that you identify; the data must have been compressed by the
data compression service. The data expansion service reverses the algorithm that the data compression
service used, and stores the data in its original form in an output area. In some cases, the service uses
an interim work area.

• Query Service

This service queries the system to determine the following:

– Whether data compression is supported by the system currently installed
– The size of the work area required by the compression or expansion service.

To use the data compression and data expansion services, you need the information that the query
service provides. Invoke the query service before invoking either the data compression or data
expansion services.

Note: These services do not provide a recovery routine (for example, ESTAE or FRR) because it would not
contribute to reliability or availability.

© Copyright IBM Corp. 1988, 2022 367

Using these services
The data compression, data expansion, and query services resides in SYS1.LPALIB. Your program can
invoke these services by using the CSRCESRV macro.

See z/OS MVS Programming: Assembler Services Reference ABE-HSP for complete instructions on how to
use the CSRCESRV macro.

To invoke the data compression or data expansion services, follow these steps:

1. Invoke the query service by coding the CSRCESRV macro specifying SERVICE=QUERY. The macro
returns the information you need to invoke the data compression or data expansion service.

2. If you plan to compress data, check the information returned to ensure that compression is supported.
3. Invoke the data compression service (or the data expansion service) by coding the CSRCESRV macro

specifying SERVICE=COMPRESS (or SERVICE=EXPAND).

Services provided by CSRCMPSC
Compression takes an input string of data and, using a data area called a dictionary, produces an output
string of compression symbols. Each symbol represents a string of one or more characters from the input.

Expansion takes an input string of compression symbols and, using a dictionary, produces an output string
of the characters represented by those compression symbols.

Parameters for the CSRCMPSC macro are in an area mapped by DSECT CMPSC of the CSRYCMPS macro
and specified by the CBLOCK parameter of the CSRCMPSC macro. This area contains such information as:

• The address, ALET, and length of a source area. The source area contains the data to be compressed for
a compression operation, or to be expanded for an expansion operation.

• The address, ALET, and length of a target area. After the macro runs, the target area contains the
compressed data for a compression operation, or the expanded data for an expansion operation.

• An indication of whether to perform compression or expansion.
• The address and format of a dictionary to be used to perform the compression or expansion. The

dictionary must be in the same address space as the source area.

Compressing and expanding data is described in the following topics:

• “Compression and expansion dictionaries” on page 368
• “Building the CSRYCMPS area” on page 369
• “Determining if the CSRCMPSC macro can be issued on a system” on page 371

To help you use the compression services, the SYS1.SAMPLIB system library contains the following REXX
execs:

• CSRBDICT for building example dictionaries
• CSRCMPEX for measuring the degree of compression that the dictionaries provide

When running on VM, two analogous macros are available:

• CSRBDICV for building example dictionaries
• CSRCMPEV for measuring the degree of compression that the dictionaries provide

The prologs of the execs tell how to use them. For additional information about compression and using
the execs, see Enterprise Systems Architecture/390 Data Compression.

Compression and expansion dictionaries
To accomplish compression and expansion, the macro uses two dictionaries: the compression dictionary
and the expansion dictionary. These dictionaries are related logically and physically. When you expand
data that has been compressed, you want the result to match the original data. Thus the dictionaries

368 z/OS: z/OS MVS Assembler Services Guide

are complementary. When compression is done, the expansion dictionary must immediately follow the
compression dictionary, because the compression algorithm examines entries in the expansion dictionary.

Each dictionary consists of 512, 1024, 2048, 4096, or 8192 8-byte entries and begins on a page
boundary. When the system determines or uses a compression symbol, the symbol is 9, 10, 11, 12,
or 13 bits long, with the length corresponding to the number of entries in the dictionary. Specify the size
of the dictionary in the CMPSC_SYMSIZE field of the CSRYCMPS mapping macro:
SYMSIZE

Meaning
1

Symbol size 9 bits, dictionary has 512 entries
2

Symbol size 10 bits, dictionary has 1024 entries
3

Symbol size 11 bits, dictionary has 2048 entries
4

Symbol size 12 bits, dictionary has 4096 entries
5

Symbol size 13 bits, dictionary has 8192 entries

The value of CMPSC_SYMSIZE represents the size of the compression and expansion dictionaries. For
example, if CMPSC_SYMSIZE is 512, then the size of the compression dictionary is 512 and the size of the
expansion dictionary is 512.

Building the CSRYCMPS area
The CSRYCMPS area is mapped by the CSRYCMPS mapping macro and is specified in the CBLOCK
parameter of the CSRCMPSC macro. The area consists of 7 words that should begin on a word boundary.
Unused bits in the first word must be set to 0.

• Set 4-bit field CMPSC_SYMSIZE in byte CMPSC_FLAGS_BYTE2 to a number from 1 to 5 to indicate both
the number of entries in the dictionary and the size of a compressed symbol.

• If expanding, turn on bit CMPSC_EXPAND in byte CMPSC_FLAGS_BYTE2. Otherwise, make sure that the
bit is off.

• Whether compressing or expanding, you can turn on bit CMPSC_ZeroPaddingOK. This bit indicates that
zero padding of the output operand on the right up to the operand length, and up to a model-dependant
integral boundary is acceptable. Specifying this bit might help the performance of the operation. The bit
is ignored if the machine does not support the capability, so the bit can be set unconditionally.

• Set field CMPSC_DICTADDR to the address of the necessary dictionary. If compressing, this should
be the compression dictionary, which must be immediately followed by the expansion dictionary. If
expanding, this should be the expansion dictionary. In either case, the dictionary must begin on a page
boundary, as the low order 12 bits of the address are assumed to be 0 when determining the address of
the dictionary.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the necessary dictionary. Note that
the input area is also accessed using this ALET. If not in AR mode, make sure that the field contains 0.

Using the linkage editor can help you get the dictionary on the proper boundary. For example, you
may have an object deck for each compression dictionary (CD), and expansion dictionary (ED), and a
DD statement for file OBJS, which represents the library containing the object decks. The following
instructions linkage editor control statements define a dictionary with the name DICT that, when
loaded, will have the compression dictionary followed by the expansion dictionary, and will begin on
a page boundary.

ORDER CD(P),ED
INCLUDE OBJS(CD)
INCLUDE OBJS(ED)
NAME DICT(R)

Chapter 23. Data compression and expansion services 369

• In most cases, make sure that 3-bit field CMPSC_BITNUM in byte CMPSC_DICTADDR_BYTE3 is zero.
This field has the following meaning:

– If compressing, place the first compression symbol at this bit in the leftmost byte of the target
operand. Normally this field should be set to 0 for the start of compression.

– If expanding, expand beginning with the compression symbol that begins with this bit in the leftmost
byte of the source operand. Normally this field should be set to the value used for the start of
compression.

• Set word CMPSC_TARGETADDR to the address of the output area. For compression, the output area
contains the compressed data; for expansion, it contains the expanded data.

If running in AR mode, set field CMPSC_TARGETALET to the ALET of the output area. If not in AR mode,
make sure that the field contains 0.

• Set word CMPSC_TARGETLEN to the length of the output area.
• Set word CMPSC_SOURCEADDR to the address of the input area. For compression, the input area

contains the data to be compressed; for expansion, it contains the compressed data.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the input area. Note that the
dictionary will also be accessed using this ALET. If not in AR mode, make sure that the field contains 0.

• Set word CMPSC_SOURCELEN to the length of the input area. For expansion, the length should be
the difference between CMPSC_TARGETLEN at the completion of compression and CMPSC_TARGETLEN
at the start of compression, increased by 1 if field CMPSC_BITNUM was nonzero upon completion of
compression.

• Set word CMPSC_WORKAREAADDR to the address of a 192-byte work area for use by the CSRCMPSC
macro. The work area should begin on a doubleword boundary. This area does not need to be provided
and the field does not have to be set if your code has verified that the hardware CMPSC instruction is
present. The program can do the verification by checking that bit CVTCMPSH in mapping macro CVT is
on.

When the CSRCMPSC service returns, it has updated the input CSRYCMPS area as follows:

• CMPSC_FLAGS is unchanged.
• CMPSC_DICTADDR is unchanged, but bits CMPSC_BITNUM in field CMPSC_DICTADDR_BYTE3 are set

according to the last-processed compression symbol.
• CMPSC_TARGETADDR is increased by the number of output bytes processed.
• CMPSC_TARGETLEN is decreased by the number of output bytes processed.
• CMPSC_SOURCEADDR is increased by the number of input bytes processed.
• CMPSC_SOURCELEN is decreased by the number of input bytes processed.
• CMPSC_WORKAREA is unchanged.

The target/source address and length fields are updated analogously to the corresponding operands
of the MVCL instruction, so that you can tell upon completion of the operation how much data was
processed and where you might want to resume if you wanted to continue the operation.

Suppose that you had compressed a large area but wanted to expand it back into a small area of 80-byte
records. You might do the expansion as follows:

 LA 2,MYCBLOCK
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_1
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND
 L 3,EDICTADDR Address of expansion dictionary
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set work area address
MORE DS 0H Label to continue
*

370 z/OS: z/OS MVS Assembler Services Guide

* Your code to allocate an 80-byte output area would go here
*
 ST x,CMPSC_TARGETADDR Save target expansion area
 LA 3,80 Set its length
 ST 3,CMPSC_TARGETLEN Set expansion length
 CSRCMPSC CBLOCK=CMPSC Expand
 C 15,=AL4(CMPSC_RETCODE_TARGET) Not done, target used up
 BE MORE Continue with operation
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS , Get mapping and equates

Note that this code loops while the operation is not complete, allocating a new 80-byte output record.
It does not have to update the CMPSC_BITNUM, CMPSC_SOURCEADDR, or CMPSC_SOURCELEN fields,
because the service sets them up for continuation of the original operation.

If running in AR mode, the example would also have set the CMPSC_TARGETALET and
CMPSC_SOURCEALET fields. The XC instruction zeroed those fields as needed when running in primary
ASC mode.

Determining if the CSRCMPSC macro can be issued on a system
Do the following to tell if the system contains the software or hardware to run a CSRCMPSC macro:

1. Determine if CSRCMPSC is available, by running the following:

 L 15,16 Get CVT address
 USING CVT,15 Set up addressability to the CVT
 TM CVTFLAG2,CVTCMPSC Is CSRCMPSC available?
 BZ NO_CSRCMPSC Branch if not available
* Compression feature is available
 .
 .
NO_CSRCMPSC DS 0H

2. Determine if the CMPSC hardware instruction is available, by running the following:

 L 15,16 Get CVT address
 USING CVT,15 Set up addressability to the CVT
 TM CVTFLAG2,CVTCMPSH Is CMPSC hardware available?
 BZ NO_CMPSC_HARDWARE Branch if not available
* CMPSC hardware is available
 .
 .
NO_CMPSC_HARDWARE DS 0H

The remaining three topics in this chapter describe compression and expansion processing and the
dictionary entries in much greater detail. If you plan to use the CSRBDICT exec to build your dictionary,
you do not need to read these topics. If you plan to build your own dictionary, you will want to read:

• “Compression processing” on page 371
• “Expansion processing” on page 372
• “Dictionary entries” on page 372

Compression processing
The compression dictionary consists of a specified number of 8-byte entries. The first 256 dictionary
entries correspond to the 256 possible values of a byte and are referred to as alphabet entries. The
remaining entries are arranged in a downward tree, with the alphabet entries being the topmost entries in
the tree. That is, an alphabet entry may be a parent entry and contain the index of the first of one or more

Chapter 23. Data compression and expansion services 371

contiguous child entries. A child entry may, in turn, be a parent and point to its own children. Each entry
may be identified by its index, meaning the positional number of the entry in the dictionary; the first entry
has an index of 0.

An alphabet entry represents one character. A nonalphabet entry represents all of the characters
represented by its ancestors and also one or more additional characters called extension characters. For
compression, the system uses the first character of an input string as an index to locate the corresponding
alphabet entry. Then the system compares the next character or characters of the string against the
extension character or characters represented by each child of the alphabet entry until a match is found.
The system repeats this process using the children of the last matched entry, until the last possible match
is found, which might be a match on only the alphabet entry. The system uses the index of the last
matched entry as the compression symbol.

The first extension character represented by a child entry exists as either a child character in the parent
or as a sibling character. A parent can contain up to four or five child characters. If the parent has more
children than the number of child characters that can be in the parent, a dictionary entry named a sibling
descriptor follows the entry for the last child character in the parent. The sibling descriptor can contain
up to six additional child characters, and a dictionary entry named a sibling descriptor extension can
contain eight more child characters for a total of fourteen. These characters are called sibling characters.
The corresponding additional child entries follow the sibling descriptor. If necessary, another sibling
descriptor follows the additional child entries, and so forth. The dictionary entries that are not sibling
descriptors or sibling descriptor extensions are called character entries.

If a nonalphabet character entry represents more than one extension character, the extension characters
after the first are in the entry; they are called additional extension characters. The first extension
character exists as a child character in the parent or as a sibling character in a sibling descriptor or
sibling descriptor extension. The nonalphabet character entries represent either:

• If the entry has no children or one child, from one to five extension characters.
• If the entry has more than one child, one or two extension characters. If the entry represents one

extension character, it can contain five child characters. If it represents two extension characters, it can
contain four child characters.

Expansion processing
The dictionary used for expansion also consists of a specified number of 8-byte entries. The two types of
entries used for expansion are:

• Unpreceded entries
• Preceded entries

The compression symbol, which is an index into the dictionary, locates that index's dictionary entry. The
symbol represents a character string of up to 260 characters. If the entry is an unpreceded entry, the
expansion process places at offset 0 from the current processing point the characters designated by
that entry. Note that the first 256 correspond to the 256 possible values of a byte and are assumed to
designate only the single character with that byte value.

If the entry is a preceded entry, the expansion process places the designated characters at the specified
offset from the current processing point. It then uses the information in that entry to locate the preceding
entry, which may be either an unpreceded or a preceded entry, and continues as described previously.

The sibling descriptor extension entries described earlier are also physically located within the expansion
dictionary.

Dictionary entries
The following notation is used in the diagrams of dictionary entries:
{cc}

Character may be present

372 z/OS: z/OS MVS Assembler Services Guide

...
The preceding field may be repeated

Compression dictionary entries
Compression entries are mapped by DSECTs in macro CSRYCMPD.

The first four entries that follow give the possible values for bits 0-2, which are designated CCT.

Character entry generic form (DSECT CMPSCDICT_CE)

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. The total number of
children plus additional extension characters is limited to 5. If this field plus the number of additional
characters is 6, it indicates that, in addition to the maximum number of children for this entry, there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.
The value of CMPSCDICT_CE_CHILDCT plus the number of additional extension characters must not
exceed 6.

Character entry CCT=0 (DSECT CMPSCDICT_CE)

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters in the
entry. Its value must not exceed 4. This field must be 0 in an alphabet entry.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

Character entry CCT=1 (DSECT CMPSCDICT_CE)

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with the first bit indicating whether it is necessary to examine
the character entry for the child character (looking either for additional extension characters or more
children). The other bits are ignored when CCT=1.

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters. Its
value must not exceed 4. This field must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is then CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

Chapter 23. Data compression and expansion services 373

CC
Child character, at bit n = 24 + (ACT * 8). The 5-character field CMPSCDICT_CE_CHILDCHAR is
provided to hold the additional extension characters followed by the child characters.

Character entry CCT>1 (DSECT CMPSCDICT_CE)

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. For this case, because
CCT>1, the range for CCT is 2 to 6 if D=0 or 2 to 5 if D=1. If this field plus the value of D is 6, it
indicates that, in addition to the maximum number of children for this entry (4 if D=1, 5 if D=0), there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with a bit for each child in the entry. The field indicates
whether it is necessary to examine the character entry for the child character (looking either for
additional extension characters or more children). The bit is ignored if the child does not exist.

YY
A 2-bit field (CMPSCDICT_CE_EXSIB) providing examine-child bits for the 13th and 14th siblings
designated by the first sibling descriptor for children of this entry. The bit is ignored if the child does
not exist. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry.

D
A 1-bit field (CMPSCDICT_CE_ADDEXTCHAR) indicating whether there is an additional extension
character. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry. This bit must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided
to hold the additional extension character followed by the child characters. There is no additional
extension character if D=0.

CC
Child character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to hold the additional
extension characters followed by the child characters. The first child character is at bit n = 24 + (D *
8).

Alphabet entries (DSECT CMPSCDICT_CE)
The alphabet entries have the same mappings as character entries but without the additional extension
characters. The character entries are “Character entry generic form (DSECT CMPSCDICT_CE)” on page
373, “Character entry CCT=0 (DSECT CMPSCDICT_CE)” on page 373, “Character entry CCT=1 (DSECT
CMPSCDICT_CE)” on page 373, and “Character entry CCT>1 (DSECT CMPSCDICT_CE)” on page 374.

Format 1 sibling descriptor (DSECT CMPSCDICT_SD)

374 z/OS: z/OS MVS Assembler Services Guide

SCT
A 4-bit field (CMPSCDICT_SD_SIBCT) specifying the number of sibling characters. The number of
sibling characters is limited to 14. If this field is 15, it indicates that there are 14 sibling characters
associated with this entry and that there is another sibling descriptor entry, which describes
additional children. That sibling descriptor entry is located at dictionary entry this-sibling-descriptor-
index + 15. If there are 1 to 6 sibling characters, they are contained in this entry, and the dictionary
entries for those characters are located at this-sibling-descriptor-index + n, where n is 1 to 6. If
there are 7 to 14 sibling characters, the first 6 are as described previously, and characters 7 through
14 are located in the expansion dictionary entry. (See “Sibling descriptor extension entry (DSECT
CMPSCDICT_SDE)” on page 376.) The index of the character entry is this-sibling-descriptor-index.
The number of sibling characters should not be 0.

YYYYYYYYYYYY
A 12-bit field (CMPSCDICT_SD_EXSIB), one for each sibling character, indicating whether to examine
the character entries for sibling characters 1 through 12. Recall that the examine-sibling indicator
for sibling characters 13 and 14 for the first sibling descriptor is in the character entry field
CMPSCDICT_CE_EXSIB. If this is not the first sibling descriptor for the child entry, then the character
entries for sibling characters 13 and 14 are examined irregardless. The bit is ignored if the sibling
does not exist.

SC
Sibling character. Sibling characters 8 through 14 are in the expansion dictionary. (See “Sibling
descriptor extension entry (DSECT CMPSCDICT_SDE)” on page 376.) The 6-character field
(CMPSCDICT_SD_CHILDCHAR) is provided to contain the sibling characters. The index of the
character entry for sibling character n is this-sibling-descriptor-index + n-1.

Expansion dictionary entries
Expansion entries are mapped by DSECTs in macro CSRYCMPD.

Unpreceded entry (DSECT CMPSCDICT_UE)

CSL
A 3-bit field (CMPSCDICT_UE_COMPSYMLEN) indicating the number of characters contained in
CMPSCDICT_UE_CHARS. These characters will be placed at offset 0 in the expanded output. This
field should not have a value of 0.

EC
Expansion character. The 7-character field (CMPSCDICT_UE_CHARS) is provided to contain the
expansion characters.

Preceded entry (DSECT CMPSCDICT_PE)

PSL
A 3-bit field (CMPSCDICT_PE_PARTSYMLEN) indicating the number of characters contained
in CMPSCDICT_PE_CHARS. These characters will be placed at the offset indicated by
CMPSCDICT_PE_OFFSET in the expanded output. This field must not be 0, because 0 indicates an
unpreceded entry.

PrecIndex
A 13-bit field (CMPSCDICT_UE_PRECENTINDEX) indicating the index of the dictionary entry with
which processing is to continue.

Chapter 23. Data compression and expansion services 375

EC
Expansion character. The 5-character field (CMPSCDICT_PE_CHARS) is provided to contain the
expansion characters.

Offset
A 1-byte field (CMPSCDICT_PE_OFFSET) indicating the offset in the expanded output for characters in
CMPSCDICT_PE_CHARS.

Sibling descriptor extension entry (DSECT CMPSCDICT_SDE)

SC
Sibling character. The 8-character field (CMPSCDICT_SDE_CHARS) is provided to contain the sibling
characters. The nth sibling character in this entry is actually overall sibling character number 6 + n,
because the first 6 characters were contained in the corresponding sibling descriptor entry. The index
of the character entry for the nth character is this-sibling-descriptor-index + 6 + n-1.

Dictionary restrictions
Set up the compression dictionary so that:

• The algorithm does not create a compression symbol that represents a string of more than 260
characters.

• No character entry has more than 260 total children, including all sibling descriptors for that character
entry.

• No character entry has a child count greater than 6.
• No character entry has more than 4 additional extension characters when there are 0 or 1 child

characters.
• No sibling descriptor indicates 0 sibling characters.

Set up the expansion dictionary so that:

• Expansion of a compression symbol does not use more than 127 dictionary entries.

Other considerations
If the first child character matches, but its additional extension characters do not match and the next
child character is the same as the first, the system continues compression match processing to try to find
a compression symbol that contains that child character. If, however, the next child character is not the
same, compression processing uses the current compression symbol as the result. You can set up the
child characters for an entry to take advantage of this processing.

If a parent entry does not have the examine child bit (CMPSCDICT_CE_EXCHILD) on for a particular child
character, then the child character entry should not have any additional extension characters or children.
The system will not check the entry itself for additional extension characters or children.

If a parent or sibling descriptor entry does not have the examine sibling bit (CMPSCDICT_CE_EXSIB) on
for a particular sibling character, then the character entry for that sibling character should not to have
any additional extension characters or children. The system will not check the entry itself for additional
extension characters or children.

Compression dictionary examples
In the following examples, most fields contain their hexadecimal values. However, for clarity, the
examine-child bit fields are displayed with their bit values.

376 z/OS: z/OS MVS Assembler Services Guide

Example 1
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C1

Alphabet entry for character A; 2 child characters B and C. The first child index is X'100'.
100

Entry for character B; no additional extension characters; no children.
101

Entry for character C; additional extension character 1; 2 child characters D and E. The first child index
is X'200'.

200
Entry for character D; 2 additional extension characters 1 and 2; no children.

201
Entry for character E; 4 additional extension characters 1, 2, 3, and 4; no children.

If the input string is AD, the output string will consist of 2 compression symbols: one for A and one
for D. When examining the dictionary entry for character A, the system determines that none of A's
children match the next input character, D, and so returns the compression symbol for A. When examining
the dictionary entry for character D, the system determines that it has no children, and so returns the
compression symbol for D.

If the input string is AB, the output string will consist of 1 compression symbol for both input characters.
When examining the dictionary input for character A, the system determines that A's first child character
matches the next input character, B, and so looks at entry X'100'. Because that entry has no additional
extension characters, a match is determined. Because there are no further input characters, the scan
concludes.

If the input string is AC, the output string will consist of 2 compression symbols: one for A and one for
C. When examining the dictionary input for character A, the system determines that A's second child
character matches the next input character, C, and so looks at entry X'101'. Because that entry has an

Chapter 23. Data compression and expansion services 377

additional extension character, but the input string does not contain this character, no match is made, and
the output is the compression symbol for A. Processing character C results in the compression symbol for
C.

If the input string is AC1, the output string will consist of 1 compression symbol. When examining the
dictionary input for character A, the system determines that A's second child character matches the next
input character, C, and so looks at entry X'101'. Because that entry has an additional extension character,
and the input string does contain this character, 1, a match is made, and the output is the compression
symbol for AC1.

Similarly, the set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
100

AB
101

AC1
200

AC1D12
201

AC1E1234

The compression symbol is the index of the dictionary entry. Based on this, you can see that the
expansion dictionary must result in the reverse processing; for example, if a compression symbol of
X'201' is found, the output must be the string AC1E1234. See “Expansion dictionary example” on page
381 for expansion dictionary processing.

Example 2 for more than 5 children
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C2

Alphabet entry for character B; child count of 6 (indicating 5 children plus a sibling descriptor); first
child index is X'400', children are 1, 2, 3, 4, and 5.

400
Entry for character 1; no additional extension characters; no children.

401-404
Entries for characters 2 through 5; no additional extension characters; no children.

405
Sibling descriptor; child count of 15, which indicates 14 children plus another sibling descriptor;
sibling characters A, B, C, D, E, and F.

405
Sibling descriptor extension. In the expansion dictionary entry X'405', the sibling characters are G,
H, I, J, K, L, M, and N.

406
Entry for character A; no additional extension characters; no children.

407-413
Entries for characters B through N; no additional extension characters; no children.

414
Next sibling descriptor; child count of 2; child characters O and P.

415
Entry for character O; no additional extension characters; no children.

378 z/OS: z/OS MVS Assembler Services Guide

416
Entry for character P; no additional extension characters; no children.

The set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
400-404

B1, B2, B3, B4, B5
406-40B

BA, BB, BC, BD, BE, BF
40C-413

BG, BH, BI, BJ, BK, BL, BM, BN

Chapter 23. Data compression and expansion services 379

415-416
BO, BP

There are no compression symbols for 405 and 414. These are the sibling descriptor entries. Because
their sibling descriptor extensions are located at those indices in the expansion dictionary (not the
preceded or unpreceded entries required for expansion), it is important that no compression symbol have
that value.

Example 3 for children with the same value
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C3

Alphabet entry for character C; child count of 4. The first child index is X'600' and the child characters
are 1, 1, 1, and 2.

600
Entry for character 1; 4 additional extension characters A, B, C, and D; no children.

601
Entry for character 1; 3 additional extension characters A, B, and C; no children.

602
Entry for character 1; 2 additional extension characters A and B; no children.

603
Entry for character 2; no additional extension characters; no children.

The set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
600

C1ABCD
601

C1ABC
602

C1AB
603

C2

By taking advantage of the special processing when the second and subsequent child characters match
the first, you can reduce the number of dictionary entries searched to determine the compression
symbols. For example, to find that X'601' is the compression symbol for the characters C1ABC, the
processing examines entry X'C3', then entry X'600', then entry X'601'. Entry X'600' does not match
because the input string does not have all 4 extension characters. There are alternate ways of setting up
the dictionary to compress the same set of input strings handled by this dictionary.

380 z/OS: z/OS MVS Assembler Services Guide

Expansion dictionary example
Suppose the expansion dictionary looks like the following:
Hexadecimal Entry

Description
C1

Alphabet entry for character A. This by definition is an unpreceded entry.
101

A preceded entry, with characters C and 1; with preceding entry index of X'C1'; offset of 1.
201

A preceded entry, with characters E, 1, 2, 3, and 4; with preceding entry index of X'101'; offset of 3.

When processing an input compression symbol of X'201':

• Characters E1234 are placed at offset 3, and processing continues with entry X'101'.
• Characters C1 are placed at offset 1, and processing continues with entry X'C1'.
• Character A is placed at offset 0.

The expansion results in the 8 characters A, C, 1, E, 1, 2, 3, and 4 placed in the output string.

Chapter 23. Data compression and expansion services 381

382 z/OS: z/OS MVS Assembler Services Guide

Chapter 24. Accessing unit control blocks (UCBs)

Each device in a configuration is represented by a unit control block (UCB). In a dynamic configuration
environment, a service obtaining UCB information needs to be able to detect any changes in the
configuration that could affect the returned information. The MVS I/O configuration token provides this
capability. You can scan UCBs with the UCBSCAN macro to obtain information about the devices in the
configuration. You can also use the UCBINFO macro to obtain device information from a UCB.

The eligible device table (EDT) contains the definitions for the installation's device groups. The EDTINFO
macro allows you to obtain information from the EDT.

Detecting I/O configuration changes
You can use the MVS I/O configuration token to detect I/O configuration changes. The MVS I/O
configuration token is a 48-byte token that uniquely identifies an I/O configuration to the system. The
token will change whenever the software configuration definition changes. Thus, if your program obtains
the current MVS I/O configuration token and compares it to one previously obtained, the program can
determine whether there has been a change in the I/O configuration: If the tokens do not match, the I/O
configuration has changed.

An optional parameter, IOCTOKEN, is available with the UCBSCAN macro. Specifying IOCTOKEN ensures
that the system will notify the caller through a return code and will not return any data if the current I/O
configuration is not consistent with the configuration represented by the token specified as input by the
caller.

Use the following ways to obtain the current MVS I/O configuration token:

• Issue the IOCINFO macro.
• Issue the UCBSCAN macro, setting the input specified by the IOCTOKEN parameter to binary zeroes.

The macro will then return the current I/O configuration token at the start of the scan.
• Issue EDTINFO macro, setting the input specified by the IOCTOKEN parameter to binary zeroes.

Use of the MVS I/O configuration token can help prevent data inconsistencies that might occur if the I/O
configuration changes between the time the caller obtained the token and the time the service returns the
information. For example, you can use the configuration token to determine whether the I/O configuration
changes during a UCB scan. If the IOCTOKEN parameter is specified with UCBSCAN, the caller will be
notified through a return code if the set of UCBs changes while the scan is in progress. Checking for
this return code allows the caller to restart the scan to ensure that copies of all UCBs in the current
configuration are obtained.

An unauthorized program can use the MVS I/O configuration token to regularly check whether a
configuration change has occurred, as in the following example:

• The program issues the IOCINFO macro to obtain the MVS I/O configuration token.
• The program sets a time interval that is to expire in 10 minutes, using the STIMER macro.
• When the time interval expires, the user-specified timer exit routine gets control and issues the

IOCINFO macro to obtain the MVS I/O configuration token that is current at this later time.
• The program compares the newly-obtained token with the original one.
• If the tokens match, no I/O configuration change has occurred, and the program resets the time interval

for another 10 minutes to check again at that time.
• If the tokens do not match, a configuration change has occurred. The program then rebuilds its control

structures by using the UCBSCAN macro, specifying the IOCTOKEN parameter to check for any further
I/O configuration changes while the rebuilding process is in progress. After the control structures are
rebuilt for the new I/O configuration, the program resets the time interval for 10 minutes to check again
for I/O configuration changes.

© Copyright IBM Corp. 1988, 2022 383

Scanning UCBs
You can use the UCBSCAN macro with the COPY keyword to scan UCBs. On each invocation, UCBSCAN
may return, in caller-supplied storage areas, a copy of one or more of the following UCB segments:

• UCB common segment
• UCB common extension segment
• UCB prefix extension segment
• UCB device class extension segment

The scan can include all UCBs in the system, or be restricted to a specific device class. For example, you
could use UCBSCAN to find all DASD devices currently defined to the configuration. It is also possible to
restrict the scan to UCBs for static and installation-static devices, or to include UCBs for dynamic devices
as well.

Example of a Program That Obtains Copies of All the UCBs: This example program obtains copies of
all UCBs, including those for devices defined as dynamic. It uses the MVS I/O configuration token to
determine if the I/O configuration changes during the scan, and it restarts the scan if the I/O configuration
has changed. On each invocation of UCBSCAN, the system returns a copy of a UCB at the address
specified by UCBAREA and return the current MVS I/O configuration token.

SCANEXMP CSECT
SCANEXMP AMODE 31
SCANEXMP RMODE ANY
 DS 0H
 BAKR R14,0 Save regs on linkage stack
 LR R12,R15 Set up code reg
 USING SCANEXMP,R12
 LA R13,SAVEAREA Get save area address
 MVC SAVEAREA+4(4),FIRSTSAV First save area in chain
*
* ...
*
RESCANLP DS 0H
 IOCINFO IOCTOKEN=TOKEN Get current IOCTOKEN
 XC SCANWORK,SCANWORK Clear scan work area
SCANLOOP DS 0H
 UCBSCAN UCBAREA=UCBCOPY,WORKAREA=SCANWORK,DYNAMIC=YES, +
 RANGE=ALL,IOCTOKEN=TOKEN
 LTR R15,R15 Was a UCB returned?
 BNZ SCANDONE No, either a configuration
* change has occurred
* or no more UCBs
*
* Process UCB
*
 B SCANLOOP
SCANDONE DS 0H
 LA R02,12 Return code for a
* configuration change
 CR R15,R02 Did a configuration change
* occur?
 BE RESCANLP Yes, start scan again
FINISHED DS 0H
*
* ...
*
ENDIT DS 0H
 PR Return to caller
 EJECT
*
* Register equates
*
R02 EQU 2
R03 EQU 3
R09 EQU 9
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 DS 0F
FIRSTSAV DC CL4'F1SA' First save area ID
SAVEAREA DS 18F Save area

384 z/OS: z/OS MVS Assembler Services Guide

TOKEN DS 48C IOCTOKEN area
UCBCOPY DS 48C UCB Copy returned by
* SCAN
SCANWORK DS CL100 Work area for SCAN
 END SCANEXMP

Obtaining UCB information for a specified device
You can use the UCBINFO macro to obtain information from a UCB for a specified device. You can use
UCBINFO to obtain:

• A count of the UCBs for a device class
• Reasons why a device is offline
• Device path information
• Channel path type information
• A copy of the UCB prefix extension
• Information about the alias UCBs for a parallel access volume.

When you call UCBINFO, you provide the device number of the device for which you want the information.

Obtaining eligible device table information
The installation's device groups are defined in the eligible device table (EDT). An EDT is an installation-
defined and named representation of the devices that are eligible for allocation. This table also defines
the relationship of generic device types and esoteric group names. The term “generic device type”
refers to the general identifier IBM gives a device; for example, 3380. An esoteric device group is an
installation-defined and named collection of I/O devices; TAPE is an example of an esoteric group name.
See z/OS HCD Planning for further information on the EDT.

Using the EDTINFO macro
The EDTINFO macro enables you to obtain information from the EDT and to check your device
specification against the information in the EDT. You can use the EDTINFO macro to perform the following
functions:

• Check groups. The EDTINFO macro determines whether the input device numbers constitute a valid
allocation group. The device numbers are a valid allocation group if either of the following is true:

– For any allocation group in the EDT that contains at least one of the device numbers specified in the
input device number list, all of the device numbers in that group in the EDT are contained in the input
device number list

– None of the allocation groups in the EDT contain any of the numbers specified in the input device
number list.

If neither of these is the case, the device numbers are not a valid allocation group.
• Check units. The EDTINFO macro determines whether the input device numbers correspond to the
specified unit name. The unit name is the EBCDIC representation of the IBM generic device type or
esoteric group name.

• Return unit name. The EDTINFO macro returns the unit name associated with the UCB device type
provided as input.

• Return unit control block (UCB) addresses. The EDTINFO macro returns a list of UCB addresses
associated with the unit name or device type provided as input.

Note: The EDTINFO macro returns UCB addresses only for below 16 megabyte UCBs for static and
installation-static devices with 3-digit device numbers. However, you can use the RTNDEVN keyword
with the EDTINFO macro to return a device number list for devices that are dynamic, 4-digit or
described by UCBs residing above the 16-megabyte line.

Chapter 24. Accessing unit control blocks (UCBs) 385

The UCBINFO macro can then be used to obtain device number information for a specific device
number.

If your program is authorized, running in supervisor state or with a program key mask of 0-7, you can
use the UCBLOOK macro to the obtain the actual UCB address from a given device number. See, z/OS
MVS Programming: Authorized Assembler Services Reference SET-WTO, and z/OS MVS Programming:
Authorized Assembler Services Guide for the UCBLOOK macro.

• Return group ID. The EDTINFO macro returns the allocation group ID corresponding to each UCB
address specified as input.

• Return attributes. The EDTINFO macro returns general information about the unit name or device type
specified as input.

• Return unit names for a device class. The EDTINFO macro returns a list of generic device types or
esoteric group names associated with the device class specified as input.

• Return UCB device number list. The EDTINFO macro returns the UCB device number list associated with
the unit name or UCB device type specified as input. You can also specify that the following be included
in the list:

– Devices defined to the system as dynamic
– Devices defined with 4-digit device numbers
– Devices with UCBs defined above 16 megabytes

• Return maximum eligible device type. The EDTINFO macro returns the maximum eligible device type
(for the allocation and cataloging of a data set) associated with the unit name or device type, recording
mode, and density provided as input. The maximum eligible device type is the tape device type that
contains the greatest number of eligible devices compatible with the specified recording mode and
density.

386 z/OS: z/OS MVS Assembler Services Guide

Chapter 25. Setting up and using an internal reader

The internal reader is a software substitute for a card punch and a card reader, a tape drive, or a TSO/E
terminal. Instead of entering a job into the system (through JES) on punched cards, or through tape, you
can use the output of one job or step as the input to another job, which JES will process directly.

The internal reader facility is useful for several kinds of applications:

• You can use it to generate another job or a series of jobs from an already-executing job. An online
application program may submit another job to produce a report, for example, so it does not have to do
it itself.

• A job that produces a series of jobs can put its output to an internal reader for immediate execution.
For example, a job that updates data bases and starts other applications based upon some input
parameters or real-time events, can use the internal reader for its output.

• The operator can start utility programs to read jobs from disk or tape files and submit them to the
system. The IBM-supplied procedure ‘RDR’ is an example of a program that does this (see z/OS JES2
Initialization and Tuning Guide).

• The operating system itself uses internal readers for submitting the JCL to start up started tasks or
TSO/E logons.

Following is a discussion of the batch job internal reader, which is the facility you can use to submit a job
from within another job.

The process of setting up and using an internal reader involves five tasks:

• Creating and allocating a data set
• Opening the data set
• Putting records into the data set
• Closing/deallocating the data set
• Passing the data set/records to the job entry subsystem for processing

Started tasks that run under the MSTR subsystem have the ability to set up an internal reader. To
accomplish this they must first successfully invoke the Request Job ID SSI call, and then perform
allocation. For more information on the Request Job ID call (SSI function code 20), see z/OS MVS Using
the Subsystem Interface.

Allocating the internal reader data set
You can allocate an internal reader data set, in any address space, either with JCL or dynamically, as
follows:

• Define the data set in the JCL for a job:

//JOBJCL DD SYSOUT=(A,INTRDR)

Note:

1. “INTRDR” is an IBM-reserved name identifying the internal reader as the program to process this
data set after it is created and written to.

2. The SYSOUT class on this DD statement becomes the message class for the submitted job unless
you specify MSGCLASS on the JOB statement.

• Use the following dynamic allocation text unit keys to dynamically allocate an internal reader data
set:

– DALSYSOU — define the SYSOUT data set and its class.
– DALSPGNM — specify the SYSOUT program name (INTRDR).

© Copyright IBM Corp. 1988, 2022 387

– DALCLOSE — request that INTRDR be deallocated at close.
– DALRTDDN — request the return of the ddname assigned by dynamic allocation.
– DALLRECL — specify the record length of any instream data set.
– DALRECFM — specify the record format of any instream data set.

Note: DALCLOSE, DALRTDDN, DALLRECL and DALRECFM are optional dynamic allocation text unit keys.

For the format details of dynamic allocation text unit keys, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Note:

1. An INTRDR data set can contain any number of jobs.
2. The output destination of the INTRDR data set becomes the default print/punch routing of all jobs

contained within it.
3. INTRDR data sets contain sequential, fixed-length, or variable-length records. Instream data records

can be up to 254 bytes long. Note, however, that JCL images in the data sets must be exactly 80 bytes
long.

Opening the internal reader data set
You can write to an internal reader using BSAM or QSAM or an ACB interface. With BSAM or QSAM, you
code DSORG=PS in the DCB. There is no advantage to specifying multiple buffers. The most efficient
number of QSAM buffers (BUFNO in the DCB) is 1. You can use any of these interfaces in 24-bit or 31-bit
addressing mode. If you call in 31-bit mode, the ACB can be above the 16 MB line.

The DCB macro requires that you code the DDNAME keyword. If you code DALRTDDN on the dynamic
allocation call, it means that you are requesting dynamic allocation to return the new DD name. If you do
this, you might choose to code a dummy DD name on the DCB or ACB macro. For example, you might code
DDNAME=*.

If you code DALRTDDN, move the returned DDNAME from the DALRTDDN text unit to the DCB or ACB
before issuing the OPEN macro. The offset to the DDNAME field in the DCB is the same as the offset in the
ACB. You can use the DCBD mapping macro for either one and copy the DD name to the DCBDDNAM field.
For information on using the OPEN, DCB, ACB, and DCBD macros, see z/OS DFSMS Macro Instructions for
Data Sets.

Opening the INTRDR data set identifies it to the JES and prepares it to receive records.

Opening an internal reader that is already open has no effect. Multiple tasks cannot have the same
internal reader open at the same time.

Sending job output to the internal reader
Code a WRITE (BSAM), PUT (QSAM), or PUT(ACB interface) macro to send records to the internal reader.
You code the PUT macro differently for QSAM and for the ACB interface. See the VSAM documentation for
how to code PUT for the ACB interface.

Obtaining a job identifier
If you want to obtain the job identifier for a job, you must use an ENDREQ macro. see z/OS DFSMS Macro
Instructions for Data Sets.

Issue an ENDREQ macro after writing a complete job to the internal reader. The job identifier is returned
in the RPLRBAR field of the request parameter list (RPL). See z/OS JES2 Commands or z/OS JES3
Commands for details about the job identifier.

RPLRBAR is an 8-byte field. The first 3 bytes, xxx, are the characters JOB, TSU or STC. The remaining 5
bytes, nnnnn, represent the five digits of the job number. See z/OS JES2 Initialization and Tuning Guide or
z/OS JES3 Initialization and Tuning Guide for more information.

388 z/OS: z/OS MVS Assembler Services Guide

If you submit JCL, and JES does not recognize it as a job, RPLRBAR contains blanks or a job id from an
earlier job submitted through the internal reader.

Note that the RPL cannot have records longer than 80 bytes. Specify the following options on the RPL
macro when creating an RPL:

 OPTCD=(ADR,SEQ,SYN,NUP),RECLEN=80

Where:
ADR

Specifies addressed data processing with no index references.
SEQ

Specifies sequential processing.
SYN

Specifies a synchronous request and that control should be returned after completion of the request.
NUP

Specifies non-update mode (records retrieved are not updated or deleted).
RECLEN=80

Specifies that the submitted JCL records are 80 bytes.

Note that you must issue a CLOSE macro after the last ENDREQ.

The format of job numbers being displayed as part of command responses or messages can change
depending on whether JES2 is set up to support greater than 65K jobs. When job numbers are potentially
greater than 99,999, the format for job numbers is as follows: if the maximum allowed job number (high
value of the JOBDEF RANGE= statement) is above 99,999, the job number format is J0nnnnnn. This
format is used unless the job number range is decreased below 100,000. Similarly, STCnnnnn becomes
S0nnnnnn and TSUnnnnn becomes T0nnnnnn.

Note: If you use the PUT macro with the ACB interface to send the job output to the internal reader,
allocate the RPL below the 16 MB line or a system abend X'36F' might occur in certain environments,
such as JES3 levels earlier than z/OS V1R13 (HJS7780). Starting with z/OS V1R13, JES3 supports
allocating the RPL above the line.

Closing the internal reader data set
While your program is writing records to the internal reader data set, the internal reader facility is writing
them into a buffer in your address space. Issue the CLOSE macro to close the internal reader data set, and
to send the contents of the buffer to JES.

Filling the buffer in your address space sends the records to the JES for processing. JES considers a
closed data set to be a completed job stream and treats it as input. You can also send an internal reader
data set to the JES for processing by coding one of the following:

1. Code /*EOF as the last record in the job.

This control statement delimits the current job and makes it eligible for immediate processing by the
JES2 input service. The internal reader data set remains open.

2. Code /*DEL as the last record in the job.

This control statement cancels the job, and requests the output from the job. The job is immediately
scheduled for output processing. The output will consist of any JCL submitted so far, followed by a
message indicating that the job has been deleted before execution.

3. Code /*PURGE as the last record in the job.

This control statement is used only by JES2 internal readers. It cancels the current job and schedules
it for purge processing; no output is generated for the job.

4. Code /*SCAN as the last record in the job.

Chapter 25. Setting up and using an internal reader 389

This statement also applies only to JES2 internal readers. It requests that the current job be scanned
for JCL errors, but not executed.

You can put several groups of output records into the internal reader data set simply by starting each
group with another JCL JOB statement. The following example illustrates this.

//JOBA JOB D58ELM1,MORRIS
//GENER EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=A,DEST=2NDFLOOR
//SYSUT2 DD SYSOUT=(M,INTRDR)
//SYSUT1 DD DATA
//JOBB JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)
//REPORT1 EXEC PGM=SUMMARY
//OUTPUT DD SYSOUT=*
//INPUT DD DSN=REPORTA,DISP=OLD
//JOBC JOB D58ELM1,MORRIS,MSGLEVEL=(1,1)
//REPORT2 EXEC PGM=SUMMARY
//OUTPUT DD SYSOUT=A,DEST=3RDFLOOR
//INPUT DD DSN=REPORTB,DISP=OLD
/*EOF

In the preceding example, the IBM-supplied utility program IEBGENER is executed by job A. It reads from
SYSUT1, and submits to the internal reader, jobs B and C, which are report-producing programs. Note that
the message class for jobs B and C will be M, the SYSOUT class on the internal reader DD statement. Also,
the OUTPUT data set from job B, because it specifies “*” (defaulting to the job's message class), will be
class M.

The /*EOF control statement following the JCL indicates that the preceding jobs can be sent immediately
to the job entry subsystem for input processing. Coding the CLOSE macro would have the same effect.

See z/OS JES2 Initialization and Tuning Guide or z/OS JES3 Initialization and Tuning Guide for more
information about setting up and using internal readers.

390 z/OS: z/OS MVS Assembler Services Guide

Chapter 26. Using the symbol substitution service

The ASASYMBM and ASASYMBF services substitute text for symbols in character strings. This chapter
explains how to explicitly call ASASYMBM or ASASYMBF to substitute text for symbols that you specify in
application and vendor programs. It:

• Describes what symbols are
• Lists the symbols that the system provides
• Describes how to call ASASYMBM or ASASYMBF to substitute text for symbols.

Note: The system automatically substitutes text for symbols in dynamic allocations, parmlib members,
system commands, and job control language (JCL). The system does not provide automatic support for
other interfaces, such as application and vendor programs. Those interfaces must call ASASYMBM or
ASASYMBF to perform symbolic substitution.

What are symbols?
Symbols are elements that allow the system to use the same source code for two or more unique
instances of the same program. Symbols represent the variable information in a program. The program
calls the ASASYMBM or ASASYMBF macro to substitute text for the symbols.

For example, suppose you define the following data set name, with the &TCASEID. symbol as the low-
level qualifier:

 TEST.&TCASEID.

Then suppose that two different instances of a program each call ASASYMBM or ASASYMBF, one with
TEST001 as the substitution text for &TCASEID and the other with TEST002 as the substitution text. The
resulting data set names are:

 TEST.TEST001
 TEST.TEST002

Notice that one data set definition produces two unique instances of data sets to be used in the programs.

Types of symbols
There are two types of symbols that you can specify in application or vendor programs:

• System symbols are defined to the system at initialization. Your installation specifies substitution texts
for system symbols or accepts their default values. When a program calls ASASYMBM or ASASYMBF, it
can accept the installation-defined substitution texts or override them. There are two types of system
symbols:

– Static system symbols have substitution texts that are defined at system initialization and remain
fixed for the life of an IPL. Static system symbols represent fixed values such as system names and
sysplex names.

The DISPLAY SYMBOLS command displays the static system symbols and associated substitution
texts that are currently in effect. See z/OS MVS System Commands for details about DISPLAY
SYMBOLS.

– Dynamic system symbols have substitution texts that can change at any point in an IPL. They
represent values that can change often, such as dates and times. A set of dynamic system symbols is
defined to the system; your installation cannot provide additional dynamic system symbols.

See the information on using system symbols in z/OS MVS Initialization and Tuning Reference for lists of
dynamic and static system symbols.

© Copyright IBM Corp. 1988, 2022 391

• User symbols are symbols that a caller defines on a call to ASASYMBM or ASASYMBF. They are valid
only for the specific call. The caller specifies the names and substitution texts for user symbols in
a symbol table. If the names of user symbols are the same as the names of system symbols, the
substitution texts for the user symbols override the substitution texts for the system symbols.

The ASASYMBM service supports the use of sub-strings for both system and user symbols as described in
z/OS MVS Initialization and Tuning Reference in section Using substrings of system symbols.

If your program accepts the substitution texts for the installation-defined system symbols, there is no
need to specify those system symbols in the symbol table that you provide to ASASYMBM or ASASYMBF;
substitution for those system symbols is performed automatically. However, if your program wants to
override the installation-defined substitution texts for system symbols, you must specify those system
symbols in the symbol table. The symbol table is the only place where you can specify user symbols.

Examples of user symbols
Like system symbols, user symbols can represent any type of variable information in a program. When
planning to define user symbols, you should first determine if the system symbols provided by the system,
and their associated substitution texts, meet your needs. Define user symbols only if you need additional
values.

Suppose you are writing a program that is to access several data sets each time it runs. The user is to
provide the name of the specific data set to be used.

Your first step is to create a pattern, or "skeleton", for the data set name. You decide to use the name of
the system on which the program runs as a high-level qualifier, and the name of the data set that the user
provides as a low-level qualifier.

You decide to use the &SYSNAME system symbol to identify the system on which the program runs.
Because &SYSNAME is already defined to the system, and you do not want to override its substitution
text, you do not need to provide it to ASASYMBM or ASASYMBF. Because the system does not define
a symbol to identify the input from the user, you provide the following user symbol to ASASYMBM or
ASASYMBF:

 TESTDATA DC C'&&DATAID.' Define the symbol &DATAID

You begin by specifying, in your program, references to three data sets:

 &SYSNAME..&DATAID..DS1
 &SYSNAME..&DATAID..DS2
 &SYSNAME..&DATAID..DS3

You then specify that the user is to provide, as input to the program, the substitution text for the &DATAID
user symbol. For example:

 EXEC PGM=MYPGM,PARM='DATA1'

Your program provides, as input to ASASYMBM or ASASYMBF, a symbol table that contains the &DATAID
user symbol, with the substitution text that the user provided as input to the program:

 DATAIDSUBTEXT DC C'DATA1' Substitution text for &DATAID

To determine the data set name to be used, your program also provides to ASASYMBM or ASASYMBF the
pattern for the data set name, including the symbols for which substitution is to occur. For example:

 SYS1.&SYSNAME..&DATAID..DS1
 SYS1.&SYSNAME..&DATAID..DS2
 SYS1.&SYSNAME..&DATAID..DS3

The data set names resolve to the following names after symbolic substitution:

 SYS1.DATA1.DS1
 SYS1.DATA1.DS2
 SYS1.DATA1.DS3

392 z/OS: z/OS MVS Assembler Services Guide

“Calling the ASASYMBM or ASASYMBF service” on page 393 explains how to call ASASYMBM or
ASASYMBF to perform the substitution described in the example.

Calling the ASASYMBM or ASASYMBF service
A call to ASASYMBM/ASASYMBF:

1. Defines, to the system, the system symbols that ASASYMBM/ASASYMBF is to use.
2. Defines, to the system, user symbols that are specified in the symbol table (as described later).
3. Substitutes values for the symbols in the symbol table, based on an input character string (pattern).
4. Places the results of the substitution in an output buffer that the caller specifies.
5. Places the length of the output buffer in a field.
6. Provides a return code to the calling program.

You must include the ASASYMBP mapping macro to build the user parameter area (SYMBP) for
ASASYMBM/ASASYMBF. The information describes how to set up ASASYMBP to enable the desired
functions.

The two services differ as follows:

• ASASYMBM obtains and releases dynamic storage for use by the symbol substitution service. Input is
mapped using either the SYMBP or SYMBFP DSECT of the ASASYMBP mapping macro.

• ASASYMBF allows callers to pass in a 1024 byte work area for the symbol substitution service to use
as dynamic storage, so that there is no need to obtain (and release) storage for that purpose. For
ASASYMBF, input is mapped by the SYMBFP DSECT of the ASASYMBP mapping macro.

Because the SYMBP and SYMBFP DSECTs are much the same, except for different field names and one
extra field (SymbfpWorkareaAddr) in SYMBFP, you can build the SYMBFP area in advance and then decide
at runtime whether to call or LINK to ASASYMBM or ASASYMBF.

Setting up the ASASYMBP mapping macro
Before calling ASASYMBM/ASASYMBF to substitute text for a symbol, the caller must provide the symbol
pattern and its length, an output buffer and its length, and an area in which to place the return code from
ASASYMBM/ASASYMBF. The caller can optionally provide a symbol table and a time stamp.

The caller must code the following fields in the ASASYMBP mapping macro:
Field

Description
SYMBPPATTERN@

Specifies the address of the input character string (pattern) that contains symbols to be resolved.
SYMBPPATTERNLENGTH

Specifies the length of the input pattern specified in the PATTERN@ field.
SYMBPTARGET@

Specifies the address of the buffer that is to contain the output from ASASYMBM/ASASYMBF (the
results of the symbolic substitution).

SYMBPTARGETLENGTH@
Specifies the address of a fullword that:

• On input, contains the length of the output buffer specified in the TARGET@ field
• On output, contains the length of the substituted text within the output buffer.

SYMBPRETURNCODE@
Specifies the address of a fullword that is to contain the return code from ASASYMBM/ASASYMBF.

Before calling ASASYMBM/ASASYMBF, you can optionally code the following fields in the ASASYMBP
mapping macro:

Chapter 26. Using the symbol substitution service 393

Field
Description

SYMBPSYMBOLTABLE@
Specifies the address of a symbol table mapped by the SYMBT or SYMBT1 DSECT. Specify an address
in this field if you want to do one or both of the following:

• Provide symbols in addition to the system symbols that are defined to the system, or override the
system symbols that are defined to the system.

• Use additional functions of ASASYMBM/ASASYMBF, which are described in “Providing a symbol
table to ASASYMBM / ASASYMBF” on page 394.

Otherwise, specify an address of 0 in this field.

SYMBPTIMESTAMP@
Specifies the address of an eight-character area that contains the time stamp to be used. The format
of the time stamp is the same as the format of the system time of day clock (in other words,
the format of the value returned by the STCK instruction). Specify an address of zero to have the
system use the current time stamp when substituting for system symbols that relate to the time
or date. By default, the input time stamp is Greenwich Mean Time. Use the TIMESTAMPISLOCAL or
TIMESTAMPISSTCK bits to indicate that the input time stamp is local, or obtained from the system
time of day clock.

After the call to ASASYMBM/ASASYMBF, the caller can examine the following:

• The fullword pointed to by the SYMBPRETURNCODE@ field
• The fullword pointed to by the SYMBPTARGETLENGTH@ field
• The area pointed to by the SYMBPTARGET@ field.

Providing a symbol table to ASASYMBM / ASASYMBF
A program that calls ASASYMBM/ASASYMBF can optionally provide user symbols and their associated
substitution texts in a symbol table. The SYMBPSYMBOLTABLE@ field, in the user parameter area of the
ASASYMBP mapping macro, specifies the address of a symbol table, which is mapped by either DSECT
SYMBT or SYMBT1. DSECT SYMBT is the default; turn on bit Symbt1Symbt1 to indicate that you are using
the SYMBT1 DSECT.

Note that only the first two bytes of the SYMBT1 DSECT are compatible with SYMBT DSECT.

When you use a SYMBT1 DSECT, symbols provided within a user-built symbol table are required to begin
with an ampersand and end with a period and all symbol names must be less than 256 bytes (except for
an input symbol area returned by the IEFSJSYM macro; see Input symbol area returned by IEFSJSYM).

The SYMBT1 DSECT supports the following functions beyond those provided by SYMBT:
Multiple symbol tables:

In addition to the system symbol table, you can specify multiple user-provided symbol tables with one
call to ASASYMBM/ASASYMBF. Specify user-provided symbol tables in field Symbt1NextSymbtAddr.
This address can point to a symbol table mapped by either the SYMBT or SYMBT1 DSECT, as indicated
by bit Symbt1Symbt1.

• If a SYMBT DSECT is found, then this is the last table in the queue.
• If a SYMBT1 DSECT is found, then a zero in Symbt1NextSymbtAddr indicates that this is the last

table in the queue. When you specify multiple user-provided symbol tables, many of the options that
may be specified within an individual SYMBT1/SYMBT DSECT are honored within the first SYMBT1
only. These are all identified within the commentary for the SYMBT1 DSECT.

Continue after full:
When the target buffer is not long enough to contain the full result, the system continues processing in
order to determine how long the target buffer must be to contain the full result. The system outputs in
register 0 the length required to fit the full result.

394 z/OS: z/OS MVS Assembler Services Guide

Preserve alignment:
Text position is less sensitive to the length of the symbol's substitution text. If there is a chain of
SYMBT1s, this function is honored only for the first SYMBT1 of the chain. This function also implies
the continue after full function.

Uncompressed double ampersand:
Double ampersands are not compressed into one ampersand. If there is a chain of SYMBT1s, this
is honored for the first SYMBT1 of that chain only. This function also implies the continue after full
function.

Input symbol area returned by IEFSJSYM:
The input symbol area is returned by the IEFSJSYM service, which extracts JCL symbols and their
values. This area is mapped by IEFSJSYD. This function also implies the continue after full function.

Notes:

• The input symbol area returned by IEFSJYSM is not in the same format as the symbol area normally
required by ASASYMBM/ASASYMBF using a SYMBT DSECT.

• The area returned by the IEFSJSYM macro is not considered a user-built symbol table and symbols
in this area do not begin with an ampersand and end with a period.

Setting up the symbol table
When you provide a symbol table to the ASASYMBM/ASASYMBF service (that is, when you specify a
non-zero address in the SYMBPSYMBOLTABLE@ field), you can specify either DSECT SYMBT or SYMBT1
with bit Symbt1Symbt1 and code the following fields in the ASASYMBP mapping macro:

Field
Description

SYMBTNUMBEROFSYMBOLS
Specifies the number of entries in the symbol table. The number can be zero.

SYMBTTABLEENTRIES
Specifies the beginning of the entries in the symbol table. If the SYMBTINDIRECTSYMBOLAREA bit
is off, the symbol table entries must be contiguous to the header, beginning at this field. Otherwise,
place the SYMBTESYMBOLAREAADDR field in this field; SYMBTESYMBOLAREAADDR must point to
an area that contains the symbol table entries. SYMBTESYMBOLAREAADDR is a field in the SYMBTE
structure; for details about the ASASYMBP mapping, see z/OS MVS Data Areas in the z/OS Internet
library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

SYMBTE
Specifies an entry in the symbol table. Code one symbol table entry (SYMBTE) for each symbol in
the symbol table. The number of entries is specified in the SYMBTNUMBEROFSYMBOLS field. If the
SYMBTINDIRECTSYMBOLAREA bit is off, the symbol table entries must be contiguous to the header,
beginning at the SYMBTTABLEENTRIES field. Otherwise, the symbol table entries begin at the area
pointed to by the SYMBTESYMBOLAREAADDR field.

Each symbol table entry (SYMBTE) must set the following fields:

• SYMBTESYMBOLPTR, when the SYMBTPTRSAREOFFSETS flag is off; it specifies the address of the
area that contains the name of the symbol

• SYMBTESYMBOFFSET, when the SYMBTPTRSAREOFFSETS flag is on; it specifies the offset to the
symbol from the beginning of the symbol area; you must also set up the area pointed to by the offset

• SYMBTESYMBOLLENGTH, which specifies the length of the symbol
• SYMBTESUBTEXTPTR, when the SYMBTPTRSAREOFFSETS flag is off; it specifies the address of the

area that contains the substitution text for the symbol
• SYMBTESUBTEXTOFFSET, when the SYMBTPTRSAREOFFSETS flag is on; it specifies the offset to

the substitution text from the beginning of the symbol area; you must also set up the area pointed to
by the offset

• SYMBTESUBTEXTLENGTH, which specifies the length of the substitution text.

Chapter 26. Using the symbol substitution service 395

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

If you specify an address in the SYMBPSYMBOLTABLE@ field, you must also provide a symbol table
header (SYMBTHEADER). Optionally, set one or more of the flags in the symbol table header to indicate
that ASASYMBM is to perform additional functions.

Note: The field and bit names in the following list are all prefixed by the characters SYMBT in the
ASASYMBP mapping macro. The SYMBT prefix is not used out of consideration for readability.

Flag
Function

CHECKNULLSUBTEXT
Specifies that ASASYMBM is to return a return code of X'0C' if the substitution text for a symbol is a
null string (has a length of zero).

The default is to not check if the substitution text for a symbol is a null string.

INDIRECTSYMBOLAREA
Specifies that the symbol area is not contiguous; it is pointed to by the SYMBTESYMBOLAREAADDR
field. For an example of a symbol area that is not contiguous, see Figure 109 on page 398.

The default is that the symbol area is contiguous.

NODEFAULTSYMBOLS
Specifies that ASASYMBM is not to use the default set of system symbols. In other words, ASASYMBM
uses only the symbols that are defined in the user-provided symbol table.

When you do not set this flag, ONLYDYNAMICSYMBOLS, or ONLYSTATICSYMBOLS to on, the default is
to use both dynamic and static system symbols.

ONLYDYNAMICSYMBOLS
Specifies that ASASYMBM is not to substitute text for the static system symbols.

ONLYSTATICSYMBOLS
Specifies that ASASYMBM is not to substitute text for the dynamic system symbols.

PTRSAREOFFSETS
Specifies that the pointer fields in the symbol table are offsets. The system adds the offset to the
address of the symbol area to obtain the actual address of the operand.

The default is to indicate that the pointer fields in the symbol table are pointers.

MIXEDCASESYMBOLS
Specifies that the system is to recognize, within an input pattern, symbols that contain:

• All upper-case characters, and
• Both upper-case and lower-case characters.

The default is to recognize symbols that match the symbols in the symbol table.

TIMESTAMPISGMT
Specifies that the input time stamp is Coordinated Universal Time (UTC) or Greenwich Mean Time
(GMT). TIMESTAMPISGMT is the default when you provide a time stamp (in the area pointed to by
SYMBPTIMESTAMP@) and you do not set this flag, TIMESTAMPISLOCAL, or TIMESTAMPISSTCK to on.

TIMESTAMPISLOCAL
Specifies that the input time stamp is local time.

TIMESTAMPISSTCK
Specifies that the input time stamp is obtained from the system time of day (TOD) clock.

WARNNOSUB
Specifies that ASASYMBM is to return a X'10' return code when the system does not perform symbolic
substitution.

The default is to not return a return code when the system does not perform symbolic substitution.

396 z/OS: z/OS MVS Assembler Services Guide

WARNSUBSTRINGS
Specifies that ASASYMBM is to return a X'04' return code when the system finds a substring error.
See the information on using symbols in z/OS MVS Initialization and Tuning Reference for information
about how the system performs symbolic substitution when errors occur in substringing.

The default is to not return a return code when the system finds a substring error.

The following is an example of a symbol table that is contiguous:

Figure 108. Contiguous Symbol Table

The following is an example of a symbol table that is not contiguous:

Chapter 26. Using the symbol substitution service 397

Figure 109. Non-contiguous Symbol Table

Rules for entering symbols in the symbol table
Follow these rules when specifying entries in the symbol table:

1. The names of the symbols must:

• Begin with an ampersand (&)
• End with a period (.)
• Contain 1-253 additional characters (in other words, you cannot create the symbol "&.").

Note: It is important that all symbols end with a period. If a symbol does not end with a period, syntax
errors could result.

2. Specify the names of system symbols only if you want to override the installation-defined substitution
texts for those system symbols. Ask the operator to enter a DISPLAY SYMBOLS command to display
the system symbols and associated substitution texts that are currently in effect.

3. Do not begin the names of user symbols with the characters &SYS. The &SYS prefix is reserved for
system symbols; use the &SYS prefix only when overriding substitution texts for system symbols.

4. The length of the substitution text cannot exceed the length of the symbol name plus the ampersand
(&) unless the symbol name ends with an underscore, in which case the substitution text can be up to
44 characters long.

Except for symbols ending with an underscore, this restriction prevents the flow of characters beyond
established limits for text entry. For example, assume that the limit for text entry is column 71. If a
line that contains a four-character symbol extends to column 70, a substitution text of greater than six
characters would force the text beyond column 71.

When using a symbol that ends with an underscore, note that you must handle unintended results,
such as truncation with no warning, which might occur if the resulting substitution causes flow of
characters to extend beyond an intended limit. For example, in a parmlib member, make sure that the
resulting substitution would not cause characters to extend beyond column 71. While programs are
not expected to accommodate such line overflow, you can code your program to handle it.

398 z/OS: z/OS MVS Assembler Services Guide

IBM provides ISPF exec ASASYMUN to help you locate data that might encounter unexpected results
if symbol names have underscores. ASASYMUN scans a PDS or PDSE looking for situations where a
symbol name containing an underscore could cause different results than expected. For example,
it looks for a symbol (an ampersand followed by other characters) followed immediately by an
underscore with no delimiting period. You should change lines like these to add a period before the
underscore to delimit the symbol. The ASASYMUN exec works on any z/OS release but is only shipped
in the z/OS V2R2 release or later.

The syntax of ASASYMUN is as follows:

EXEC execdsn(ASASYMUN) 'scandsn'

Where:
execdsn

is the cataloged data set containing the ASASYMUN exec. Use execdsn(ASASYMUN) if the data set
name is fully qualified. You can use alternate forms of execdsn(ASASYMUN) if the data set is in the
SYSEXEC or SYSPROC concatenation of the user. For example, you might be able to specify just
'(ASASYMUN)'.

scandsn
is the PDS or PDSE you want to scan. Specify a data set contain statements subject to symbol
substitution, like JCL or parmlib statements. If the data set name is fully-qualified, double the
quotes around the name in addition to the single quotes surrounding the parameter. For example,
specify '''fully.qual.dsn''' for a fully qualified data set.

Using symbols in programs
Your program can call ASASYMBM to substitute text for the symbols that are specified in the program. The
following examples show how to call ASASYMBM in various situations.

Example 1

Operation
Set up the area that is to contain the substitution text. The caller does not provide a symbol table or time
stamp.

 LA 3,MYSYMBP
 USING SYMBP,3
 XC SYMBP(SYMBP_LEN),SYMBP Initialize to zero
 LA 4,PATTERN Address of pattern
 ST 4,SYMBPPATTERN@ Save in SYMBP area
 LA 4,L'PATTERN Length of pattern
 ST 4,SYMBPPATTERNLENGTH Save in SYMBP area
 LA 4,TARGET Address of target
 ST 4,SYMBPTARGET@ Save in SYMBP area
 MVC TARGETLENGTH,=A(L'TARGET) Set length of target
 LA 4,TARGETLENGTH Address of target length
 ST 4,SYMBPTARGETLENGTH@ Save in SYMBP area
*
* Because the caller did not provide a symbol table, we know that
* we are using only the system symbols provided by MVS. Since we have
* initialized the entire SYMBP area to 0, we do not have to
* set up the SYMBPSYMBOLTABLE@ field.
*
* Because the caller did not provide a timestamp, and because we
* have initialized the entire SYMBP area to 0, we do not have to
* set up the SYMBPTIMESTAMP@ field.
*
 LA 4,RETURNCODE Address of return code
 ST 4,SYMBPRETURNCODE@ Save in SYMBP area
 DROP 3
⋮
*
* Note that to avoid the assembler substituting
* for &SYSNAME, &YYMMDD, &HHMMSS, two ampersands are specified.
* The resulting pattern, then, is actually
* USERID.&SYSNAME..D&YYMMDD..T&HHMMSS

Chapter 26. Using the symbol substitution service 399

*
PATTERN DC C'USERID.&&SYSNAME..D&&YYMMDD..T&&HHMMSS'
DYNAREA DSECT
 DS 0F
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
RETURNCODE DS F Return code
TARGETLENGTH DS F Length of target
TARGET DS CL80 An area big enough to hold the target no
* matter what is substituted. Since &DATE
* and &TIME are not used, it need be no
* longer than the pattern area.
 ASASYMBP , Mapping of SYMBP area

Example 2

Operation
Set up the SYMBP area. Provide a symbol table and a time stamp.

 LA 3,MYSYMBP
 USING SYMBP,3
 XC SYMBP(SYMBP_LEN),SYMBP Initialize to zero
 LA 4,PATTERN Address of pattern
 ST 4,SYMBPPATTERN@ Save in SYMBP area
 LA 4,L'PATTERN Length of pattern
 ST 4,SYMBPPATTERNLENGTH Save in SYMBP area
 LA 4,TARGET Address of target
 ST 4,SYMBPTARGET@ Save in SYMBP area
 MVC TARGETLENGTH,=A(L'TARGET) Set length of target
 LA 4,TARGETLENGTH Address of target length
 ST 4,SYMBPTARGETLENGTH@ Save in SYMBP area
 LA 5,MYSYMBT Address of symbol table
 ST 5,SYMBPSYMBOLTABLE@ Save in SYMBP area
*
* Initialize symbol table to indicate that the input timestamp
* is local time, not UTC or GMT, and to contain two system symbols.
*
 USING SYMBT,5
 XC SYMBTHEADER,SYMBTHEADER Clear symbol table header
 OI SYMBTFLAGS,SYMBTTIMESTAMPISLOCAL Local timestamp
 LA 6,2 Number of symbols
 STH 6,SYMBTNUMBEROFSYMBOLS Save in SYMBT area
 LA 5,SYMBTTABLEENTRIES Address of first symbol entry
 USING SYMBTE,5 A symbol table entry
*
* Initialize first entry in symbol table.
*
 LA 6,SYMBOL1 Address of first symbol
 ST 6,SYMBTESYMBOLPTR Save in SYMBTE area
 LA 6,L'SYMBOL1 Length of first symbol
 ST 6,SYMBTESYMBOLLENGTH Save in SYMBTE area
 LA 6,SYMBOL1SUBTEXT Address of substitution text
 ST 6,SYMBTESUBTEXTPTR Save in SYMBTE area
 LA 6,L'SYMBOL1SUBTEXT Length of substitution text
 ST 6,SYMBTESUBTEXTLENGTH Save in SYMBTE area
*
* Move to next entry in symbol table.
*
 LA 5,SYMBTE_LEN(,5) Address of next symbol entry
*
* Initialize second entry in symbol table.
*
 LA 6,SYMBOL2 Address of symbol
 ST 6,SYMBTESYMBOLPTR Save in SYMBTE area
 LA 6,L'SYMBOL2 Length of symbol
 ST 6,SYMBTESYMBOLLENGTH Save in SYMBTE area
 LA 6,SYMBOL2SUBTEXT Address of substitution text
 ST 6,SYMBTESUBTEXTPTR Save in SYMBTE area
 LA 6,L'SYMBOL2SUBTEXT Length of substitution text
 ST 6,SYMBTESUBTEXTLENGTH Save in SYMBTE area
 DROP 5 No longer need addressability

*
* Complete parameter area initialization.
*
 LA 4,MYTIMESTAMP Address of timestamp
 ST 4,SYMBPTIMESTAMP@ Save in SYMBP area

400 z/OS: z/OS MVS Assembler Services Guide

 LA 4,RETURNCODE Address of return code
 ST 4,SYMBPRETURNCODE@ Save in SYMBP area
 DROP 3 No longer need addressability
⋮
*
* Note that in order to avoid the assembler's substituting
* for &YYMMDD, &HHMMSS, &S1, &S2, two ampersands are specified.
* The resulting pattern, then, is actually
* USERID.&YYMMDD..&S1..&S2
* Similarly, the resulting symbol names are
* &S1; and &S2;
*
PATTERN DC C'USERID.D&&YYMMDD..T&&HHMMSS..&&S1..&&S2'
SYMBOL1 DC C'&&S1.' First symbol is &S1
SYMBOL1SUBTEXT DC C'S1V' Substitution text for &S1
SYMBOL2 DC C'&&S2.' Second symbol is &S2
SYMBOL2SUBTEXT DC C'S2V' Substitution text for &S2
* Note that the substitution text values above are no longer than
* the symbol names (counting the "&" but not the "."). This
* helps to ensure that the substituted length is not greater
* than the pre-substitution length.
*
DYNAREA DSECT
 DS 0F
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
 DS 0F
MYSYMBT DS CL(SYMBT_LEN+2*SYMBTE_LEN) Symbol table with
* room for two symbol entries
MYTIMESTAMP DS CL8 Time stamp that was set previously
* Assume it represents local time
RETURNCODE DS F Return code
TARGETLENGTH DS F Input/Output Target Length
TARGET DS CL80 An area big enough to hold the target no
* matter what is substituted
 ASASYMBP , Mapping of SYMBP, SYMBT, SYMBTE

Example 3

Operation
Use the LINK macro to invoke the ASASYMBM service:

* Set up MYSYMBP as in previous examples.
⋮
 LINK EP=ASASYMBM,MF=(E,MYSYMBP)
⋮
DYNAREA DSECT
 DS 0F
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
 ASASYMBP , Mapping of SYMBP area

Example 4

Operation
Use the LINKX macro to invoke the ASASYMBM service:

* Set up MYSYMBP as in previous examples.
⋮
 MVC MYLIST(MYSLIST_LEN),MYSLIST Initialize execute form
 LINKX EP=ASASYMBM,MF=(E,MYSYMBP),SF=(E,MYLIST) call service
⋮
MYSLIST LINKX SF=L Initialized list form
MYSLIST_LEN EQU *-MYSLIST Length of list form
DYNAREA DSECT
MYLIST LINKX SF=L List form in dynamic area
 DS 0F
MYSYMBP DS CL(SYMBP_LEN) SYMBP area
 ASASYMBP , Mapping of SYMBP area

Chapter 26. Using the symbol substitution service 401

402 z/OS: z/OS MVS Assembler Services Guide

Chapter 27. Using system logger services

This chapter covers the information you need to write a system logger application, including the following
topics:

• “What is system logger?” on page 403
• “The system logger configuration” on page 406.
• “Overview of system logger services” on page 409.
• “IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies” on page 419.
• “IXGCONN: Connecting to and disconnecting from a log stream” on page 424.
• “IXGWRITE: Writing to a log stream” on page 431.
• “IXGBRWSE: Browsing/reading a log stream” on page 435.
• “IXGDELET: Deleting log blocks from a log stream” on page 438.
• “IXGIMPRT: Import log blocks” on page 439.
• “IXGQUERY: Get information about a log stream or system logger” on page 440.
• “IXGOFFLD: Initiate offload to DASD log data sets” on page 444.
• “IXGUPDAT: Modify log stream control information” on page 445.
• “Setting up the system logger configuration” on page 445.
• “Reading data from log streams in data set format” on page 445.
• “When things go wrong — Recovery scenarios for system logger” on page 451.

What is system logger?
System logger is a set of services that allows an application to write, browse, and delete log data. You
can use system logger services to merge data from multiple instances of an application, including merging
data from different systems across a sysplex.

For example, suppose you are concurrently running multiple instances of an application in a sysplex, and
each application instance can update a common database. It is important for your installation to maintain
a common log of all updates to the database from across the sysplex, so that if the database should be
damaged, it can be restored from the backup copy. You can merge the log data from applications across
the sysplex into a log stream, which is simply a collection of data in log blocks residing in the coupling
facility and on DASD (see Figure 110 on page 403).

Figure 110. System Logger Log Stream

© Copyright IBM Corp. 1988, 2022 403

The log stream
A log stream is an application specific collection of data that is used as a log. The data is written to and
read from the log stream by one or more instances of the application associated with the log stream. A log
stream can be used for such purposes as a transaction log, a log for re-creating databases, a recovery log,
or other logs needed by applications.

A system logger application can write log data into a log stream, which is simply a collection of data. Data
in a log stream spans two kinds of storage:

• Interim storage, where data can be accessed quickly without incurring the overhead of DASD I/O.
• DASD log data set storage, where data is hardened for longer term access. When the interim storage

medium for a log stream reaches a user-defined threshold, the log data is offloaded to DASD log data
sets.

There are two types of log streams; coupling facility log streams and DASD-only log streams. The main
difference between the two types of log streams is the storage medium system logger uses to hold interim
log data:

• In a coupling facility log stream, interim storage for log data is in coupling facility list structures. See
“Coupling facility log stream” on page 404.

• In a DASD-only log stream interim storage for log data is contained in local storage buffers on the
system. Local storage buffers are data space areas associated with the system logger address space,
IXGLOGR. See “DASD-only log stream” on page 405.

Your installation can use just coupling facility log streams, just DASD-only log streams, or a combination
of both types of log streams. The requirements and preparation steps for the two types of log streams are
somewhat different; see “Setting up the system logger configuration” on page 445.

Some key considerations for choosing either coupling facility log steams or DASD-only log streams are:

• The location and concurrent activity of writers and readers to a log stream's log data
• The volume of log data written to a log stream.

Coupling Facility log streams are required when:

1. You require more than one concurrent log writer or log reader to the log stream from more than one
system in the sysplex.

2. You are recording high volumes of log data being to the log stream.

You can use DASD-only log streams when:

1. You require no more than one concurrent log writer or log reader to the log stream from more than one
system in the sysplex.

2. You are recording low volumes of log data to the log stream.

Note: Since DASD-only log streams always use staging data sets, high volume writers of log data may be
throttled back by the I/O required to record each record sequentially to the log stream's staging data sets.

With z/OS Release 3 and higher, you can also upgrade existing coupling facility log streams to use a
different coupling facility structure. See “Updating an existing structure-based log stream to another
structure” on page 422.

Coupling facility log stream
Figure 111 on page 405 shows how a coupling facility log stream spans two levels of storage; the coupling
facility for interim storage and DASD log data sets for more permanent storage. When the coupling facility
space for the log stream fills, the data is offloaded to DASD log data sets. A coupling facility log stream
can contain data from multiple systems, allowing a system logger application to merge data from systems
across the sysplex.

404 z/OS: z/OS MVS Assembler Services Guide

Figure 111. Log Stream Data on the Coupling Facility and DASD

When a system logger application writes a log block to a coupling facility log stream, system logger writes
it first to a coupling facility list structure. System logger requires that a coupling facility list structure
be associated with each log stream. When the coupling facility structure space allocated for the log
stream reaches the installation-defined threshold, system logger moves (offloads) the log blocks from the
coupling facility structure to VSAM linear DASD data sets, so that the coupling facility space for the log
stream can be used to hold new log blocks. From a user's point of view, the actual location of the log data
in the log stream is transparent.

DASD-only log stream
Figure 112 on page 406 shows a DASD-only log stream spanning two levels of storage; local storage
buffers for interim storage, which is then offloaded to DASD log data sets for more permanent storage.

A DASD-only log stream has a single-system scope; only one system at a time can connect to a DASD-only
log stream. Multiple applications from the same system can, however, simultaneously connect to a
DASD-only log stream.

Chapter 27. Using system logger services 405

Figure 112. Log Stream Data in Local Storage Buffers and DASD Log Data Sets

When a system logger application writes a log block to a DASD-only log stream, system logger writes it
first to the local storage buffers for the system and duplexes it to a DASD staging data set associated
with the log stream. When the staging data set space allocated for the log stream reaches the installation-
defined threshold, system logger offloads the log blocks from local storage buffers to VSAM linear DASD
data sets. From a user's point of view, the actual location of the log data in the log stream is transparent.

Both a DASD-only log stream and a coupling facility log stream can have data in multiple DASD log data
sets; as a log stream fills log data sets on DASD, system logger automatically allocates new ones for the
log stream.

The system logger configuration
The system logger configuration you use depends on whether or not you use a coupling facility.

Coupling facility log stream configuration: Figure 113 on page 407 shows all the parts involved when
a system logger application writes to a coupling facility log stream. In this example, a system logger
application runs on two systems in a sysplex. Both instances of the application write data to the same
log stream, TRANSLOG. Each system contains a system logger address space. A system logger application
uses system logger services to access the system logger capabilities.

When a system logger application writes data to a coupling facility log stream, system logger writes the
data to a coupling facility list structure associated with the log stream. Then, when the coupling facility
structure fills with data, system logger offloads the data to DASD log data sets.

You can optionally elect to have coupling facility data duplexed to DASD staging data sets for a coupling
facility log stream.

406 z/OS: z/OS MVS Assembler Services Guide

Figure 113. A Complete Coupling Facility Log Stream Configuration

DASD-only log stream configuration: Figure 114 on page 408 shows all the parts involved when a
system logger application writes to a DASD-only log stream. System logger writes the data to the local
storage buffers on the system, duplexing it at the same time to the DASD staging data sets associated
with the log stream. Then, when the staging data set fills with data, system logger offloads the data to
DASD log data sets. Note that where duplexing to DASD staging data sets is an option for a coupling
facility log stream, it is a required automatic part of a DASD-only log stream. A system logger application
uses system logger services to access the system logger capabilities.

Chapter 27. Using system logger services 407

Figure 114. A DASD-Only Configuration

For general configuration information, see the following references:

• The LOGR, LOGRY, and LOGRZ couple data sets (active system logger policy) in z/OS MVS Setting Up a
Sysplex

• Log data on the coupling facility in z/OS MVS Setting Up a Sysplex
• Log data on DASD log data sets in z/OS MVS Setting Up a Sysplex
• Duplexing log data in z/OS MVS Setting Up a Sysplex

The system logger component
The system logger component resides in its own address space on each system in a sysplex. Some of
the component processing will differ, depending on whether a given log stream is a coupling facility log
stream or a DASD-only log stream. The system logger component does the following:

• Provides a set of system services that allows a system logger application to use the system logger
component. See z/OS MVS Programming: Assembler Services Reference IAR-XCT.

• Maintains information in the active system logger policy about the current use of log streams and if
used, coupling facility list structures.

• For coupling facility log streams, system logger interacts with cross-system extended services (XES) to
connect to and use the coupling facility for system logger applications.

• Obtains local storage buffer space. For a coupling facility log stream, local storage buffers can be used
for duplexing log data. For a DASD-only log stream, local storage buffers are used as interim storage for
log data before it is offloaded to DASD log data sets.

• Offloads data to DASD log data sets as follows:

For coupling facility log streams, system logger offloads log data from the coupling facility to DASD
log data sets as the coupling facility structure space associated with the log stream reaches the
installation-defined thresholds.

For DASD-only log streams, system logger offloads log data from the local storage buffers to DASD log
data sets as the DASD staging data set space reaches the installation-defined thresholds.

• Automatically allocates new DASD log data sets for log streams.

408 z/OS: z/OS MVS Assembler Services Guide

• Maintains a backup copy of (duplexes) log data that is in interim storage for recovery. Log data in interim
storage is vulnerable to loss due to system or sysplex failure because it has not yet been hardened
to DASD log data sets. System logger duplexes interim storage log data for both coupling facility and
DASD-only log streams.

• Produces SMF record type 88 for system logger accounting on a single system. Record type 88 focuses
on the usage of interim storage (coupling facility or local storage buffers) and log stream data for a
system in the sysplex. Using the record can help an installation avoid the STRUCTURE FULL or STAGING
DATA SET FULL exceptions, and perform other tuning and/or capacity planning analysis.

See z/OS MVS System Management Facilities (SMF) for more information on record type 88 and system
logger accounting. Sample program IXGRPT1 in SYS1.SAMPLIB shows an example of producing a report
from SMF record type 88.

• Ensures that:

– When the last connection from a system disconnects from the log stream, all log data written by that
system to the log stream is offloaded to DASD log data sets.

System logger also deletes any staging data sets in use for a system at this time.
– When the last connection to a coupling facility log stream in the sysplex disconnects, all coupling

facility log data is offloaded to DASD log data sets and the coupling facility space is returned to XES
for reallocation.

• Provides recovery support in the event of application, system, sysplex, or coupling facility structure
failure for coupling facility log streams. (See “Recovery performed for DASD-only log streams” on page
451 for information about recovery for DASD-only log streams.)

Overview of system logger services
This information provides an overview of general information about system logger services, including:

• “Summary of system logger services” on page 409.
• “Define authorization to system logger resources” on page 410.
• “Synchronous and asynchronous processing” on page 413.
• “How system logger handles gaps in the log stream” on page 415.
• “Using the system logger answer area (ANSAREA parameter)” on page 417.
• “Using ENF event code 48 in system logger applications” on page 419.

Summary of system logger services
System logger provides the following set of services:
IXGINVNT

Define and maintain log stream and coupling facility structure information in the active system logger
couple data set policy dynamically. See “IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies”
on page 419.

You can also use the IXCMIAPU utility to specify log stream and structure definitions in the active
LOGR, LOGRY and LOGRZ policy. IXCMIAPU also enables you to request a report of current log stream
definitions.

IXGCONN
Connect and disconnect an application to and from a log stream. See page “IXGCONN: Connecting to
and disconnecting from a log stream” on page 424.

IXGWRITE
Write user-defined log data to a log stream. See page “IXGWRITE: Writing to a log stream” on page
431.

Chapter 27. Using system logger services 409

IXGBRWSE
Browse (read) data from a log stream. See page “IXGBRWSE: Browsing/reading a log stream” on page
435.

IXGDELET
Delete data from a log stream. See page “IXGDELET: Deleting log blocks from a log stream” on page
438.

IXGIMPRT
Import (write) log blocks to a log stream, with a log block identifier and time stamp. See page
“IXGIMPRT: Import log blocks” on page 439.

IXGQUERY
Retrieve information from a log stream. See page “IXGQUERY: Get information about a log stream or
system logger” on page 440.

IXGOFFLD
Initiate an offload of log data from the coupling facility structure for coupling facility log streams and
from local storage buffers for DASD-only log streams to DASD log data sets. See page “IXGOFFLD:
Initiate offload to DASD log data sets” on page 444.

IXGUPDAT
Modify the UTC time stamp maintained in the control information for a log stream. See page
“IXGUPDAT: Modify log stream control information” on page 445.

The following services contain parameters for both authorized and unauthorized programs:

• IXGCONN
• IXGBRWSE
• IXGWRITE
• IXGDELET

All other system logger services and their parameters can be used by any program. All the unauthorized
guidance for System Logger is contained in this chapter. See the z/OS MVS Programming: Authorized
Assembler Services Guide for guidance on using the authorized services.

Define authorization to system logger resources
Installations need to define authorization to system logger resources for both the system logger address
space and logging functions and applications using the system logger services:

• For information on authorization for the system logger address space, see the chapter on planning for
system logger functions in z/OS MVS Setting Up a Sysplex.

• If you are using the IXCMIAPU utility to update the active system logger couple data set policy, you
must define authorization to system logger resources for IXCMIAPU users. See the chapter on planning
for system logger functions in z/OS MVS Setting Up a Sysplex.

• To define authorization for system logger application programs, see “Authorization for system logger
application programs” on page 410.

Authorization for system logger application programs
IBM recommends that installations use System Authorization Facility (SAF) to control access to system
logger resources, such as log streams and coupling facility structures associated with log streams.

Define access for applications to the classes and resources for each service, as shown in Table 38 on page
411. Note that only applications writing to coupling facility log streams need access to coupling facility
structures.

410 z/OS: z/OS MVS Assembler Services Guide

Table 38. Required SAF authorization for system logger resources

System logger service Access
type

SAF class and resource

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM

IXGINVNT REQUEST=UPDATE TYPE=LOGSTREAM

IXGINVNT REQUEST=DELETE TYPE=LOGSTREAM

ALTER RESOURCE(log_stream_name) CLASS(LOGSTRM)

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM

IXGINVNT REQUEST=UPDATE TYPE=LOGSTREAM
STRUCTNAME=structure_name

ALTER

UPDATE

RESOURCE(log_stream_name) CLASS(LOGSTRM)

RESOURCE(IXLSTR.structure_name) CLASS(FACILITY)

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM
LIKE=like_log_stream_name DASDONLY=NO and when
like_log_stream_name has a structure name, that is,
like_structure_name

ALTER

UPDATE

RESOURCE(log_stream_name) CLASS(LOGSTRM)

RESOURCE(IXLSTR.like_structure_name) CLASS(FACILITY)

IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM

IXGINVNT REQUEST=UPDATE TYPE=LOGSTREAM
ZAI=YES

ALTER

UPDATE

RESOURCE(log_stream_name) CLASS(LOGSTRM)

RESOURCE(IXGZAWARE_CLIENT) CLASS(FACILITY)

IXGINVNT REQUEST=DEFINE TYPE=STRUCTURE

IXGINVNT REQUEST=DELETE TYPE=STRUCTURE

ALTER RESOURCE(MVSADMIN.LOGR) CLASS(FACILITY)

IXGINVNT REQUEST=CHECKDEF TYPE=LOGSTREAM READ Depends upon the active system logger couple data set on
the system where the request occurs:

Either: RESOURCE(MVSADMIN.LOGR) CLASS(FACILITY)

or RESOURCE(MVSADMIN.LOGRY) CLASS(FACILITY)

or RESOURCE(MVSADMIN.LOGRZ) CLASS(FACILITY)

IXGINVNT REQUEST=CHECKDEF TYPE=STRUCTURE READ RESOURCE(MVSADMIN.LOGR) CLASS(FACILITY)

IXGCONN REQUEST=CONNECT AUTH=WRITE (for full
access to log stream services)

UPDATE RESOURCE(log_stream_name) CLASS(LOGSTRM)

IXGCONN REQUEST=CONNECT AUTH=WRITE (for limited
access to log stream services, meaning only for IXGWRITE
requests and disconnecting from the log stream)

UPDATE RESOURCE(log_stream_name) CLASS(LOGSTRM) 3

IXGCONN REQUEST=CONNECT AUTH=READ READ RESOURCE(log_stream_name) CLASS(LOGSTRM)

64 bit virtual addressing support for system logger services
System logger provides 64-bit addressing mode support for IXGBRWSE, IXGWRITE, and IXGIMPRT with
the BUFFER64 keyword. The BUFFER64 keyword allows callers to pass a data buffer whose address is a
64-bit address. The 64-bit address can be anywhere in 64-bit storage, above or below the bar. BUFFER64
is mutually exclusive with the BUFFER keyword. The size of the input field (4 bytes) specified on the
BUFFLEN parameter remains unchanged.

If you code the IXGBRWSE, IXGWRITE, or IXGIMPRT services with the BUFFER64 keyword, you then
must recompile the modules invoking these services.

You can call any of the system logger services in AMODE 64, but all addresses passed to the services will
be in 31-bit addresses, except for those coded in the BUFFER64 keyword on the IXGBRWSE, IXGWRITE,
and IXGIMPRT services.

The following example shows a program in which system logger services are invoked using the BUFFER64
keyword:

 TITLE 'IXGASM64 - Logger Services Samples'
IXGASM64 CSECT ,
IXGASM64 AMODE 31

3 Grant permission to SAF profile covering the (WRITE_ONLY_log-stream-name) resource only when deemed appropriate for the
log stream exploiter. Refer to each log stream exploiter's planning and/or guidance documentation on their log stream access
requirements.

Chapter 27. Using system logger services 411

IXGASM64 RMODE ANY
*
* IXGASM64 - Logger Services Samples for Amode 64 and BUFFER64.
*
* This program contains samples of how to invoke Logger Services in
* 64 bit mode and samples of the use of the BUFFER64 keyword.
*
* This program runs on z/OS Release 1.6 or higher. It has been tested
* on that release and all services returned a successful return code.
*
* Note that for your installation, you may have to do considerable
* setup for this program to run correctly.
*
* It does not need to run Authorized, although various security
* permissions may need to be granted for it to run successfully.
*
* This program is REENTRANT.
*
* It is entered in AMODE 31 and switches to AMODE 64. R15 is assumed
* to point to the entry point.
*
* It will alter Registers 14, 15, 0, and 1.
*
* General Initialization
*
 J PROLOG
 DC AL1(20)
 DC C'IXGASM64 SAMPLE PGM '
PROLOG BSM 14,0
 BAKR 14,0
 LAE 12,0
 LR 12,15
 USING IXGASM64,12
 L 00,SIZDATD+4
 LA 15,0
 CPYA 01,12
 STORAGE OBTAIN,LENGTH=(0),SP=(15),LINKAGE=SYSTEM
 LAE 13,0(,01)
 USING DATD,13
 LLGTR 12,12 Static area register
 LLGTR 13,13 Data area register
* Specify AMODE 64 for Macros, establish 64-bit Mode, obtain storage
* above the Bar, and then place data in the storage.
 SYSSTATE ASCENV=ANY,AMODE64=YES,ARCHLVL=,OSREL=
 SAM64
 IARV64 REQUEST=GETSTOR,SEGMENTS=1,ORIGIN=ORIGIN, x
 RETCODE=RETCODE,RSNCODE=RSNCODE
 LG 2,ORIGIN
 MVC BUFFER64(50,2),TESTDATA
* Prepare for issuing IXGxxxxx Services
 LA 08,40
 ST 08,ANSLEN
 MVC STRUCTNAME(16),STRUCT
 MVC STREAMNAME(26),STREAM
* Issue IXGxxxxx Services
 IXGINVNT REQUEST=DELETE,TYPE=LOGSTREAM, X
 ANSLEN=ANSLEN,ANSAREA=ANSAA,STREAMNAME=STREAMNAME, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGINVNT REQUEST=DEFINE,TYPE=LOGSTREAM,DASDONLY=YES, X
 ANSLEN=ANSLEN,ANSAREA=ANSAA,STREAMNAME=STREAMNAME, X
 STG_SIZE=16,LS_SIZE=16, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGCONN REQUEST=CONNECT,STREAMNAME=STREAMNAME,AUTH=WRITE, X
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGWRITE BUFFER64=(2),BLOCKLEN=50, X
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGOFFLD STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGCONN REQUEST=DISCONNECT, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGCONN REQUEST=CONNECT,AUTH=WRITE,IMPORTCONNECT=YES, x
 STREAMNAME=STREAMNAME, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 STCK STCK1
 IXGUPDAT GMT_TIMESTAMP=STCK1, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGQUERY CHECKCONNSTATUS=YES, x

412 z/OS: z/OS MVS Assembler Services Guide

 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGBRWSE REQUEST=START,OLDEST,BROWSETOKEN=BROWSETOKEN, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 STCK STCK1
 IXGIMPRT BUFFER64=(2),BLOCKLEN=50,BLOCKID=BLOCKID, X
 GMT_TIMESTAMP=STCK1,LOCALTIME=STCK1, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, x
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGBRWSE REQUEST=READCURSOR,BROWSETOKEN=BROWSETOKEN, x
 BUFFER64=(2),BUFFLEN=50,DIRECTION=OLDTOYOUNG, x
 BLKSIZE=RETURNSIZE,RETBLOCKID=RETBLOCKID, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGBRWSE REQUEST=END,BROWSETOKEN=BROWSETOKEN, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGDELET BLOCKS=ALL, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGCONN REQUEST=DISCONNECT, x
 STREAMTOKEN=STREAMTOKEN,ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
 IXGINVNT REQUEST=DELETE,STREAMNAME=STREAMNAME,TYPE=LOGSTREAM, x
 ANSAREA=ANSAA,ANSLEN=ANSLEN, X
 RETCODE=RETCODE,RSNCODE=RSNCODE,MF=(E,PLIST,COMPLETE)
* Cleanup and return to caller
 L 00,SIZDATD+4
 LA 15,0
 LR 01,13
 CPYA 01,13
 STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=(15),LINKAGE=SYSTEM
 SLR 15,15
 PR
* Static data
STATDATA DS 0F
SIZDATD DS 0A
 DC AL1(0)
 DC AL3(DYNSIZE)
 DC A(DYNSIZE)
TESTDATA DC CL50'TEST DATA FOR TESTCASE IXGASM64 '
STREAM DC CL26'LOGGER.STREAMA '
STRUCT DC CL16'LIST01 '
BLOCKID DC A(0) Blockid is 8 bytes in length
 DC A(256)
BUFFER64 EQU 0
* Dynamic Data
DATD DSECT
SA00001 DS 36F Save area must be first in DATD
RSNCODE DS F
RETCODE DS F
ANSLEN DS F
RETURNSIZE DS F
 DS 0D
STCK1 DS CL8
ORIGIN DS CL8
RETBLOCKID DS CL8
STRUCTNAME DS CL16
STREAMNAME DS CL26
STREAMTOKEN DS CL16
 IXGANSAA DSECT=NO
BROWSETOKEN DS CL4
PLIST DS CL256
BUFFER DS CL50
 ORG *+1-(*-DATD)/(*-DATD)
ENDDATD DS 0X
DYNSIZE EQU ((ENDDATD-DATD+7)/8)*8
IXGASM64 CSECT ,
 END

Synchronous and asynchronous processing
Depending on the operating environment, an event control block (ECB) can be resident in one of two
places: the home address space (in private storage) or in common storage.

Chapter 27. Using system logger services 413

Use the MODE parameter on the IXGWRITE, IXGBRWSE, and IXGDELET services to choose one of the
following:

• MODE=SYNC
• MODE=SYNCECB
• MODE=SYNCEXIT
• MODE=ASYNCNORESPONSE

The following conditions shows where the ECB might appear in an environment that includes a caller
address space, a server address space, and the system logger address space. In these conditions, the
server provides services to the caller.

• Choosing MODE=SYNC

Choose MODE=SYNC to specify that the request be processed synchronously. When control returns to
the caller, all processing on behalf of the request is complete.

• Choosing MODE=SYNCECB

Choose MODE=SYNCECB to specify that the request be processed synchronously, if possible. If the
system logger request cannot be completed synchronously, processing on behalf of the request might
still be in progress when control returns to the caller (see MODE=ASYNCNORESPONSE). When the
asynchronous processing for the request completes, the ECB specified on the system logger request is
posted. Once the ECB is posted, the caller can examine the answer area to verify whether the request
completed successfully.

• Choosing MODE=ASYNCNORESPONSE

Choose MODE=ASYNCNORESPONSE on the IXGWRITE and IXGDELET requests to specify that the
request be processed asynchronously. The caller will not be informed when the request completes.
The answer area returned in the ANSAREA parameter and mapped by IXGANSAA is not valid when you
specify MODE=ASYNCNORESPONSE.

When a system logger request cannot be completed synchronously, system logger indicates this
by returning to the invoking program with a specific return code X'4' and reason code X'401'
(IxgRetCodeWarning and IxgRsnCodeProcessedAsynch, re: macro IXGCON).

Before system logger returns control to the caller it schedules an SRB to complete processing of the
request. While the SRB runs independent of the requesting task, the SRB might encounter an error from
which it cannot recover. The SRB ensures that the error condition is percolated to the task that issued the
system logger request.

Note: Depending on the exploiter's structure, this task might not be the same task that originally issued
the IXGCONN request to connect to a log stream.

Prior to percolating the error to the requesting task, system logger issues the SETRP macro, specifying
SERIAL=YES. System logger also places additional diagnostic information in the SDWA, as follows:
SDWACMPC

The completion code, set to X'1C5'.
SDWACRC

The reason code, set to X'85F'.
SDWACOMU

The ECB address specified on the ECB keyword when system logger was invoked.

If the caller receives a return code indicating that system logger will process the request asynchronously,
the application cannot free certain storage areas.

Reference information: See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the
specific service's return code.

414 z/OS: z/OS MVS Assembler Services Guide

How system logger handles gaps in the log stream
System logger might find data unexpectedly missing from or inaccessible in a log stream. These areas of
missing information are called gaps and result from the following:

• System, sysplex, or coupling facility failure where the data could not be recovered.
• A DASD log stream data set being deleted.
• DASD I/O errors occurring during processing of an IXGBRWSE request to read log data.

If system logger encounters a gap during the processing of an IXGBRWSE or IXGDELET service, it returns
a return and reason code to the caller of the system logger service to report the condition and indicate
whether the service completed successfully. The other system logger services, IXGINVNT, IXGCONN, and
IXGWRITE, are not affected by gaps in the log stream data.

See Table 39 on page 415 and Table 40 on page 415 for a summaries of how IXGBRWSE and IXGDELET
services handle gaps in the log stream.

Table 39. How IXGBRWSE Requests Handle Gaps in a Log Stream

IXGBRWSE Request Request Results

START SEARCH=search

READBLOCK SEARCH=search

Request completes with a non-zero return code and reason code.
System logger positions the cursor at or reads the next youngest log
block or a block with an identical time stamp, if there is one.

START STARTBLOCKID=startblockid Request completes with a non-zero return code and reason code.
System logger positions the cursor at or reads the next youngest log
block, if one exists.

READBLOCK BLOCKID=blockid Request fails with a non-zero return and reason code. No block is
returned.

READCURSOR Request completes with a non-zero return code and reason code.
System logger reads the next valid block after the gap in the
specified direction, if there is one.

START OLDEST

RESET POSITION=OLDEST

When the oldest log block is within a gap of log data, the request
completes with a non-zero return code and reason code. System
logger positions or resets the cursor to the oldest valid block in the
log stream.

START YOUNGEST

RESET POSITION=YOUNGEST

The service completes without errors.

Table 40. How IXGDELET Requests Handle Gaps in a Log Stream

IXGDELET Request Request Results

BLOCKS=ALL This request is unaffected by gaps in the log stream. The service
completes successfully.

BLOCKS=RANGE If the block specified is at the start of the range specified, the
service fails with a non-zero return and reason code. No data is
deleted.

System logger returns the block identifier of the first accessible
block toward the young end of the log stream.

If the block specified is not within a gap, the service completes
successfully.

Dumping on data loss (804–type) conditions
The DIAG option on the IXGINVNT service and IXCMIAPU TYPE(LOGR|LOGRY|LOGRZ) utility along with
the new DIAG options on the IXGCONN, IXGDELET and IXGBRWSE services allow additional diagnostic
data to be obtained when a log stream loss of data condition is encountered.

Chapter 27. Using system logger services 415

The following shows the default settings for all the services and the relationship between the service
specifications in terms of whether or not Logger will request a dump for certain loss of data type
conditions.

Default settings:

 DEFINE LOG STREAM DIAG(NO)
 IXGCONN (CONNECT) DIAG(NO_DIAG)
 IXGBRWSE (START) DIAG(NO_DIAG)
 IXGDELET DIAG(NO_DIAG)

Assuming a data loss (804) type condition was encountered on an IXGDELET request or on any
IXGBRWSE request for a browse session, the following shows whether or not a dump would be taken
by Logger for this condition, where:
No

No dump is taken for the condition.
Yes

Dump is taken for the condition.

 DEFINE LOG STREAM NO YES
 ----------------- -----------------
 IXGCONN CONNECT NO_DIAG NO YES NO_DIAG NO YES
 --

 IXGBRWSE START NO_DIAG no no no no no yes
 NO no no no no no no
 YES no no no yes no yes

 IXGDELET NO_DIAG no no no no no yes
 NO no no no no no no
 YES no no no yes no yes

Note: The specification on DIAG(YES) in the log stream definition also results in additional non-abend
diagnostics being collected for the log stream. For more information, see 'Enabling additional log stream
diagnostics' in z/OS MVS Diagnosis: Reference.

Define a log stream to allow additional dumping
• IXGINVNT

Specify IXGINVNT REQUEST=DEFINE,TYPE=LOGSTREAM,...,DIAG=YES
• IXCMIAPU Utility Program

Specify DEFINE LOGSTREAM ... DIAG(YES)

Define a log stream to allow additional dumping using LIKE
• IXGINVNT

Specify IXGINVNT REQUEST=DEFINE,TYPE=LOGSTREAM,NAME=like.log.stream,...,DIAG=YES

Then IXGINVNT REQUEST=DEFINE,TYPE=LOGSTREAM,LIKE=like.log.stream
• IXCMIAPU Utility Program

Specify DEFINE LOGSTREAM NAME (like.log.stream) ... DIAG(YES)

Then DEFINE LOGSTREAM LIKE(like.log.stream)

Update a log stream to allow additional dumping
• IXGINVNT

416 z/OS: z/OS MVS Assembler Services Guide

Specify IXGINVNT REQUEST=UPDATE,TYPE=LOGSTREAM,...,DIAG=YES
• IXCMIAPU Utility Program

Specify UPDATE LOGSTREAM ... DIAG(YES)

The update will take affect as each system obtains its first connection to the log stream. For example,
assume there are two systems in an installation's sysplex, SYSA and SYSB, and SYSA had a connection
to the log stream prior to the update request and SYSB did not have any connections to the log stream.
If SYSB establishes a new (first) connection to the log stream, then the DIAG options will be in affect on
SYSB. The DIAG settings prior to the update request will remain in affect on SYSA even if there is another
connection to the log stream on SYSA. However, if all the connections to the log stream on SYSA are
disconnected and then a new (first) connection is established to the logstream on SYSA, then the new
DIAG options would then be in affect on SYSA.

Connect to a log stream and request additional dumping
• IXGCONN

Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES

Assuming the log stream that is being connected has been defined as DIAG(YES), then Logger will provide
a dump when a loss of data condition is encountered on browse and delete requests, unless the specific
browse (start) or delete request specifies otherwise.

Browsing a log stream and request additional dumping
• IXGBRWSE

Specify IXGBRWSE REQUEST=START,...,DIAG=YES when IXGCONN
REQUEST=CONNECT,...,DIAG=NO_DIAG

• IXGCONN

Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES then no specific DIAG options need to be coded on
the IXGBRWSE REQUEST=START invocation.

Assuming the log stream that is being browsed has been defined as DIAG(YES), then Logger will provide a
dump when a loss of data condition is encountered on any browse for this browse session.

Deleting log data from a log stream and request additional dumping
• IXGDELET

Specify IXGDELET,...,DIAG=YES when IXGCONN REQUEST=CONNECT,...,DIAG=NO_DIAG
• IXGCONN

Specify IXGCONN REQUEST=CONNECT,...,DIAG=YES then no specific DIAG options need to be coded on
the IXGDELET invocation.

Assuming the log stream that is having log data deleted has been defined as DIAG(YES), then Logger will
provide a dump when a loss of data condition is encountered on this delete request.

Using the system logger answer area (ANSAREA parameter)
Every system logger service issued must include an answer area output field specified on the ANSAREA
parameter. In this answer area, mapped by the IXGANSAA macro, system logger returns status and
diagnostic data.

Some generic answer area fields include:

ANSAA_PREFERRED_SIZE
The optimal size for the answer area field specified on the ANSAREA parameter. IXGCONN
REQUEST=CONNECT returns this value.

Chapter 27. Using system logger services 417

The answer area must be at least 40 bytes long. If you specify a field that is less than that, the
service fails with a non-zero return code. To ascertain the optimal answer area size, look at the
ANSAA_PREFERRED_SIZE field of the answer area returned by the first system logger service your
application issues, either the IXGINVNT or IXGCONN REQUEST=CONNECT service.

ANSAA_ASYNCH_RETCODE
For asynchronously processed requests, system logger returns the return code in this field.

ANSAA_ASYNCH_RSNCODE
For asynchronously processed requests, system logger returns the reason code in this field.

ANSAA_DIAGx
Diagnostic data. The content of these fields depend on any return and reason codes returned for a
request.

Specific service indicators include:

ANSAA_BLKFROMINACTIVE
Indicates that the log block returned from an IXGBRWSE request came from the inactive portion of
the log stream. For MULTIBLOCK=YES requests, this flag indicates that at least one log block returned
in the buffer came from an inactive portion of the log stream. Flag IXGBRMLT_FROMINACTIVE in
IXBRMLT (from the IXGBRMLT macro) indicates which log blocks were in the inactive portion. This
field is only valid for IXGBRWSE requests that result in a log block being returned.

ANSAA_DYNMGMTOFENTRYTOELACTIVE
Indicates that system logger is dynamically managing the entry-to-element ratio for the coupling
facility structure. The structure was defined in a LOGR couple data set. This field is only valid for
IXGCONN requests, and is undefined when ANSA_DASDONLYLOGSTREAM is on.

ANSAA_DASDONLYLOGSTREAM
This flag in ANSAA_FLAGS1 indicates whether a log stream is DASD-only. It is output from an
IXGCONN REQUEST=CONNECT service.

ANSAA_BROWSEMULTIBLOCK
This flag in ANSAA_FLAGS1 indicates whether this level of system logger supports IXGBRWSE
MULTIBLOCK=YES requests. It is valid only for an IXGBRWSE REQUEST=START service.

ANSAA_BLKFROMDASD
This flag in ANSAA_FLAGS1 indicates that the log block returned from an IXGBRWSE request came
from a log stream DASD offload data set. For MULTIBLOCK=YES requests, this flag indicates that
at least one log block returned in the buffer came from a log stream DASD offload data set. Flag
IXGBRMLT_FROMDASD in IXBRMLT (from the IXGBRMLT macro) indicates which log blocks were read
from DASD. This field is only valid for IXGBRWSE requests that result in a log block being returned.

ANSAA_USECDSTYPEISSET
This flag in ANSAA_USECDSTYPE (ANSAA_FLAGS3) indicates when one of the following explicit CDS
data type flags is set on.

When this indicator flag is not set on, it means the sysplex scope LOGR CDS data type is considered
for use on this system. It is output only for an IXGCONN REQUEST=CONNECT , IXGINVNT, and
IXGQUERY requests.

ANSAA_USECDSTYPELOGR
This flag in ANSAA_USECDSTYPE (ANSAA_FLAGS3) indicates when the sysplex scope LOGR CDS data
type is considered for use on this system.

This flag is valid only when ANSAA_USECDSTYPEISSET is also on.

ANSAA_USECDSTYPELOGRY
This flag in ANSAA_USECDSTYPE (ANSAA_FLAGS3) indicates when the single-system scope LOGRY
CDS data type is expected for use on this system.

This flag is valid only when ANSAA_USECDSTYPEISSET is also on.

ANSAA_USECDSTYPELOGRZ
This flag in ANSAA_USECDSTYPE (ANSAA_FLAGS3) indicates when the single-system scope LOGRZ
CDS data type is expected for use on this system.

418 z/OS: z/OS MVS Assembler Services Guide

This flag is valid only when ANSAA_USECDSTYPEISSET is also on.

For a complete description of the IXGANSAA macro, see z/OS MVS Data Areas in the z/OS Internet library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

Using ENF event code 48 in system logger applications
System logger issues ENF event code 48 to broadcast status changes in the system logger address space,
log streams, and coupling facility structures. Since these status changes can affect the outcome of system
logger service requests, IBM recommends that you use ENF event code 48 to receive notification of
these status changes, using the ENFREQ service to listen for event 48. Note that your program must be
authorized to use the ENFREQ service. Applications should issue the ENFREQ service to listen for event
48 before connecting to a log stream.

Applications that do not want to use ENF event code 48 or that are unauthorized and cannot use ENFREQ
will still receive logger service return and reason codes indicating failure or resource shortages. These
applications can then simply set a timer and then retry the requests to see if the problem has resolved
itself.

References:

• See the z/OS MVS Programming: Authorized Assembler Services Guide for guidance about using the
ENFREQ macro.

• See the z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for reference
information on the ENFREQ macro.

Note: The following topic has been moved to Coding a system logger complete exit for IXGBRWSE,
IXGWRITE, and IXGDELET in z/OS MVS Programming: Authorized Assembler Services Guide.

IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies
The IXGINVNT service allows your application program to manage and update the sysplex scope LOGR
policy dynamically.

In addition to the sysplex scope LOGR policy, system logger supports up to two single-system scope
policies, LOGRY and LOGRZ, in a sysplex. The LOGRY and LOGRZ policy information is similar to the LOGR
policy information, except no structures can be defined by single-system scope policies and their log
streams must be DASD-only type. The log streams in the LOGRY and LOGRZ policies are managed as
separate resources from the log stream resources defined in the sysplex scope LOGR policy and the other
single-system scope policy. Only one system in the sysplex can be using the LOGRY policy and only one
other system can be using the LOGRZ policy as their respective active CDS data type. A system cannot be
using the sysplex scope LOGR policy when a system is using either the LOGRY or LOGRZ single-system
scope policy.

The IXGINVNT macro can be used to define or update either the LOGRY or LOGRZ single-system scope
policy information by executing the program request on the system that is using the intended single-
system scope policy.

When you intend to specify LOGR policy information, you will need to execute the IXGINVNT macro
program request on a system in the sysplex that is not using the single-system scope of LOGRY or LOGRZ
policies.

You can also use the IXCMIAPU utility to manage the sysplex scope LOGR policy or a single-system
scope LOGRY or LOGRZ policy (see z/OS MVS Setting Up a Sysplex). The reason and return codes for both
the IXGINVNT service and the IXCMIAPU utility are documented with the reference information on the
IXGINVNT service in z/OS MVS Programming: Assembler Services Reference IAR-XCT.

For guidance on specifying information in the sysplex scope LOGR couple data set or a single-system
scope LOGRY or LOGRZ couple data set using IXGINVNT or IXCMIAPU, see the system logger chapter of
z/OS MVS Setting Up a Sysplex.

Using IXGINVNT, your application program can:

Chapter 27. Using system logger services 419

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

• Define and update log streams definitions using REQUEST=DEFINE or REQUEST=UPDATE with
TYPE=LOGSTREAM.

• Define a coupling facility structure associated with a log stream using REQUEST=DEFINE with
TYPE=STRUCTURE (applies to LOGR policy only).

• Check whether a particular log stream or logger (coupling facility) structure definition exists in the active
system logger couple data set policy using REQUEST=CHECKDEF.

• Delete log stream and coupling facility structure definitions using REQUEST=DELETE.

See "LOGRY and LOGRZ keywords and parameters for the administrative data utility" and "DEFINE
LOGSTREAM keywords and parameters" in z/OS MVS Setting Up a Sysplex for a comparison on the
pertinent log stream keywords based on which system logger CDS type is being used.

Defining a model log stream in the LOGR couple data set
Use the MODEL parameter on the IXGINVNT REQUEST=DEFINE service to define a dummy log stream
that other log stream definitions can reference. Using a model allows you to specify common log stream
characteristics for many log streams only once.

This can streamline the process of defining new log streams in the active system logger couple data set
policy, because you can specify the name of the model log stream on the LIKE keyword when you issue
the IXGINVNT service to define a new log stream. Note that any explicit definitions for the log stream you
are defining override the definitions of the model log stream.

Figure 115 on page 420 shows how you can use the IXGINVNT service to define a log stream as a model
and then define a log stream modeled after it. The LS_DATACLAS parameter specifying the data class for
the log data sets for log stream STREAM1 overrides the LS_DATACLAS specified in the IXGINVNT request
for log stream MODEL1.

IXGINVNT REQUEST=DEFINE
 TYPE=LOGSTREAM,
 STREAMNAME=MODEL1,
 STRUCTNAME=STRUCT1,
 MODEL=YES,
 HLQ=SYSPLEX1,
 STG_DUPLEX=YES,
 DUPLEXMODE=COND,
 STG_DATACLAS=STGDATA,
 STG_MGMTCLAS=STGMGMT,
 STG_STORCLAS=STGSTOR,
 LS_MGMTCLAS=LSMGMT,
 LS-STORCLAS=LSSTOR,
 LS_DATACLAS=LSDATA,
 STG_MGMTCLAS=LSMGMT,
 STG_STORCLAS=LSSTOR,
 ANSAREA=ANSAREA,
 ANSLEN=ANSLEN,
 RETCODE=RETCODE,
 RSNCODE=RSNCODE

IXGINVNT REQUEST=DEFINE
 TYPE=LOGSTREAM,
 STREAMNAME=STREAM1,
 LS_DATACLAS=LSDATA1
 LIKE=MODEL1,
 ANSAREA=ANSARE1,
 ANSLEN=ANSLE1,
 RETCODE=RETCDE,
 RSNCODE=RSNCDE

Figure 115. Define a Log Stream as a Model and then Model a Log Stream After It

You cannot connect to a model log stream or use it to store log data. It is strictly for use as a model to
streamline the process of defining log streams.

You can use the LIKE parameter to reference a log stream that has not been defined as a model log
stream using the MODEL parameter. Any log stream can be referenced on the LIKE parameter.

420 z/OS: z/OS MVS Assembler Services Guide

Defining a log stream as DASD-only
You can define a log stream as either a coupling facility log stream or DASD-only log stream using the
DASDONLY parameter on the IXGINVNT REQUEST=DEFINE TYPE=LOGSTREAM service (see “The log
stream” on page 404).

Specify or default to DASDONLY=NO, to define a coupling facility log stream. You must also specify a
structure name on the STRUCTNAME parameter in the log stream definition for a coupling facility log
stream.

Specify DASDONLY=YES, to define a DASD-only log stream, which is not associated with a coupling facility
structure. When you define a DASD-only log stream, you can also specify MAXBUFSIZE to define the
maximum buffer size that can be written to the DASD-only log stream. (For a coupling facility log stream,
MAXBUFSIZE is specified on the IXGINVNT REQUEST=DEFINE TYPE=STRUCTURE request to define the
maximum log block size that can be written to the log stream.)

Note that a DASD-only log stream is single-system in scope - only one system may write to a DASD-only
log stream.

For set up steps for a DASD-only log stream, see the system logger chapter in z/OS MVS Setting Up a
Sysplex.

Upgrading an existing log stream configuration
You can upgrade a DASD-only log stream to use coupling facility storage, making it a coupling facility
log stream, or you can upgrade an existing structure-based log stream to use a different coupling
facility structure. To upgrade to a structure-based log stream, associate the structure with the log
stream by updating the log stream definition in the LOGR policy. Use the UPDATE request on either
the IXGINVNT service or the IXCMIAPU utility to specify the name of the coupling facility structue with
the STRUCTNAME parameter. All connectors to either the DASD-only log stream or the existing structure-
based log stream being upgraded must be disconnected in order to make the upgrade. No failed or active
connections can exist for the log stream.

When updating an existing log stream configuration, the GROUP attribute must be taken into account.

For details about updating the GROUP parameter, see "Parameters for REQUEST=UPDATE" under the
topic of IXGINVNT in z/OS MVS Programming: Assembler Services Reference IAR-XCT.

For examples of log stream configuration changes, see Upgrading an existing log stream configuration in
z/OS MVS Setting Up a Sysplex.

Upgrading a log stream from DASD-only to coupling facility
You can upgrade a log stream defined as DASD-only (DASDONLY=YES parameter on the log stream
definition) to a coupling facility log stream. Do this by issuing the IXGINVNT REQUEST=UPDATE service
with the STRUCTNAME parameter to associate a structure with the log stream.

To upgrade a log stream from DASD-only to coupling facility, the following must be true:

• The structure specified on the STRUCTNAME parameter must be defined in a structure definition in the
LOGR policy.

• All connections (active or failed) to the log stream must be disconnected.

Before connecting to or issuing any system logger services against an upgraded log stream, you must also
make sure that the structure associated with the log stream is specified in the CFRM policy couple data
set.

For guidance on upgrading a DASD-only log stream to a coupling facility based one, see the system logger
chapter in z/OS MVS Setting Up a Sysplex.

Chapter 27. Using system logger services 421

Updating an existing structure-based log stream to another structure
You can update an existing structure-based log stream to use a different coupling facility structure. Do
this by issuing the IXGINVNT REQUEST=UPDATE service with the STRUCTNAME parameter to identify the
new structure to be associated with the log stream.

To upgrade a structure-based log stream to use a new coupling facility structure, the following must be
true:

• The LOGR couple data set must be formatted at a z/OS Version 1 Release 2 (HBB7705) level or later.
• The IXGINVNT request must be submitted on a system at z/OS Version 1 Release 3 or later.
• The structure specified on the STRUCTNAME parameter must be defined in a structure definition in the

LOGR policy.
• All connections (active or failed) to the log stream must be disconnected.

Before connecting to or issuing any system logger services against an upgraded log stream, you must also
make sure that the structure associated with the log stream is specified in the CFRM policy couple data
set.

Sample procedures to update an existing structure-based log stream to another
structure
You can use one of the these sample procedures to perform a non-destructive or destructive update of an
existing structure-based log stream to another structure.

Steps for a non-destructive update of an existing structure-based log stream
Use this sample procedure to perform a non-destructive update, which will maintain any existing log
stream data.

1. Define a new new-structure-name structure definition in the CFRM policy that has the appropriate
SIZE, INITSIZE, and other attributes defined, and ensure that this new structure is in the current CFRM
policy for the sysplex.

2. Define a new new-structure-name structure in the LOGR policy with attributes MAXBUFSIZE,
AVGBUFSIZE, and LOGSNUM, as needed.

3. Cause the exploiter to disconnect from the persistent-log-stream log stream.
4. Confirm that no connections remain to the log stream in the sysplex. For example, you can issue the

following system command:

DISPLAY LOGGER,L,LSN=persistent-log-stream

The status will be AVAILABLE when there are no more connections.
5. Update the persistent-log-stream log stream definition in the LOGR policy to map it to the newly

defined new-structure-name structure. For example:

IXCMIAPU type(logr)
UPDATE LOGSTREAM NAME(persistent-log-stream) STRUCTNAME(new-structure-name)

6. Cause the exploiter to connect to the persistent-log-stream log stream.
7. Confirm that the exploiter is connected on the expected z/OS images. For example:

DISPLAY LOGGER,L,LSN=persistent-log-stream

Steps for a destructive update of an existing structure-based log stream
Use this sample procedure to perform a destructive update, which will delete the log stream and any
existing data.

1. Cause the exploiter to disconnect from the original-log-stream log stream.
2. Confirm that no connections remain to the log stream in the sysplex. For example, you can issue the

following system command:

422 z/OS: z/OS MVS Assembler Services Guide

DISPLAY LOGGER,L,LSN=original-log-stream

The status will be AVAILABLE when there are no more connections.
3. Delete the original-log-stream log stream from the LOGR policy.
4. Delete the original-structure structure from the LOGR policy.
5. Redefine the structure in the LOGR policy with the original-structure name and attributes

MAXBUFSIZE, AVGBUFSIZE, and LOGSNUM, as needed.
6. Redefine the log stream in the LOGR policy with the original-log-stream name and map it to the

redefined original-structure structure.
7. Cause the exploiter to connect to the newly defined original-log-stream log stream.
8. Confirm that the exploiter is connected on the expected z/OS images. For example:

DISPLAY LOGGER,L,LSN=original-log-stream

Renaming a log stream dynamically
You can rename a log stream dynamically using the NEWSTREAMNAME keyword on the IXGINVNT
REQUEST=UPDATE request. Since many logging programs use a fixed log stream name, this function can
be very useful for log stream recovery. For example, if a log stream fails, the system might not be able
to perform any logging for the log stream that has failed. Using the log stream rename function, you can
rename the failing log stream and then use IXGINVNT REQUEST=DEFINE to define a new log stream with
the old name in order to start logging again. This function allows you to perform the following functions:

• Save the current data in a renamed log stream and start logging quickly by defining a new log stream
with the expected name

• Let existing services and utilities access the data in the renamed log stream to reduce the effect of
having some data missing from the log stream

• Perform problem diagnosis, such as data missing conditions, on the original (renamed) log stream
resources at the same time that new work continues

You must have an active primary TYPE(LOGR) couple data formatted at an HBB7705 level or higher,
or be operating against a TYPE(LOGRY) or TYPE(LOGRZ) couple data set, in order to specify the
NEWSTREAMNAME parameter.

For information, see:

• Renaming a log stream dynamically in z/OS MVS Setting Up a Sysplex.
• IXGINVNT - Managing the LOGR, LOGRY and LOGRZ inventory couple data sets in z/OS MVS

Programming: Assembler Services Reference IAR-XCT.
• The IXCMIAPU UPDATE LOGSTREAM request in z/OS MVS Setting Up a Sysplex.

Updating a log stream's attributes
You can update certain attributes of a DASD-only or coupling facility log stream using either the IXGINVNT
UPDATE service or the IXCMIAPU utility. The updates are immediately reflected in the log stream
definition in the intended active LOGR, LOGRY or LOGRZ couple data set, but some remain pending and do
not take effect until specific events occur during processing as described in this section.

See "LOGRY and LOGRZ keywords and parameters for the administrative data utility" and "UPDATE
LOGSTREAM keywords and parameters" in z/OS MVS Setting Up a Sysplex for a comparison on the
pertinent log stream keywords based on which system logger CDS type is being used.

The following attributes can be updated while there is an outstanding (active or failed-persistent)
connection to the log stream. Some of the updates will not take effect immediately if there is an
outstanding connection. In order to update these attributes, the LOGR couple data set must be formatted
at least at a certain format level or be operating against a LOGRY or LOGRZ type couple data set.

Chapter 27. Using system logger services 423

See "LOGR parameters for format utility (sysplex scope)" and "LOGRY or LOGRZ single-system scope
parameters for format utility" in z/OS MVS Setting Up a Sysplex for more details.

Note: If this requirement is not met, the UPDATE request fails.

Pending updates will take effect at different points for each log stream attribute as follows:

• The RETPD and AUTODELETE attribute updates take effect when a new offload data set is allocated
(data set switch event) or on the subsequent first connection to the log stream in the sysplex.

• The LS_DATACLASS, LS_SIZE, LS_MGMTCLASS, LS_STORCLASS, and LS_ALLOCAHEAD attribute
updates will remain pending until a new offload data set is allocated (data set switch event) or on
the subsequent first connection to the log stream in the sysplex. For a coupling facility log stream, the
update also takes effect during the next structure rebuild (user-managed or system-managed).

• The LOWOFFLOAD, HIGHOFFLOAD, OFFLOADRECALL, STG_DATACLAS, STG_MGMTCLAS,
STG_STORCLAS, STG_SIZE, and WARNPRIMARY attribute updates remain pending until the subsequent
first connection to the log stream in the sysplex. For a coupling facility log stream, the update also
takes effect during the next structure rebuild (user-managed or system-managed). The STG_DATACLAS,
STG_MGMTCLAS, STG_STORCLAS, and STG_SIZE attribute updates are also committed when a new
staging data set needs to be allocated following one of the preceding conditions. In the case of a DASD-
only logstream, the HIGHOFFLOAD, LOWOFFLOAD, OFFLOADRECALL, and WARNPRIMARY attribute
updates are also committed on the next offload data set switch.

• The LOGGERDUPLEX, STG_DUPLEX, and DUPLEXMODE attribute updates for a structure-based
logstream remain pending until the subsequent first connection to the log stream in a sysplex or until
the next successful structure rebuild (user-managed).

• The MAXBUFSIZE attribute update remains pending until the subsequent first connection to the DASD-
only log stream in the sysplex.

• The ZAI and ZAIDATA attributes can be updated while there is an outstanding connection to the log
stream. In this case, the change will immediately be reflected in the log stream definition. The updated
specification will take effect on the following logger events for this log stream:

1. On the subsequent first connection to the log stream on a system (z/OS image).
2. As a result of a SETLOGR FORCE,ZAICONN,LSN= command on the target system. or
3. As a result of a SETLOGR FORCE,ZAICONN,ALL command when there is a connection to this log

stream currently using the ZAI=YES setting on the target system.

Note: Since the updated value can be used on a system by system basis, the installation should ensure
the proper actions are taken on all the systems with connections to the log stream in order to make use
of the current value.

IXGCONN: Connecting to and disconnecting from a log stream
Use the IXGCONN service to connect to or disconnect from a log stream. An application must issue
IXGCONN with REQUEST=CONNECT before it can read, write, or delete data in a log stream.

When the IXGCONN REQUEST=CONNECT request completes, it returns a unique connection identifier,
called a STREAMTOKEN, to the calling program. The application uses the token in subsequent logger
service requests to identify its connection to the log stream.

In the answer area (IXGANSAA) returned by IXGCONN, bit Ansaa_DynMgmtOffEntryToEleActive is on
when system logger is dynamically managing the entry-to-element ratio. See the system logger chapter in
z/OS MVS Setting Up a Sysplex for information about dynamic management of the entry-to-element ratio.

For IXGCONN REQUEST=CONNECT AUTH=WRITE, bit Ansaa_WriteTriggersReturned indicates IXGWRITE
requests may have the Ansaa_WriteTriggers filled in the answer area of the IXGWRITE. See “Write
triggers” on page 432 for additional information.

Additionally, for IXGCONN REQUEST=CONNECT AUTH=WRITE, output answer area indicator flags
Ansaa_WriteConnectLimitedAccess and Ansaa_WriteOnlyAccess indicates when the log stream
connection token can only be used to write log data into the log stream (IXGWRITE) and disconnect

424 z/OS: z/OS MVS Assembler Services Guide

from the log stream (IXGCONN). No other log stream access services are allowed for this connection type.
Also, import type connections are not allowed in combination with this limited access type of log stream
connection.

Note: The following services contain parameters for both authorized and unauthorized programs:
IXGCONN, IXGBRWSE, IXGWRITE, and IXGDELET. All other system logger services and their parameters
can be used by any program. All the unauthorized guidance for system logger is contained in this chapter.
The following topics have moved to the Authorized Assembler Services Guide:

• Connecting as a resource manager in z/OS MVS Programming: Authorized Assembler Services Guide
• Using ENF event 48 when a connect request is rejected in z/OS MVS Programming: Authorized

Assembler Services Guide
• Coding a resource manager exit for IXGCONN in z/OS MVS Programming: Authorized Assembler Services

Guide.

Examples of ways to connect to the log stream
An application can connect to the log stream in different ways. Some of these are:

• One connection per address space: Once a program has connected to a log stream, any task running
in the same address space shares the connect status and can use the same stream token to issue other
system logger services. Any task in the address space can disconnect the entire address space from the
log stream by issuing the IXGCONN REQUEST=DISCONNECT service.

• One connection per program: One or more tasks in a single address space can issue IXGCONN
REQUEST=CONNECT individually to connect to the same log stream and receive separate stream
tokens. Each program must disconnect from the log stream individually.

• Multiple systems connecting to a log stream: Multiple address spaces on one or more MVS systems
can connect to a single coupling facility log stream, but each one must issue IXGCONN individually to
connect and then disconnect from the log stream. Each one receives a unique stream token; address
spaces cannot share a stream token.

When an application issues IXGCONN to connect to a coupling facility log stream, the system logger
address space connects to the coupling facility list structure for the log stream.

Each task that issues IXGCONN REQUEST=CONNECT to connect to a log stream must later issue
IXGCONN REQUEST=DISCONNECT to disconnect from the log stream. When a task disconnects from
the log stream, the stream token that identified the connection is invalidated. Any requests that use the
stream token after the disconnect will be rejected.

If a task that issued the IXGCONN REQUEST=CONNECT request ends before issuing a disconnect request,
system logger will automatically disconnect the task from the log stream. This means that the unique log
stream connection identifier, or the STREAMTOKEN, will no longer be valid. The application will receive an
“expired logstream token” error response if it then uses this same STREAMTOKEN after the task has been
disconnected on subsequent logger service requests.

Additional considerations for connecting to a DASD-only log stream
If you are writing an application for a DASD-only log stream, you must keep in mind that a DASD-only log
stream is single-system in scope, meaning that only one system at a time can connect to a DASD-only log
stream. (See “The log stream” on page 404 for a description of the two different types of log streams.)
Multiple applications from the same system can connect to a DASD-only log stream, but only from one
system at a time. An application trying to connect to a DASD-only log stream that already has another
system connected will fail. A second system cannot connect to the DASD-only log stream until the first
one disconnects.

The ANSAA_DASDONLYLOGSTREAM flag in the IXGANSAA mapping macro indicates whether a log
stream is DASD-only.

Chapter 27. Using system logger services 425

When an application issues the IXGCONN request to connect to a DASD-only log stream, the
STUCTNAME, AVGBUFSIZE, and ELEMENTSIZE will be returned containing hexidecimal zeros, because
they are all coupling facility structure related fields.

How system logger allocates structure space for a new log stream at
connection time

The first IXGCONN request in a sysplex issued for a coupling facility log stream initiates the allocation of
coupling facility space for the log stream.

If there are multiple coupling facility log streams assigned to one coupling facility structure, system logger
divides the structure space evenly between each log stream that has applications connected to it via
IXGCONN. This means that the first log stream that has an IXGCONN service issued against it gets 100%
of the coupling facility structure space available. When a second log stream mapping to the coupling
facility structure has an IXGCONN service issued against it, system logger divides the structure evenly
between the two log streams. The first log stream's available coupling facility space will be reduced by
half to reapportion the rest of the space to the second log stream. This can result in some of the data
being off-loaded to DASD if the coupling facility space allocated to a log stream reaches its high threshold
as a result of the reapportionment of the structure space.

For example, if an installation defines two log streams to a single structure in the LOGR policy, but
only one of the log streams actually has a connected application, then that one log stream can use the
entire coupling facility structure. When the second log stream connect occurs against the coupling facility
structure, the space is gradually divided between the two log streams. Likewise, when the last disconnect
is issued against one of the two log streams, all coupling facility structure space is again available to the
first log stream.

Note that this process of reallocation of coupling facility space and subsequent offloading of coupling
facility data might not take place immediately after the log stream connect. The reallocation of space
might occur gradually, with an offloading taking place some time after the original log stream connect.

Connect process and staging data sets
Coupling Facility Log Streams: If an installation defines DASD staging data sets for a coupling facility
log stream, the data sets are created, if necessary, during connection processing for the first IXGCONN
request issued against a log stream from a particular system.

DASD-Only Log Stream: For a DASD-only log stream, the staging data set is automatically created during
the first connect issued against the log stream. A staging data set is not optional for a DASD-only log
stream.

Requesting authorization to the log stream for an application
Use the AUTH parameter to specify whether the application issuing IXGCONN should have read or write
access to the log stream:

• If you specify AUTH=READ for an application, that application will only be able to issue IXGCONN,
IXGBRWSE, and IXGQUERY requests. For AUTH=READ, the caller must have SAF read access to
RESOURCE(log_stream_name) in CLASS(LOGSTRM).

• If you specify AUTH=WRITE for an application, that application can issue any system logger log stream
access service, unless the connection is only allowed limited log stream services access.

– To connect to a log stream with an AUTH=WRITE specification, SAF profiles covering two separate
resources are used to determine if access is allowed and whether full access to log stream
services can be used or just limited log stream access (only IXGWRITE and disconnect requests)
can be used for the connection. Refer to each log stream exploiter's planning and/or guidance
documentation on their log stream access requirements. Grant permission to SAF profile covering
the RESOURCE(WRITE_ONLY_log-stream-name) only when deemed appropriate for the log stream
exploiter.

426 z/OS: z/OS MVS Assembler Services Guide

- For full service WRITE log stream access, the caller must have update (or higher level) access to
RESOURCE(log-stream-name) in SAF CLASS(LOGSTRM). When this level of access is granted, all log
stream access services can be used with the log stream token established on this connection.

- For limited service WRITE log stream access, the caller must have (at least) update access to
RESOURCE(WRITE_ONLY_log-stream-name) in SAF CLASS(LOGSTRM). When this level of access is
granted, only IXGWRITE and IXGCONN (to disconnect) requests can be used with the log stream
token established on this connection.

- When there are no profiles defined covering RESOURCE(log-stream-name) or
RESOURCE(WRITE_ONLY_log-stream-name) in SAF CLASS(LOGSTRM), then AUTH=WRITE
connection is permitted as full service access to the log stream.

- When just the profile covering RESOURCE(log-stream-name) is defined, meaning no profile covering
RESOURCE(WRITE_ONLY_log-stream-name), then the connected is permitted according to the
RESOURCE(log-stream-name) profile access. Access to the log stream will either be full service
access or the connection is not allowed (denied).

- When just the profile covering RESOURCE(WRITE_ONLY_log-stream-name) is defined, meaning
no profile covering RESOURCE(log-stream-name), then the connection is permitted based on the
RESOURCE (WRITE_ONLY_log-stream-name) profile access. Access to the log stream will either be
limited service log stream access (can only write log data and disconnect from the log stream), or
access is the connection that is not allowed (denied).

- When profiles covering both RESOURCE(WRITE_ONLY_log-stream-name) and RESOURCE(log-
stream-name) are defined, then the connection is permitted based on the following combinations:

• access is permitted via both profiles, then access to the log stream will be full service access.
• access is permitted via RESOURCE(log-stream-name) profile, but is defined via

RESOURCE(WRITE_ONLY_log-stream-name) profile, then access to the log stream will be full
service access.

• access is permitted via RESOURCE(WRITE_ONLY_log-stream-name) profile, but it is denied via
RESOURCE(log-stream-name) profile, then access to the log stream will be limited service (can
only write log data and disconnect from the log stream).

• access is not permitted (denied) via both profiles, then the connection to the log stream will not
be allowed (denied).

When permission is not allowed for the profiles covering the resources noted above, system logger
will provide an error of return code 8, reason code X'080D' (IxgRsnCodeNoSAFAuth) on the log
stream connection attempt.

• If the SAF authorization check indicates that a security product is not available or if a profile covering
the LOGSTRM class for each respective resource identified above is not defined, then the access will
be allowed. Therefore, the caller will be allowed to connect to the log stream with the requested AUTH
parameter value.

The Table 41 on page 427 table shows the combinations and results for the different SAF profile
authorization access checking, performed by system logger, in determining whether the connector is
allowed and how to use the log stream.

Table 41. Results for the different SAF profile authorization access checking performed by system logger

(WRITE_ONLY_
log-stream-name)

profile

(log-stream-name) profile

 RC=0 RC=4 RC=8

RC=0 Allow-full Allow-limited Allow-limited

RC=4 Allow-full Allow-full Not-allowed

RC=8 Allow-full Not-allowed Not-allowed

The Table 42 on page 428 table shows the system logger APIs and the error return information when the
functional API request is not honored based on the established type of log stream connection.

Chapter 27. Using system logger services 427

Table 42. Logger log stream access services (API) behavior

Logger log stream API AUTH=READ on connect AUTH=WRITE on connect -
full service access

AUTH=WRITE on connect -
limited service access

IxgWrite
not allowed

rc8, rsn X'81C'
allowed allowed

IxgBrwse allowed allowed
not allowed

rc8, rsn X'81C'

IxgDelet
not allowed

rc8, rsn X'81C'
allowed

not allowed

rc8, rsn X'81C'

IxgOffld
not allowed

rc8, rsn X'81C'
allowed

not allowed

rc8, rsn X'81C'

IxgUpdat
not allowed

rc8, rsn X'81C'
allowed

not allowed

rc8, rsn X'81C'

IxgQuery allowed allowed
not allowed

rc8, rsn X'81C'

IxgImprt
not allowed

rc8, rsn X'81C'

allowed, or not allowed

rc8, rsn X'8D7'

not allowed

rc8, rsn X'8D7'

IxgConn with
IMPORTCONNECT n/a

allowed, or not allowed

rc8, rsn X'8D6'

not allowed

rc8, rsn X'8D6'

Notes:

1. Only the log stream API services listed above are impacted as noted with this change which means
that other logger API services (such as IGNINVNT) are not impacted.

2. Each service noted in the table should have its return and reason code information updated for the
stated not allowed error indication of rc8, rsn X'081C (IxgRsnCodeNotAuthFunc).

IXGRSNCODENOTAUTHFUNC (X'081C') - see IxgCon
IXGWRITE, IXGDELET, IXGOFFLD, IXGUPDAT, IXGQUERY, and IXGBRWSE requests

Explanation
Program error. The program either connected to the log stream with the AUTH=READ parameter and
then tried to delete or write data or used another log stream access service requiring AUTH=WRITE
access.
You cannot write or delete data or use the other log stream access services when connected with read
authority.
OR
The program connected to the log stream with the AUTH=WRITE parameter and was granted limited
access (for example, write only log data and disconnect) and then tried to perform a log stream access
service other than IXGWRITE or IXGCONN (to disconnect).
Action
Issue the IXGCONN service with AUTH=WRITE authority and then reissue this request.
If AUTH=WRITE was already used when the error was encountered, then check with your
installation's security administrator to obtain the appropriate access to the log stream.

3. Existing reason code X'08D6' (IxgRsnCodeConnTypeNotAllowed) has an expanded description.

 IXGRSNCODECONNTYPENOTALLOWED (X'08D6') - see IxgCon
 IXGCONN REQUEST

428 z/OS: z/OS MVS Assembler Services Guide

 Explanation
 Program error. One of the following occurred:
 1. IMPORTCONNECT=YES is specified and there is at least one active write connect in the sysplex.
 2. IMPORTCONNECT=YES is specified but the import type connection is not allowed in combination
 with a limited access type of log stream connection.
 3. IMPORTCONNECT=NO is specified and there is an import connect active in the sysplex.

4. No changes for existing IXGIMPRT error conditions IxgRsnCodeRequestNotAllowed (X'08D7').

Requesting a write or import connection - IMPORTCONNECT parameter
Use the IMPORTCONNECT parameter to specify whether a connection is a write or an import connection.
The IMPORTCONNECT parameter is only valid with AUTH=WRITE.

• A write connection, (AUTH=WRITE IMPORTCONNECT=NO) specifies that you want to use the
IXGWRITE request to write to a log stream. You must specify or default to IMPORTCONNECT=NO at
connect time in order to use the IXGWRITE request against a log stream.

You can have multiple write connects against a log stream, but only if there is no import connection
established for that log stream anywhere in the sysplex. Once one or more applications connect to a log
stream as a write connection, any subsequent attempts to connect as an import connection will fail.

You cannot use the IXGIMPRT service against a log stream that has been connected to as a write
connection from anywhere in the sysplex.

An import connection, (AUTH=WRITE IMPORTCONNECT=YES) specifies that you want to use the
IXGIMPRT request to import log data from one log stream to another, maintaining the same log block
identifier and UTC time stamp. You might do this to create a copy of a log stream. You must specify
IMPORTCONNECT=YES at connect time in order to use the IXGIMPRT request against a log stream.

You can have only one import connection for a log stream from anywhere in the sysplex. An import
connection cannot coexist with a write connection. Once an application connects to a log stream as an
import connect, all subsequent AUTH=WRITE IMPORTCONNECT=YES|NO connect requests will fail.

You cannot use the IXGWRITE service against a log stream that has been connected to as an import
connection.

A user's log stream import connection attempt will not be allowed when the installation's security
policy would result in a user's log stream AUTH=WRITE connection request to be a limited log stream
access connection. For more details on a limited log stream access connection refer to “Requesting
authorization to the log stream for an application” on page 426 .

You cannot have both a write and an import connection to a log stream and you cannot issue both write
and import requests to the same log stream.

Specifying user data for a log stream
System logger allows 64 bytes of user specified data to be associated with a log stream and stored in the
active system logger couple data set policy. The user data can be:

• Specified or changed using the USERDATA parameter on the disconnect request of IXGCONN.
• Read using the USERDATA output parameter on the connect request of IXGCONN.

If an application codes the USERDATA parameter on a connect request when there is no user data
associated with the log stream, IXGCONN returns a USERDATA field containing all zeros.

Only one copy of the log stream user data exists and any application connected to the log stream can
update this copy when they disconnect. If you will have multiple connectors to a log stream, you should
consider using serialization or another protocol to protect the USERDATA field.

Chapter 27. Using system logger services 429

System logger processing at disconnection and expired stream token
If your program runs authorized (supervisor state, system PKM), see Writing an ENF event 48 listen exit
in z/OS MVS Programming: Authorized Assembler Services Guide for more details related to log stream
disconnect processing and expired stream tokens.

Disconnection for an application
When an application issues IXGCONN REQUEST=DISCONNECT to disconnect from a log stream for a
specific STREAMTOKEN, system logger rejects any new requests from that application for the specific
STREAMTOKEN.

If the application disconnects with outstanding asynchronous requests, the disconnect is accepted.
Asynchronous requests then complete without notifying the disconnecting application.

Last disconnection for log stream on a system
System logger rejects any new requests from the system for that log stream. All the log data from this
system is then offloaded to DASD log stream data sets. This may include log data written from other
systems connected to the log stream. For coupling facility log streams, the coupling facility resident data
is offloaded to DASD log data sets. For DASD-only log streams, the log data in local storage buffers is
written to DASD log data sets.

If the application disconnects with outstanding asynchronous requests, the disconnect is accepted.
Asynchronous requests then complete without notifying the disconnecting application.

Last disconnection for a system in the sysplex
System logger offloads all the log data to DASD log stream data sets.

For coupling facility log streams, the coupling facility resident data is offloaded to DASD log data sets. Any
coupling facility resources allocated for a coupling facility log stream are released. If a coupling facility
structure is being shared among multiple log streams, the structure space is re-divided evenly among
coupling facility log streams with connected applications at that time.

For DASD-only log streams, the log data in local storage buffers is offloaded to DASD log data sets.

Expired log stream token
There are conditions that will cause a log stream connection token to no longer be valid. This means
that the unique log stream connection identifier, or the STREAMTOKEN, is no longer considered valid
by system logger and the application receives an "expired log stream token" error response (refer to
IxgRsnCodeExpiredStmToken in IXGCON macro) for Logger service requests using a stream token as
input.

An expired log stream token can be the result of an application explicitly or implicitly disconnecting from
a log stream, or it can be the result of an action within system logger from either the CFRM policy, system
environmental conditions, or from internal or system logger component errors. When an application
encounters an "expired stream token" condition unexpectedly, then it should re-connect to the log stream
and obtain a valid stream token before making any subsequent Logger service requests.

An expired log stream can occur under the following conditions:

• The log stream connector disconnects from the log stream by issuing an
IXGCONNREQUEST=DISCONNECT,STREAMTOKEN=xstreamtoken and then issues another system
logger services attempting to use the same STREAMTOKEN value.

• The task (represented by a TCB or Task Control Block) that connected to the log stream terminates. This
is often a problem that surfaces early in the coding of an application. Typically the application creates
an initialization task to obtain resources. That task connects to the log stream, stores the log stream in
persistent storage, and then terminates.

430 z/OS: z/OS MVS Assembler Services Guide

Because in this situation the "owning" task ended (through an end-of-task resource management
operation), system logger automatically disconnects from the log stream. The correction for this is to
connect to the log stream from a task that does not terminate until the log stream is no longer needed.

• Any job step task (JST) terminates within the address space that has a connection to the log stream.
System logger treats any job step task termination in a manner similar to an address space termination.
That is, all log stream connections are disconnected and logger associations are terminated with the
address space.

If this condition occurs and there remains an expected use of a log stream, a new log stream connection
will be required.

• Based on how and where the log stream token is maintained in the connector's storage, the system
might pass an incorrect log stream to system logger. If the incorrect log stream token meets the format
expected by system logger, then a return code X'04', reason code X'82D' (IxgRsnCodeExpiredStmToken)
condition is returned. Otherwise, the incorrect log stream token results in the return code X'08', reason
code X'806' (IxgRsnCodeBadStmToken) condition.

An expired log stream token not caused by application can occur under the following conditions:

• For coupling facility log streams, that you are not currently using, Logger can also disconnect a
requestor when certain structure failure conditions occur.

• After an I/O or access error occurs for a staging data set, if system logger is unable to allocate a new
data set for DASD-only log streams, system logger automatically disconnects the log stream.

• System logger disconnects all connectors on the target system as a result of an operator SETLOGR
FORCE,DISConnect,LSN=logstreamname command.

• When the system logger address space terminates and is restarted while the log stream connector
was persistent (that is the application address space and connecting task remained intact) then any
subsequent use of a log stream token obtained before system logger terminated would be considered
expired.

• Severe error conditions can also occur within the Logger component that might cause the log stream to
be disconnected unexpectedly.

Note that system logger will not disconnect a connector for log stream offload data set allocation errors or
data set "full" conditions. The allocation of log stream offload data sets does not result in an "expired log
stream token" condition.

IXGWRITE: Writing to a log stream
Use the IXGWRITE service to write data from the user's buffer to a log stream. The way system logger
processes an IXGWRITE request depends on whether the log stream is coupling facility or DASD-only:

For coupling facility log streams, system logger writes the data to the coupling facility structure space
associated with the log stream when an IXGWRITE request is issued. System logger also duplexes the
data to either local storage buffers or staging data sets.

For DASD-only log streams, system logger writes the data to interim storage in local storage buffers for
the system associated with the log stream. It is simultaneously duplexed to DASD staging data sets. The
safe import point for a DASD-only log stream is changed for every successful write request.

The log block buffer
Before you issue the IXGWRITE service to write your data to the log stream, you must place the data in a
buffer to form the log block. This buffer must follow these guidelines:

• The storage key for the buffer, specified on the BUFFKEY parameter, must be one of the following:

– If the caller is in problem program state, the buffer must be in the same storage key as the caller's
PSW key.

– If the caller is running in supervisor state, the buffer can be in any key (0 through 15).

Chapter 27. Using system logger services 431

• The buffer must be either ALET qualified (BUFFALET parameter), or reside in the caller's primary
address space.

• The buffer length specified on the BUFFLEN parameter must not exceed the maximum buffer size
defined in the LOGR policy for the coupling facility structure or as defined for a DASD-only log stream in
the active system logger couple data set policy (LOGR, LOGRY, or LOGRZ).

The format of the data in the log block is entirely the choice of the application; system logger does not
have rules about how data looks in a log block.

For each log block written to the log stream, IXGWRITE returns a unique log block identifier which can
be used on subsequent IXGDELET and IXGBRWSE requests to search for, delete, read, or set the browse
cursor position to that log block.

Ensuring chronological sequence of log blocks
When an application writes log blocks to a log stream, system logger generates a time stamp for the
block, in both local and Coordinated universal time (UTC), showing the time that system logger processed
the block. The local time stamp is the local time of the system where the IXGWRITE was issued. Note that
local time stamps can repeat because of daylight saving time. In such a case of duplicate time stamps,
system logger will return the first block with a matching time stamp that it finds.

Log blocks are placed in the log stream in the order they were received by system logger. System logger
generates a UTC time stamp for each log block it receives. Note that the order in which the log blocks
are received is not necessarily the same order in which log blocks were written, because when multiple
applications write to the same log stream, the log blocks might not be received in the same order that
they were written.

An application imbedded time stamp will not affect the order of the log blocks in the log stream. If an
application needs to ensure that log blocks are received into the log stream in the order written, IBM
recommends that applications serialize on the log stream before they write to it.

Applications can optionally request that IXGWRITE return the time stamp that system logger generates
for a log block using the TIMESTAMP parameter.

Write triggers
In the answer area (IXGANSAA) returned by IXGWRITE, bit Ansaa_WriteTriggersReturned indicates that
the Ansaa_WriteTriggers section has been filled in.

The write triggers are returned for successful IXGWRITE requests (RETCODE = 0 or 4) and show log
stream primary storage consumption information.

ANSAA_STRUCTUSEPERCENT is returned for coupling facility structure based log streams and indicates
the percentage of CF structure elements in use (between 0 and 100) for the log stream.

ANSAA_STAGINGUSEPERCENT is returned for DASDONLY log streams and for CF structure based log
streams that duplex to staging data sets. The value indicates the percentage of staging data set space in
use (between 0 and 100).

The flags ANSAA_WRITEABOVEHIGHOFFLOAD, ANSAA_WRITEELEVATEDCAPACITY and
ANSAA_WRITEIMMINENTCAPACITY are filled in based on current primary storage usage and
log stream definition HIGHOFFLOAD percentage. For CF structure based log streams, the flags
are based on ANSAA_STRUCTUSEPERCENT. For DASDONLY log streams, the flags are based on
ANSAA_STAGINGUSEPERCENT. ANSAA_WRITEABOVEHIGHOFFLOAD indicates the usage is greater than
HIGHOFFLOAD. ANSAA_WRITEELEVATEDCAPACITY indicates the usage above the 1/2 point between
HIGHOFFLOAD and the log steam imminent threshold.

ANSAA_WRITEIMMINENTCAPACITY indicates the usage above the imminent threshold. The derived
value for the imminent threshold is the 2/3 point between HIGHOFFLOAD and 100% full.

432 z/OS: z/OS MVS Assembler Services Guide

When is data committed to the log stream?
When you issue the IXGWRITE service to write data to a log stream, you cannot consider the data
committed until system logger returns control to the user with a successful return code. Particularly
when dealing with a coupling facility log stream, you should never rely on a block ID associated with
uncommitted data. For example, consider the following scenario involving a coupling facility log stream:

1. Application 1 issues an IXGWRITE service, and the data is written to the coupling facility.
2. Before the data can be duplexed to staging data sets and control returned to the user, application 2

issues IXGBRWSE for that block of data and successfully reads the data.
3. Now, suppose the coupling facility fails - the data that application 2 read was never committed and is

now lost! Application 2 is using log data which no longer exists.
4. At this point, system logger might assign the identical block ID to a different log block and applications

1 and 2, which are trying to share a log, are now out of sync.

For a DASD-only log stream there is less likelihood of losing data, because log data is duplexed
automatically to a staging data set. Data is committed when the log data has been written to local storage
buffers and duplexed to the staging data set. Note that for a DASD-only data set, log data cannot be
browsed until it is committed.

See “Synchronous and asynchronous processing” on page 413 for more details on the methods
used by system logger to provide return code information to the invoking program. When an
IXGWRITE request cannot be completed synchronously, system logger indicates this by returning to
the invoking program with the specific return code X'4' and reason code X'401' (IxgRetCodeWarning and
IxgRsnCodeProcessedAsynch, re: macro IXGCON). IXGWRITE requests that are completed synchronously
will result in system logger returning a return code X'0' or a return code of X'4' with a reason code other
than X'401' (IxgRetCodeOK, or IxgRetCodeWarning and not IxgRsnCodeProcessedAsynch).

When the log stream coupling facility storage limit is reached
An IXGWRITE request will be rejected with return code X'08' and reason code X'0860' when the storage
limit for the coupling facility structure associated with a coupling facility log stream is reached. Although
the data offload to DASD process generally ensures that data gets written to DASD before the coupling
facility structure fills up, this condition can occur due to sudden bursts of activity or when another log
stream is activated and defined to the coupling facility. When this happens, system logger offloads data
from the coupling facility to DASD immediately.

Applications should not issue any further write requests until the temporary condition has been resolved.
Applications that do not want to use ENF event code 48 or that are unauthorized and cannot use ENFREQ
would still receive system logger service return and reason codes indicating failure or resource shortages.
These applications can then set a time and then retry the requests to see if the problem has resolved
itself.

If system logger is unable to offload the log data because of log data set directory space shortages or
other log stream offload issues, then the IXGWRITE request may also be rejected with return code X'08'
and reason code X'085C' or X'085D'. You can retry your IXGWRITE (or IXGIMPRT) request periodically or
wait for the ENF signal that the log stream is available, or disconnect from this log stream and connect
to another log stream. For additional actions related to log stream offloads, refer to system messages
IXG257I, IXG261E, IXG262A and IXG301I.

When the staging data set storage limit is reached
If the staging data set storage limit for a coupling facility or DASD-only log stream connection is reached,
an IXGWRITE request will be rejected with a return code of X'08' and a reason code of X'0865'. When this
happens, system logger initiates the offload process to move log data to DASD log data sets and delete
corresponding staging data set log data immediately. When offload processing completes, write requests
can complete successfully and the staging data set is available to hold duplexed log data again.

Applications should not resume issuing write requests until the temporary condition has been resolved.
Applications that do not want to use ENF event code 48 or that are unauthorized and cannot use ENFREQ

Chapter 27. Using system logger services 433

will still receive logger service return and reason codes indicating failure or resource shortages. These
applications can then set a timer and then retry the requests to see if the problem has resolved itself.

If system logger is unable to offload the log data because of log data set directory space shortages or
other log stream offload issues, then the IXGWRITE request may also be rejected with return code X'08'
and reason code X'085C' or X'o85D'. You can retry your IXGWRITE (or IXGIMPRT) request periodically or
wait for the ENF signal that the log stream is available, or disconnect from this log stream and connect
to another log stream. For additional actions related to log stream offloads refer to system messages
IXG257I, IXG261E, IXG262A and IXG301I.

When the staging data set is formatting
An IXGWRITE request will be rejected with a return code of X'08' and a reason code of X'0868 ' while
the log stream's staging datasets are being formatted. The first application to connect to a log stream
on a particular system causes logger to format the log stream's staging data sets on that system. Each
system has its own set of staging datasets. Applications should not resume issuing write requests until
the temporary condition has been resolved. Applications that do not want to use ENF event code 48 or
that are unauthorized and cannot use ENFREQ will still receive system logger service return and reason
codes indicating failure or resource shortages. These applications can simply set a timer and retry the
requests to see if the problem has resolved itself.

Limiting asynchronous IXGWRITE requests
The number of concurrent IXGWRITE requests for each connector to a log stream that requires
asynchronous logger activity is limited. The limit is decided before the log block write request is accepted.
If the amount of previous in-flight asynchronous writes is above the acceptable limit, then the newly
requested write is rejected (the log data is not placed in the log stream). The limit of the connections
for authorized IXGWRITE invokers is 10,000, and for unauthorized IXGWRITE invokers is 2000. An
unauthorized invoker is the caller who is in supervisor state and has a PSW key 8 or larger.

Logger counts the number of IXGWRITE requests that require logger asynchronous activity based on a log
stream connection. As the asynchronous activity is needed for an IXGWRITE request, logger increases the
count for that log stream connector, and logger decreases this count when the asynchronous write activity
completes. Examples of logger asynchronous activity for a write request include, but are not limited to,
IXGWRITE threads that are waiting on completion of logger's XES write (IXLLIST WRITE) requests or
logger's staging data set I/O (via Media Manager) requests.

If logger and the storage media used to hold the log blocks cannot keep pace with the incoming write
requests, logger can eventually reach an asynchronous write threshold of 2000 for unauthorized callers or
10,000 for authorized callers. The limits are triggered for a short period of any new IXGWRITE requests
for the log stream connector. IXGWRITE requests that complete synchronously are not included in the
limit counting. However, when the limit is reached, all new IXGWRITE requests for the invoker are
rejected with return code X'08', reason code X'0867'. For information about the return code X'08', reason
code X'0867', see Return and Reason codes table in IXGWRITE in z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG.

Logger allows new or reissued IXGWRITE requests for this connector when the number of in-flight
asynchronous writes is adequately reduced. The number is no more than 85% of the limit threshold
in-flight, which must be no more than 1700 for unauthorized callers and 8500 for authorized callers. A
logger ENF signal 48 is issued at this point indicating the log stream resources are available. Then, logger
can track sufficient write requests and only reject the requests whose write rate and volume are beyond
the limitation of logger.

Logger writes software symptom records to logrec and to logger's component trace area when logger
has encountered this limit condition and when the limit is resolved. Sample portions of logger symptom
records for these conditions after running EREP reports as the following output:

5752SCLOG RIDS/IXGF2WRT RIDS/IXGINLPA#L LVLS/709
FLDS/RETCODE VALU/H00000004 FLDS/REASON VALU/H04030017
IXGF2WRT ASYNC LIMIT REACHED

5752SCLOG RIDS/IXGF2WRT RIDS/IXGINLPA#L LVLS/709

434 z/OS: z/OS MVS Assembler Services Guide

FLDS/RETCODE VALU/H00000004 FLDS/REASON VALU/H04030018
IXGWRITE ASYNC LIMIT RELIEVED

IXGBRWSE: Browsing/reading a log stream
Use the IXGBRWSE macro to read and browse a log stream for log block information. Applications can:

• Start a browse session and select the initial cursor position - (REQUEST=START)
• Reset the browse cursor position - (REQUEST=RESET)
• Read consecutive log blocks - (REQUEST=READCURSOR)
• Select and read a specific log block - (REQUEST=READBLOCK)
• End a browse session - (REQUEST=END)

IXGBRWSE reads the specified log block into an output buffer specified by the application.

IXGBRWSE terminology
Before you can read information from the log stream, you start a browse session using the
REQUEST=START request of IXGBRWSE. A browse session lasts from the time that an application issues
IXGBRWSE REQUEST=START until it issues IXGBRWSE REQUEST=END. A log stream can have multiple
browse sessions occurring at the same time.

The REQUEST=START request returns a browse token, which is a unique 4-byte identifier for a particular
browse session. Subsequent IXGBRWSE requests in a browse session use the browse token to identify
the session to system logger. Once an application issues the REQUEST=END request, the browse session
ends and system logger will no longer accept IXGBRWSE requests with the browse token for that session.

The browse cursor indicates where in the log stream IXGBRWSE will resume browsing on the next
request. Each browse session has a browse cursor.

IXGBRWSE requests
REQUEST=START starts the browse session for the application and sets the browse cursor to the desired
starting point. You can specify the browse cursor position for a session using one of the following optional
parameters:

• OLDEST - which is the default, starts the browse session at the oldest (earliest) log block.
• YOUNGEST - starts the browse session at the youngest (latest) log block. Note that the record that is

the youngest when the browse session starts might no longer be the youngest record at the end of the
browse session because of concurrent write activity to the log stream.

• STARTBLOCKID - specifies that the browse session start at a specified log block identifier. The block
identifier for a log block is returned by system logger when it is written to the log stream (IXGWRITE) in
the field specified by the RETBLOCKID parameter.

• SEARCH - specifies that the browse session start at the log block with the specified time stamp. See
“Browsing for a log block by time stamp” on page 436 for details on how IXGBRWSE processes time
stamps.

Field ANSAA_BROWSEMULTIBLOCK in the answer area will be set on if the level of system logger
supports MUTLIBLOCK=YES requests for REQUEST=READCURSOR.

REQUEST=RESET positions the browse cursor to either the oldest or youngest (POSITION=OLDEST or
POSITION=YOUNGEST) log block in the log stream.

REQUEST=READBLOCK reads a selected log block in the log stream. You identify the block you want
to read by either the block identifier (BLOCKID parameter) or the time stamp (SEARCH parameter). The
block identifier for a log block is returned by system logger in the field specified by the RETBLOCKID
parameter when the log block is written to the log stream (IXGWRITE).

REQUEST=READCURSOR reads the next oldest or youngest log block or blocks in the log stream,
depending on the direction specified on the request (DIRECTION=OLDTOYOUNG or YOUNGTOOLD). The

Chapter 27. Using system logger services 435

block or blocks read also depends on the position of the cursor at the time you issue the request. The
MULTIBLOCK value determines whether one or more blocks will be returned.

Applications must take into account that reading a series of consecutive log blocks using
REQUEST=READCURSOR might not yield blocks in sequence by local time stamp. This can happen, for
example, because of daylight saving time.

Browsing both active and inactive data
Using the VIEW parameter on IXGBRWSE, you can choose to browse just active log data or both active
and inactive log data. Active data is data that has not been deleted via IXGDELET. Inactive data is data
that has been deleted via IXGDELET but is still in the log stream because of a retention period specified
in the log stream definition in the active system logger couple data set policy. See z/OS MVS Setting Up a
Sysplex for information about the retention period.
VIEW=ACTIVE

Specifies that the browse request browse just active data. VIEW=ACTIVE is the default.
VIEW=ALL

Specifies that the browse request browse all data, both active and inactive.

The flag ANSAA_BLKFROMINACTIVE in the answer area indicates if the returned log block (or any of the
returned log blocks when MULTIBLOCK=YES is specified) came from inactive data. If MULTIBLOCK=YES is
specified, IXGBRMLT_FROMINACTIVE will indicate if a particular log block came from inactive data.

The VIEW parameter can be specified on both the REQUEST=START and REQUEST=RESET requests of
IXGBRWSE. For the duration of a browse session, the VIEW specification remains in effect.

Browsing for a log block by time stamp
System logger generates a time stamp in both local and Coordinated universal time (UTC) for each log
block in the log stream. The time stamp is returned in the TIMESTAMP output field when the block is
written to the log stream using IXGWRITE. Note that the local time stamp is the local time of the system
where the IXGWRITE was issued.

You can use either the local or UTC time stamp on the SEARCH keyword to search for a system logger
generated time stamp. You can specify the SEARCH keyword on the following IXGBRWSE requests:

• REQUEST=START, to set the cursor at a particular log block. or REQUEST=READBLOCK (to read a
particular log block),

• REQUEST=START, to set the cursor at a particular log block.

When you use a time stamp as a search criteria, IXGBRWSE searches in the oldest-to-youngest direction,
searching for a log block with a matching time stamp. If no match is found, IXGBRWSE reads the next
latest (younger) time stamp. When you search by time stamp, the search always starts with the oldest log
block in the log stream. Searches by time are not sensitive to the current browse cursor position.

See Figure 116 on page 437 for an example.

If the time stamp specified is older than any time stamp in the log stream, then the oldest time stamp is
returned.

If the time stamp specified is younger than any existing time stamps, the request is rejected and the caller
receives a return code of X'08' and a reason code of X'0804'.

436 z/OS: z/OS MVS Assembler Services Guide

Figure 116. Searching for a Log Block by Time

Given the example log stream in Figure 116 on page 437, system logger would do the following:

• If you specify 8:00 on the SEARCH keyword, this is older (earlier) than any log block in the log stream
and IXGBRWSE will set the cursor at or returns the oldest time stamp, in this case, 9:00.

• If you specify 10:30 on the SEARCH keyword, IXGBRWSE sets the cursor at or returns the next latest
(youngest) log block, 11:00.

• If you specify 12:00 on the SEARCH keyword, this time stamp is younger (later) than any existing log
block and IXGBRWSE rejects the request with a return code of X'08' and a reason code of X'0804'.

Browsing multiple log blocks
Use IXGBRWSE REQUEST=READCURSOR with MULTIBLOCK=YES to read a set of consecutive log blocks
in the specified direction and view. Mapping macro IXGBRMLT provides a mapping at the start of the
buffer area (IXGBRMHD), that indicates the number of log blocks that are returned plus an offset to the
last IXGBRMLT area in the buffer. IXGBRMLT also provides a mapping of the information returned for each
log block on a MULTIBLOCK=YES request.

You can control how much information is returned about each log block with the RETBLOCKINFO
parameter. When RETBLOCKINFO=NO is specified, system logger will return only enough information
about each log block to allow the invoker to navigate through the buffer. If RETBLOCKINFO=YES is
specified, system logger will return more information about each log block in the output buffer, but it will
use more space in the caller's buffer since more information per log block is returned.

MAXNUMLOGBLOCKS can be used to limit the number of log blocks that will be returned in the buffer
area. When a non-zero value is specified, system logger will not return more than this requested number
of log blocks, even if there are more log blocks that meet the browse parameter criteria. If enough room
is provided in the caller's buffer and there are sufficient log blocks that meet the browse criteria, system
logger will return the requested maximum number of log blocks. If there is not enough room in the buffer,
or there are fewer log blocks remaining than the requested maximum number, system logger will return
as many of the remaining log blocks as fit into the caller's buffer.

Return and reason code considerations
On IXGBRWSE REQUEST=READCURSOR requests, more than one log block may be returned to the
requestor. Logger may encounter different conditions for different log blocks.

The following return and reason codes may be issued to indicate the particular condition:

• IXGBRWSE MODE=SYNCECB or MODE=SYNCEXIT requests that are processed asynchronously will
result in a return code of X'04' and a reason code of X'401', and will be handled in the same manner as
MULTIBLOCK=NO requests.

• When an IXGBRWSE request results in a return code of X'0' with a reason code of X'0', then the return
and reason codes are always 0 for each IXGBMRLT for the log blocks, and data is always returned.

Chapter 27. Using system logger services 437

• When an IXGBRWSE request results in a return code of X'04' with a reason code of X'416', data is
always returned. Any combination of return code X'04' and reason code X'4xx' or return code X'00' and
reason code X'000' may be returned in the output buffer area.

• If a return code of X'04' with a reason code of X'417' is returned, then only the last IXGBMRLT has a
return code of X'08'. There may be an earlier log record with an IXGBMRLT return code X'04' and reason
code X'4xx'.

• It is possible to have some log records read back and then get an IXGBRMLT return and reason code
that requires a wait for an ENF 48 event. The IXGBRWSE return code would be X'04' with a reason code
of X'417', and the last IXGBRMLT would contain the ENF 48 condition (8/8xx).

• When the browse request reaches the end of log after moving some data into the buffer, the last
IXGBRMLT will have a return code of X'08' with a reason code of X'848' and IXGBRWSE will have a
return code of X'04' with a reason code of X'417'. If another IXGBRWSE is issued and there are still no
more log records to read, the IXGBRWSE service will have a return code of X'08' with a reason code of
X'848'. The buffer area is undefined for this return/reason code, so you cannot trust its contents.

Using IXGBRWSE and IXGWRITE
If you have applications issuing IXGWRITE and IXGBRWSE requests concurrently for the same coupling
facility log stream, ensure that the browse requests are issued only for committed log data. Data
is committed to the log stream when system logger returns control to the application following an
IXGWRITE request with a successful return code. This is important because data can be lost due to
system or coupling facility failure between the time data appears on the structure associated with the log
stream and a commit occurs. If you read uncommitted data that is subsequently lost, applications sharing
the same log stream can have different versions of log data. See also “When is data committed to the log
stream?” on page 433.

Using IXGBRWSE and IXGDELET requests together
If you issue IXGDELET and IXGBRWSE requests concurrently, be careful not to delete information before
you try to read it. An IXGDELET request can also affect a browse session for a log stream by deleting a
requested log block or the log block where the browse cursor is positioned. When an application issues
an IXGBRWSE request for log data which has been deleted, the IXGBRWSE request will return non-zero
return and reason codes.

Applications might want to provide serialization on the log stream or some other installation protocol to
prevent deletes (IXGDELET service) from being performed by other applications on the log stream during
a browse session.

IXGDELET: Deleting log blocks from a log stream
Using the IXGDELET service, you can mark some or all of the log blocks in the log stream for deletion. For
a coupling facility log stream, the group of blocks you specify for deletion can reside on both the coupling
facility and DASD log data sets. For a DASD-only log stream, the group of blocks you specify for deletion
can reside on both the local storage buffers and DASD log data sets. The way system logger processes log
data that is marked for deletion depends on the level of the current active primary system logger couple
data set in use on the system where the IXGDELET request occurs and whether a retention period and
automatic deletion have been specified for a log stream in the active system logger couple data set policy.
See Deleting log data and log data sets in z/OS MVS Setting Up a Sysplex for more information.

Note: The following topic has been moved to Delete requests and resource manager exit processing in
z/OS MVS Programming: Authorized Assembler Services Guide.

Using the BLOCKS parameter
If you specify BLOCKS(ALL) to delete all of the blocks in the log stream, system logger immediately marks
as deleted all the blocks that exist at the time of the request. If other applications are writing to the log
stream concurrently with the delete request, there might be log blocks in the log stream even after the
IXGDELET BLOCKS(ALL) request is processed.

438 z/OS: z/OS MVS Assembler Services Guide

When you want to delete a subset of log blocks, specify BLOCKS(RANGE) and a block identifier on the
BLOCKID parameter. System logger marks as deleted all the log blocks older (written earlier) than the
specified log block. See Figure 117 on page 439 for an illustration of how BLO CKS(RANGE) works. Note
that the block specified in BLOCKID is not deleted.

Figure 117. Deleting a Range of Log Blocks

IXGIMPRT: Import log blocks
Use the IXGIMPRT service to write data to a log stream, specifying a log block identifier and UTC time
stamp for each log block. This service can be used to import copies of log data from one log stream to
another, preserving the UTC time stamp and log block identifier assigned when the log block was written
to the source log stream. The source log stream is the original log stream, the log stream are importing
blocks from. The log stream you import blocks to is the target log stream.

In order to use the IXGIMPRT service, the connection to the log stream must be an import
connection, issued with AUTH=WRITE IMPORTCONNECT=YES. Note that when you specify AUTH=WRITE
IMPORTCONNECT=YES for a connection, you cannot issue the IXGWRITE request against the connected
log stream. See “IXGCONN: Connecting to and disconnecting from a log stream” on page 424 for
information about the IMPORTCONNECT parameter.

You must be in task mode to issue the IXGIMPRT service or else the request is rejected.

Making sure log blocks are imported in sequence - Understanding log block
identifiers

When you import data to a log stream (using IXGIMPRT), the requests are issued with a log block
identifier and UTC time stamp identical to the matching log block in the source log stream. The application
must make sure to import these log blocks in ascending log block/UTC time stamp order.

Chapter 27. Using system logger services 439

For example, if the importing application has log blocks with identifiers 1, 2, and 4 ready to import, the
application might need to wait and check for log block 3 before importing 1, 2, and 4 into a log stream.
Once log block 4 has been imported, log block 3 can never be imported into the log stream (unless you
delete and redefine the log stream). In order to determine whether it is importing log blocks in the correct
order, the application must understand the way system logger generates log block identifiers.

The block identifier consists of the logical relative byte address of the log block in relation to the start of
the log stream. The first log block written to a log stream is assigned a block identifier of one. Whenever a
system logger application writes a log block successfully to the log stream, system logger adds additional
control information to the log block. To generate the sysplex-wide unique block identifier, system logger
uses:

• The block identifier of the last log block written.
• The length of the current log block (specified by the caller).
• The length of control information (determined by system logger).

The formula is as follows:

Length of current log block
 +
length of control information
 +
last log block identifier.

How do I know what the length of the control information is?
Applications can ascertain the length of the control information generated by system logger using
the IXGQUERY service, which returns the information in a buffer mapped by the IXGQBUF macro
(QBUF_CONTROL_INFO_SIZE field).

Example: How log block identifiers are generated
The following is an example of how log block identifiers are generated:

• The log block identifier generated for the first log block is one.
• The first log block is one hundred bytes. The length of the control information system logger adds to a

log block for this log stream is 25 bytes: this information was found using the IXGQUERY service.
• The block identifier for the second log block is generated by adding the first log block identifier to the

length of the first log block and the length of the control information: 1+100+25 or 126.
• The 2ND log block is 50 bytes in length, and system logger again added 25 bytes of control information.

The block identifier for the third block is 50+25+126 or 201.

Making sure log data is safe to import
If your application is using IXGIMPRT to create a duplicate log, copying information from a source to a
target log stream, you must make sure that the data is safe to import. See “The safe import point: Using
IXGQUERY and IXGIMPRT together” on page 441.

IXGQUERY: Get information about a log stream or system logger
Use the IXGQUERY service to retrieve information about a log stream in the sysplex, or retrieve the
system logger ZAI SERVER, PORT and TPNAME values pertaining to the z/OS IBM zAware server location.

When using the IXGQUERY service to retrieve information about a log stream in the sysplex, the
information is returned in a buffer mapped by IXGQBUF. The information returned by IXGQUERY for a
log stream includes:

• Safe import point. See “The safe import point: Using IXGQUERY and IXGIMPRT together” on page 441.
• Control information size: This value shows the number of bytes that system logger adds to each log

block written to the log stream.

440 z/OS: z/OS MVS Assembler Services Guide

• Structure version number for coupling facility log streams. See “The coupling facility list structure
version number” on page 443.

For DASD-only log streams, this value shows the STCK format time stamp that the staging data set for
the DASD-only log stream was allocated.

• Group information about the log stream. Every log stream is in either group TEST or PRODUCTION. See
the QBUF_GROUPVALUE field in the IXGQBUF mapping macro. TEST indicates that the log stream is a
test log stream. PRODUCTION indicates that the log stream is a production log stream. Note that you
must specify a BUFFLEN value of 200 bytes or more to retrieve the group data for the log stream. See
the GROUP keyword in “IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies” on page 419 in
z/OS MVS Programming: Assembler Services Reference IAR-XCT.

• Information related to the size of the current offload data set and staging data set in the IXGQBUF.
Note that the maximum value returned in fields QBUF_LS_DS_SIZE and QBUF_STG_DS_SIZE is 2GB-1
('7FFFFFFF'x). For data set sizes greater than 2GB, '7FFFFFFF'X will be returned, but the full value will
be available in fields QBUF_FULL_LS_DS_SIZE and QBUF_FULL_STG_DS_SIZE.

• When QBUF_LS_Offload_Returned is turned on in the IXGQBUF, the fields QBUF_LS_HighOffload and
QBUF_LS_LowOffload are filled in with the log stream definitional HIGHOFFLOAD and LOWOFFLOAD
fields.

• Information about the log stream definition values for the elevated and imminent capacity
points, which correspond to the IXGWRITE ANSAA flags ANSAA_WRITEELEVATEDCAPACITY and
ANSAA_WRITEIMMINENTCAPACITY. See “Write triggers” on page 432 for more information on the
how the ANSAA_WRITEELEVATEDCAPACITY and ANSAA_WRITEIMMINENTCAPACITY fields are set.

When using the IXGQUERY service to retrieve system logger parameter options, the information is
returned in a buffer mapped by IXGQZBUF. The information returned by IXGQUERY includes system
logger parameter options for:

• ZAI SERVER value and significant length of value.
• ZAI PORT value and significant length of value.
• ZAI TPNAME value and significant length of value. Refer to the IXGQZBUF mapping macro keyword

IXGQZBUF_VERS=2 specification.

Since the system logger parameter options can change as a result of (SET or SETLOGR) commands, refer
to topic “Using ENF event code 48 in system logger applications” on page 419 for details on keeping
informed of when changes to these parameters occur.

You must be in task mode to issue the IXGQUERY service or else the request is rejected.

For information about the IXGQBUF and IXGQZBUF fields, see z/OS MVS Data Areas in the z/OS Internet
library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

The safe import point: Using IXGQUERY and IXGIMPRT together
If you have an application (a resource manager, for example) that uses the IXGIMPRT service to import
log data from a source log stream to a target log stream, creating a duplicate or back-up log stream, you
can use IXGQUERY to ascertain the safe import point for a log block before importing it, to make sure the
two log streams are synchronized.

See:

• “Coupling facility log streams and the safe import point” on page 441.
• “DASD-only log streams and the safe import point” on page 443.

Coupling facility log streams and the safe import point
Keeping the log streams synchronized can be particularly difficult when the situation involved coupling
facility log streams. If the importing application imports data from a source to a target log stream before
it is safely hardened on DASD log data sets or staging data sets, you might get inconsistencies between
the source and target log streams. For example, if an importing application involves coupling facility log

Chapter 27. Using system logger services 441

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

streams, it is particularly difficult to keep the two log streams synchronized. For example, Figure 118
on page 442 illustrates the problem. This figure shows a source log stream, SOURCE1, that is written
to by applications on two systems, SYS1 and SYS2. SYS1 also contains the coupling facility containing
the structure associated with SOURCE1. That means that SYS1 contains a single point of failure and is
therefore backed up by a staging data set. SYS2 is a failure independent connection and is not using a
staging data set for SOURCE1.

SYS2 has written log blocks 4, 5, and 6 to the log stream coupling facility structure associated with
SOURCE1. SYS1 wrote 1, 2, and 3 to the SOURCE1's coupling facility structure. The importing application
on SYS3 browses log stream SOURCE1, seeing log blocks 1 through 6 and imports them to log stream
TARGET1.

Meanwhile, on SYS1 log blocks 1 and 2 got duplexed to the staging data set, but before 3 could be
duplexed, a failure in SYS1 knocked out both the MVS system and the coupling facility. When a rebuild is
initiated, only SYS2 can participate to repopulate the log stream. SYS2 repopulates the new structure with
the data it wrote (log blocks 4, 5, and 6) and gets blocks 1 and 2 from the staging data set for SYS1. But
log block 3 is not repopulated to the rebuilt structure because the data was not committed to the staging
data set. Thus, after the rebuild, log stream SOURCE1 contains blocks 1, 2, 4, 5, and 6, while TARGET1
contains 1-6. The source and target log streams are now out of sync.

Figure 118. How Source and Target Log Streams Can Get Out of Sync

To prevent this problem, system logger provides the safe import point. This helps an application ensure
that log data is safe to import. The safe import point is the highest log block identifier that is no longer in
the coupling facility structure for a log stream. Any blocks with a block identifier less than or equal to the
safe import point can be safely imported to the target log stream. In the preceding example, log streams
SOURCE1 and TARGET1 are potentially out of sync unless the importing application on SYS3 determines
the safe import point before importing the data to the target log stream. An application can determine the
safe import by doing one of the following:

• Issue IXGQUERY, which returns the safe import point.
• Listen for ENF event 48 indicating that the safe import point has been updated, (field

IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by macro IXGENF contains the latest

442 z/OS: z/OS MVS Assembler Services Guide

safe import point.) The ENF is issued when an offload operation completes. Notification that the offload
has completed is presented on all systems in the sysplex that have a connection to the log stream.

For example, using the example in Figure 118 on page 442 again, log blocks 1-6 have been written to
log stream SOURCE1. Log blocks 1 and 2 have been offloaded to DASD log data sets, so log stream
SOURCE1 starts with a safe import point of 2. As before, only blocks 1 and 2 from SYS1 are duplexed to
SYS1's staging data set. Log block 3 has not yet been duplexed. The importing application has browsed
log stream SOURCE 1 and seen blocks 1-6, but this time, before importing them all, it issues IXGQUERY to
find that the safe import point is 2. The resource manager exit imports only log blocks 1 and 2.

When the rebuild occurs, SYS2 repopulates the new structure with log blocks 1, 2, 4, 5, and 6.
Again, log block 3 is not repopulated to the rebuilt structure because the data was not committed
to the staging data sets. When the browsing application is informed of the rebuild via ENF event (bit
IXGENFStrRebuildComplete is on in the parameter list mapped by macro IXGENF) it should then do the
following to keep the target log stream synchronized with source log stream SOURCE1:

• Issue IXGQUERY for the new safe import point. Let's say the new safe import point is 6.
• Browse log stream SOURCE1 from the last safe import point it knew about (2) to the new safe import

point (6). After the rebuild, SOURCE1 contains 4, 5, and 6.
• Import log blocks 4, 5, and 6 to TARGET1.

The end result is that both SOURCE1 and TARGET1 match, containing log blocks 1, 2, 4, 5, and 6.

Note that an application can also try to change the safe import point by initiating an offload using the
IXGOFFLD service.

DASD-only log streams and the safe import point
For a DASD-only log stream data is duplexed to DASD staging data sets as it is written to the log stream.
This means that the chance of losing data because of a system failure is far less; There is no lag time
between a successful write and hardening of the data on DASD. And of course, a coupling facility failure
will not affect a DASD-only log stream. However, it can be helpful for an application to use the IXGQUERY
service to ensure that log data is safe to import from a DASD-only source log stream. For a DASD-only log
stream, the safe import point is the highest log block identifier that has been successfully written to the
log stream. The safe import point for a DASD-only is updated with each successful write, because the log
data is simultaneously duplexed to DASD staging data sets. Any log blocks in the source log stream with a
block identifier less than or equal to the safe import point can be safely imported to the target log stream.
An application can determine the safe import point by doing one of the following:

• Issue IXGQUERY, which returns the safe import point.
• Listen for ENF event 48 indicating that the safe import point has been updated, (field

IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by macro IXGENF contains the latest
safe import point.) The ENF is issued when an offload operation completes. Notification that the offload
has completed is presented on all systems in the sysplex that have a connection to the log stream.

The coupling facility list structure version number
The buffer returned by IXGQUERY (IXGQBUF) contains a version number. The meaning
varies for DASD-only and coupling facility log streams, but the value is returned
in field QBUF_STRUCT_VERSION_NUMBER for both. An alternate name for the field is
QBUF_INSTANCE_VERSION_NUMBER.

For a DASD-only log stream, the version number is the time stamp in STCK format when the staging data
set for the DASD-only log stream was created.

For a coupling facility log stream, the version number is the coupling facility list structure version
number. This value shows the list structure version number of the coupling facility structure assigned to
the log stream. A version number is assigned when a structure is initially allocated in the coupling facility
and increases every time a structure is rebuilt or reallocated.

Chapter 27. Using system logger services 443

Using the coupling facility version number
The coupling facility list structure version number returned for coupling facility log streams is helpful in
situations where a rebuild occurs while the resource manager responsible for gathering data for a log
stream was inactive at the time of the rebuild. A browsing application can tell if a rebuild has occurred
since it was last connected by checking to see if the coupling facility list structure version number has
increased since the last browse session. If a browsing application connects to a log stream and issues
IXGQUERY to find that the version number has increased, it should then begin browsing from the last valid
safe import point it knew about for the most up to date version of the log stream contents.

For example, imagine an application browses log blocks 1 through 6 in a source log stream in anticipation
of importing them. Before importing the log blocks to the target log stream, the application checks for
the safe import point using IXGQUERY and imports only blocks 1 and 2. Then, the browsing application
is cancelled or fails and disconnects from the log stream, saving the current coupling facility list structure
version number and safe import point it knows about (2).

A rebuild then occurs and the new content of the source log stream consists of 1, 2, 4, 5, and 6.
The browsing application then reconnects to the log stream and issues IXGQUERY for the new list
structure version number and safe import point. Since a rebuild has occurred, the version number will
have increased. The browsing application begins browsing again from the last safe import point (2) to the
new safe import point (6), and only imports log blocks 4, 5, and 6.

IXGOFFLD: Initiate offload to DASD log data sets
Use the IXGOFFLD service to initiate an offload of log data to DASD log data sets.

For coupling facility log streams log data is offloaded from the coupling facility structure associated with
a log stream to DASD log data sets. Because offloading hardens log data on DASD log data sets, it updates
the safe import point for a log stream. You can use IXGOFFLD to initiate an offload on a source log stream
to increase the safe import point. This makes more log data available for safe import from the source to
the target log stream.

For DASD-only log streams log data is offloaded from local storage buffers to DASD log data sets.
Offloading does not update the safe import point, because for DASD-only log streams, when an IXGWRITE
service is issued to write data to local storage buffer, the log data is automatically hardened on DASD
staging data sets at the same time. For DASD-only log streams, the safe import point is updated after
every successful write request.

The number of off-loads initiated via IXGOFFLD are tracked in a field in SMF record 88.

You must be in task mode to issue the IXGOFFLD service or else the request is rejected.

Managing a target log stream: Using IXGIMPRT, IXGOFFLD, and IXGQUERY
together

An application managing a target log stream can monitor the offloads occurring on the source log stream
via ENF event 48 writer offload completion events as an indication of when there will be more data to
import (IXGIMPRT) to the target log stream. But the application must also check the safe import point of
the source log stream. The application can do this in one of two ways:

• Listen for ENF event 48, notifying them of a change to the safe import point (field
IXGENFWrOffLoadSafeImportPoint in the parameter list mapped by macro IXGENF contains the latest
safe import point).

• Issuing the IXGQUERY service (see “The safe import point: Using IXGQUERY and IXGIMPRT together”
on page 441) to verify that the data is safe to import to the target log stream.

You must verify the safe import point because it is not always updated for an IXGOFFLD initiated offload
even though the safe import point is tied to offloading. This is true because of the way system logger
manages log data set control intervals that are not yet full.

444 z/OS: z/OS MVS Assembler Services Guide

IXGUPDAT: Modify log stream control information
Use the IXGUPDAT service to modify the UTC time stamp control information for a log stream. Once
modified, the next log block written to the log stream will be assigned a UTC time stamp equal to or
greater than the one specified on the IXGUPDAT request.

For coupling facility log streams, the time stamp for a log stream maintained in the coupling facility list
controls.

For DASD-only log streams, the time stamp for a log stream maintained in the local control blocks for the
system associated with the log stream and the staging data set control records.

On the IXGUPDAT service, you must supply a time stamp that is equal to or greater than the current time
stamp maintained in the Log Stream Control information. You can obtain the current time stamp for the
log stream by issuing the IXGQUERY service.

You must be in task mode to issue the IXGUPDAT service or else the request is rejected. The program
issuing IXGUPDAT must also have specified AUTH=WRITE on the IXGCONN request to connect to the log
stream to issue this request.

Why would I need to change a time stamp on a log stream? The IXGUPDAT service is useful mainly to
coupling facility log streams. If an application writes to multiple coupling facility log streams at the time
of a failure necessitating recovery processing, database recovery processing truncates the log streams to
the latest point consistent across all the log streams. This can mean a loss of data. For example, let's say
an application writes to two log streams. In log stream 1, the last log block written was at 9 A.M.. In log
stream 2, the last log block was written at 9:15 A.M.. The recovery process logically truncates log stream
2 data to 9 A.M., to be consistent with log stream 1 for recovery. This means that the data written to log
stream 2 between 9:00 and 9:15 is lost.

In this situation, you would use IXGUPDAT to update the time stamp for log stream 1 to 9:15 or greater so
that all data for both log streams can be recovered. All data written to the two log streams up until 9:15
A.M can then be recovered. IXGUPDAT lets you advance the time stamp for a log stream or streams to the
latest time among all the log streams. This ensures that log streams have a consistent time stamp and
include all the data written to any of the log streams.

Rebuilds and IXGUPDAT processing
For a coupling facility log stream, when a rebuild occurs after you update a time stamp using IXGUPDAT,
the time stamp for the log stream will be set for the time of the last log block written and recovered to
the log stream. This will be the last log block written, unless rebuild processing indicates a loss of data
condition for the log stream.

If the rebuild occurs after one or more successful write requests have occurred since the IXGUPDAT
request, the time stamp is reset for the last post-IXGUPDAT written and recovered log block time stamp.
If however, the rebuild occurs before any write requests to the log stream since the IXGUPDAT request,
the time stamp for the log stream reverts to the last pre-IXGUPDAT written and recovered write request.

Setting up the system logger configuration
• To set up a system logger configuration for a logging function or application, see see the chapter on

planning for system logger functions in z/OS MVS Setting Up a Sysplex.
• For system logger applications, IBM recommends that you use ENF event code 48 and write an

ENF event code 48 listen exit. See the topic on Writing an ENF event 48 listen exit in the z/OS MVS
Programming: Authorized Assembler Services Guide.

Reading data from log streams in data set format
There are two ways that you can read data from log streams:

• Write a new application to read data that supports the log stream data format using the system logger
services, particularly IXGBRWSE. See “IXGBRWSE: Browsing/reading a log stream” on page 435.

Chapter 27. Using system logger services 445

• Use the LOGR subsystem to access log stream data in data set format for existing applications that need
to read log data but do not support the log stream format.

This information describes how to use the LOGR subsystem to access log stream data in data set format.
For example, you might have existing applications that read logrec data in data set format. The LOGR
subsystem interface allows you to use your existing applications to read log stream output without having
to re-write them.

Is my application eligible for the LOGR subsystem?
You can use the LOGR subsystem to access log stream data for programs that conform to the following:

• Use only BSAM or QSAM access methods.
• Use only record lengths allowed by QSAM or BSAM in the log stream.

QSAM and BSAM access methods support up to approximately 32K record sizes while a log stream can
use a record size up to 64K-4. Make sure that the log stream uses a record size compatible with the
access method if you want to use the LOGR subsystem to read log stream data. See z/OS DFSMS Macro
Instructions for Data Sets for more information about access methods.

• Use only the following macros to access data:

– DCB
– DCBE
– RDJFCB
– OPEN
– GET (QSAM)
– READ (BSAM)
– CHECK (BSAM)
– TRUNC (BSAM)
– SYNADAF
– SYNADRLS
– CLOSE

Your program is NOT eligible for use with the LOGR subsystem if it uses the NOTE, POINT, and CNTRL
macros.

Preparing to use the LOGR subsystem
If you want to use the LOGR subsystem to read log stream data in data set format, make sure of the
following:

• The LOGR subsystem must be activated on each system where you expect to use it.

Note that you cannot use either the SETSSI ACTIVATE or SETSSI DEACTIVATE command to activate or
deactivate the LOGR subsystem. See the chapter on system logger functions in z/OS MVS Setting Up a
Sysplex.

Each system must have LOGR defined as a subsystem on the SUBSYS statement in the job that runs the
subsystem.

• The log stream owner must supply an exit that generates a view of its log data. You can use this to
ensure that the new application program is written with the correct data format in mind. See z/OS MVS
Programming: Assembler Services Guide.

• The system where the new log data reading application runs on must be in the same sysplex as the log
stream.

• The application must have the appropriate SAF authority (READ/WRITE) to the log stream, SAF
CLASS(LOGSTRM) RESOURCE(log_stream_name).

446 z/OS: z/OS MVS Assembler Services Guide

If there is no log stream class defined to a security product such as RACF, no access checking is
performed.

• Make sure the LOGR subsystem is activated.

References:

• See the chapter on planning for system logger functions in z/OS MVS Setting Up a Sysplex.
• See z/OS MVS Initialization and Tuning Reference for information about the IEFSSNxx parmlib member.
• See z/OS MVS System Commands for information about the SETSSI command.
• See z/OS MVS Installation Exits for information about the LOGR subsystem exit.

Using the LOGR subsystem
Do the following to use the LOGR subsystem:

1. Obtain the following information from the log stream owner:

• Name of the log stream.
• Name of the exit routine.

2. Add the exit routine and log stream data to the JCL used to invoke the application using the SUBSYS
statement. See “JCL for the LOGR Subsystem” on page 447.

3. Make sure the LOGR subsystem has been activated. See “Preparing to use the LOGR subsystem” on
page 446.

JCL for the LOGR Subsystem
Use the SUBSYS parameter to call the log stream subsystem (LOGR) to access log stream data.

//ddname DD DSNAME=log.stream.name,
// SUBSYS=(LOGR[,exit_routine_name][,'SUBSYS-options1'][,'SUBSYS-options2'])

where:SUBSYS-options1:
[FROM={({[yyyy/ddd][,hh:mm[:ss]]}) | OLDEST}]
[TO={({[yyyy/ddd][,hh:mm[:ss]]}) | YOUNGEST}]
[,DURATION=(nnnn,HOURS)]
[,VIEW={ACTIVE|ALL|INACTIVE}]
[,GMT|LOCAL] SUBSYS-options2:
defined by the log stream owner

Note: Quotation marks around keywords are required when parentheses, commas, equal signs, or blank
characters are used within the SUBSYS keyword.

Other DD keywords are validated, if specified, but are ignored in the LOGR subsystem processing.
DSNAME=log.stream.name

Specifies the name of the log stream to read. The name can be 1 to 26 characters in a data-set-name
format.

SUBSYS=(LOGR[,exit_routine_name][,'SUBSYS-options1'][,'SUBSYS-options2'])
Specifies that processing of this DD is to be handled by the LOGR subsystem. The exit_routine_name
is the second positional parameter and specifies the name of the exit routine to receive control from
the LOGR subsystem.

Note: Contact your installation system programmer to ensure your exit_routine_name can be used as
a log stream subsystem exit routine. See Authorization for system logger applications in z/OS MVS
Setting Up a Sysplex

• Specify or use the default value to IXGSEXIT to use the log stream subsystem exit routine.
• Specify IFBSEXIT to access records from the logrec log stream. See SUBSYS-options2 for logrec-
specific parameters.

• Specify IFASEXIT to access records from SMF log streams. See SUBSYS-options2 for SMF-specific
parameters.

Chapter 27. Using system logger services 447

SUBSYS-options1
Specifies options that are meaningful to all exit routines. See the documentation for a specific log
stream exit for exceptions to these common options. The keywords are:
FROM=starting_time

Indicates the starting time of the first log stream block to be processed based on the log stream
view that the VIEW keyword specifies. The first block is the one with a time stamp later than or
equal to the specified time.
OLDEST

Indicates the first block read is the oldest block on the log stream. OLDEST is the default.
yyyy/ddd

Specifies the start date. If the date is omitted, the current date is assumed. yyyy is a 4-digit
year number and ddd is a 3-digit day number from 001 through 366 (366 is valid only on leap
years). For example, code February 20, 2000 as 2000/051, and code December 31, 1996 as
1996/366.

hh:mm[:ss]
Specifies the start time. If the time is omitted, the first block written after midnight is used. hh
is a 2–digit hour number from 00 to 23, mm is a two digit minute number from 00 to 59, and ss
is a 2–digit second number from 00 to 59. The seconds field and associated : delimiter can be
omitted if it is not required by the log stream owner.

The FROM keyword is mutually exclusive with the DURATION keyword.

TO=ending_time
Indicates the ending time of the last log stream block to be processed based on the log stream
view that the VIEW keyword specifies. The last block is the one with a time stamp earlier than or
equal to the specified time.
YOUNGEST

Indicates the last block read will be the youngest block on the log stream at the time the
allocation for the DD occurs. YOUNGEST is the default.

yyyy/ddd
Specifies the end date. If the date is omitted, the current date is assumed. yyyy is a 4-digit
year number and ddd is a 3-digit day number from 001 through 366 (366 is valid only on
leap years). For example, code March 7, 2001 as 2001/066, and code November 12, 2000 as
2000/317.

hh:mm[:ss]
Specifies the end time. If the time is omitted, the last block written before midnight will be
used. If the end date is the same as the current day, then the youngest block on the log stream
at the time the allocation for the DD occurs will be used. hh is a 2–digit hour number from 00
to 23, mm is a two digit minute number from 00 to 59, and ss is a 2–digit second number from
00 to 59. The seconds field and associated: delimiter can be omitted if it is not required by the
log stream owner.

The TO keyword is mutually exclusive with the DURATION keyword.

Note: If the value specified for the FROM keyword is greater than the value specified for the TO
keyword, the system ends the jobstep with a JCL error.

DURATION=(nnnn,HOURS)
Specifies which blocks are to be processed. Each n is a numeric from 0 to 9. Specifying
(nnnn,HOURS) requests the blocks for the last nnnn hours up to the youngest block that is to
be processed based on the log stream view that the VIEW keyword specifies. The last nnnn hours
are calculated from the current time of the allocation for the DD.

The first block is the one with a time stamp greater than or equal to the calculated start time. The
last block read is the youngest block on the log stream at the time the allocation for the DD occurs.

The DURATION keyword is mutually exclusive with the TO and the FROM keywords.

448 z/OS: z/OS MVS Assembler Services Guide

VIEW=ACTIVE|ALL|INACTIVE
Specifies the view or portion of log data to be used to obtain records from the log stream. System
logger maintains two kinds of log stream data in a log stream: an active portion and an inactive
portion. The active portion of the log stream is the log data that the log stream owner has not
logically deleted through an IXGDELET request. The inactive portion of the log stream is the log
data that the log stream owner has logically deleted but that has not yet been physically deleted
from the log stream because the retention period (RETPD) specified for the log stream has not yet
expired.

The VIEW option designates the portion(s) of the log stream to be used to obtain log data from the
log stream, in addition to applying the other parameters.

Because the other parameters also apply, the combination of the FROM, TO, or DURATION
parameters and the VIEW parameter might mean that the log stream subsystem exit returns
no log data or only a portion of the intended log data. For example, if FROM=starting_time and
VIEW=INACTIVE are both specified, and the starting_time is later (younger) than the log data in
the inactive portion of the log stream, then there is no log data to meet the access criteria. In
the same way, if TO=ending_time and VIEW=ACTIVE are both specified, and the ending_time is
earlier (older) than the log data in the active portion of the log stream, then there is no log data to
meet the access criteria.

ACTIVE
The view of the log stream is to include only active log data, in addition to applying the other
log stream access parameters. ACTIVE is the default.

ALL
The view of the log stream is to include both active and inactive log data, in addition to
applying the other log stream access parameters.

INACTIVE
The view of the log stream is to include only the inactive log data, in addition to applying the
other log stream access parameters.

GMT|LOCAL
Specifies whether the time is local time (based on the time zone offset at the time the log was
written) or GMT time. GMT is the default.

SUBSYS-options2
Specifies unique exit routine options. See the following:

• For information about obtaining records from the logrec log stream, see z/OS MVS Diagnosis: Tools
and Service Aids.

• For information about obtaining records from SMF log streams, see Using SMF log streams in z/OS
MVS System Management Facilities (SMF).

LOGR SUBSYS dynamic allocation considerations
Dynamic allocation (SVC99) can also be used to allocate a LOGR SUBSYS DD for accessing log stream
data.

Refer to the information in z/OS MVS Programming: Authorized Assembler Services Guide dealing with the
SVC 99 parameter list for details about using dynamic allocation.

IBM recommends using, at minimum, the following text unit keys:
DALDDNAM

DDNAME
DALDSNAM

DSNAME - log stream name
DALSTATS

Data set status - SHR

Chapter 27. Using system logger services 449

DALRECFM
Record format (RECFM)

DALBLKSZ
Block size (BLKSIZE)

DALSSNM
Subsystem name - LOGR

DALSSPRM
Subsystem parameters: exit name, SUBSYS-options 1, SUBSYS-options 2

The following examples show how to code the text units related to the LOGR SUBSYS options. The
text unit key is identified followed by an example of the EBCDIC characters that would be used for
the particular example. The text units would need to be coded as required by the Dynamic Allocation
processing. Note that spaces between the characters is for readability purposes.

Subsystem Name Request Specification - Key = '005F'
Example: To request subsystem LOGR, code:

 KEY # LEN PARM
 005F 0001 0004 D3 D6 C7 D9

Subsystem Parameter Specification - Key = '0060'
To specify these three parameters for the LOGR subsystem
IFBSEXIT,'FROM=OLDEST,TO=YOUNGEST',DEVICESTATS, code:

Example 1:

 KEY # LEN PARM
 0060 0003 0008 C9 C6 C2 E2 C5 E7 C9 E3

 LEN PARM
 0017 C6 D9 D6 D4 7E D6 D3 C4 C5 E2 E3
 6B E3 D6 7E E8 D6 E4 D5 C7 C5 E2 E3

 LEN PARM
 000B C4 C5 E5 C9 C3 C5 E2 E3 C1 E3 E2

Example 2: Here are a few examples of how to code the SUBSYS parameters when reading CICS® log
streams.

Assume the corresponding JCL DD options are desired (ignoring the JCL column alignment) and the
Subsystem name text unit (key = '005F') is also coded as shown earlier.

 a
 SUBSYS=(LOGR,DFHLG520,"FROM=(1998/350,12:00:00),GMT",
 COMPAT41)
 KEY # LEN PARM
 0060 0003 0008 C4 C6 C8 D3 C7 F5 F2 F0

 LEN PARM
 001C C6 D9 D6 D4 7E 4D F1 F9 F9 F8 61 F3 F5 F0
 6B F1 F2 7A F0 F0 7A F0 F0 5D 6B C7 D4 E3

 LEN PARM
 0008 C3 D6 D4 D7 C1 E3 F4 F1

 b.
 SUBSYS=(LOGR,DFHLGCNV,"FROM=(1998/287,00:00:00),
 TO=(1998/287,17:30:00),LOCAL',DELETE)

 KEY # LEN PARM
 0060 0003 0008 C4 C6 C8 D3 C7 C3 D5 E5

 LEN PARM
 0035 C6 D9 D6 D4 7E 4D F1 F9 F9 F8 61 F2 F8 F7
 6B F0 F0 7A F0 F0 7A F0 F0 5D 6B E3 D6
 7E 4D F1 F9 F9 F8 61 F2 F8 F7 6B F1 F7

450 z/OS: z/OS MVS Assembler Services Guide

 7A F3 F0 7A F0 F0 5D 6B D3 D6 C3 C1 D3

 LEN PARM
 0006 C4 C5 D3 C5 E3 C5

 c.
 SUBSYS=(LOGR,DFHLG520,,LASTRUN)

 KEY # LEN PARM
 0060 0003 0008 C4 C6 C8 D3 C7 F5 F2 F0

 LEN PARM LEN PARM
 0000 - 0007 D3 C1 E2 E3 D9 E4 D5

When things go wrong — Recovery scenarios for system logger
This information describes some of the failures that can affect system logger applications and the action
taken by system logger in response.

System logger performs recovery differently for DASD-only versus coupling facility log streams. Recovery
for DASD-only log streams need to be done by the application. Therefore, most of the information applies
to coupling facility log streams only. For DASD-only log streams, see “Recovery performed for DASD-only
log streams” on page 451. Other recovery information pertinent to DASD-only log streams are noted
under each of the following topics.

For many of the failures, an application can listen for an ENF 48 event to find out when problems are
resolved or resources are available again.

Note: The following topic has moved to When a resource manager fails in z/OS MVS Programming:
Authorized Assembler Services Guide.

When a system logger application fails
If a system logger application fails while holding active connections to one or more log streams, system
logger automatically disconnects the application from the log streams.

If the connection was the last connection to a log stream from a system, all log data written by that
system to the log stream is offloaded to DASD log data sets.

When an MVS system or sysplex fails
This information applies to coupling facility log streams only; for DASD-only log streams, see “Recovery
performed for DASD-only log streams” on page 451.

When a system fails, system logger tries to safeguard all the coupling facility log data for the failed system
by offloading it to DASD log data sets so that it is on a persistent media.

Recovery processing for the failing system is done by a peer connector, which is another system in the
sysplex with a connection to a coupling facility structure that the failing system was also connected to.
Note that a peer connector need only be connected to the same coupling facility structure, not the same
log stream. See the chapter on planning for system logger functions in z/OS MVS Setting Up a Sysplex for
more information.

When all the systems in a sysplex fail, there are no peer connectors to perform the recovery processing
for the failing systems, which would consist of offloading the coupling facility data for log streams to DASD
log data sets. Coupling facility resident log data continues to exist. Further recovery processing depends
on whether or not the coupling facility also failed.

Recovery performed for DASD-only log streams
Like a coupling facility log stream, a DASD-only log stream is subject to system or system logger failure.
A DASD-only log stream is not subject, however, to coupling facility or structure failures. When a failure
occurs involving a DASD-only log stream, system logger releases the exclusive ENQ on the log stream
name serializing the log stream for one system. No system-level or peer recovery is performed for a

Chapter 27. Using system logger services 451

DASD-only log stream after a failure or as part of system initialization. System logger does not perform
system-level recovery for a DASD-only log stream because data is already safeguarded on DASD staging
data sets, a non-volatile medium. For a DASD-only log stream, offload of log data to DASD log data sets
is not done as part of recovery processing for the same reason - log data is already on DASD staging data
sets. Peer recovery is both unnecessary and not possible for a DASD-only log stream, because there are
no peer systems connected to the log stream.

Recovery for a DASD-only log stream only takes place when an application reconnects to the log stream.
As part of connect processing, system logger reads log data from the staging data set (associated with
the last connection to the log stream) into the local storage buffers of the current connecting system. This
allows the application to control recovery, by selecting which system they wish to have reconnect to the
log stream and when. Note that for another system to connect to the log stream and perform recovery, the
staging data sets must reside on devices accessible by both systems.

When the system logger address space fails
This information applies to both coupling facility and DASD-only log streams.

If the system logger address space fails, any system logger requests from the system where the system
logger component failed are rejected. See z/OS MVS Programming: Assembler Services Reference IAR-XCT
for information on system logger services.

When the coupling facility structure fails
This information applies to coupling facility log streams only.

The following coupling facility problems can occur, resulting in rebuild processing for the structure:

• Damage to or failure of the coupling facility structure.
• Loss of connectivity to a coupling facility.
• A coupling facility becomes volatile.

For complete information on rebuild processing, see z/OS MVS Programming: Sysplex Services Guide.

Damage to or failure of the coupling facility structure
If a coupling facility fails or is damaged, all systems connected to the coupling facility structure detect the
failure. The first system whose system logger component detects the failure initiates the structure rebuild
process. The structure rebuild process results in the recovery of one or more of the affected coupling
facility structure's log streams. All the systems in the sysplex that are connected to the list structure
participate in the process of rebuilding the log streams in a new coupling facility list structure.

When the rebuild starts, system logger issues an event 48 signal to inform applications that the rebuild
is starting and that the log streams associated to the coupling facility structure that is being rebuilt are
not available. Bits IXGENFStrRebuildStart and IXGENFLogStreamsNotAvailable are on in the event 48
parameter list mapped by macro IXGENF.

While the rebuild is in progress, system logger rejects any system logger service requests against the
log stream. Applications must listen for another ENF event 48 to learn the status of the log stream after
rebuild processing is complete. The status will be one of the following:

• The structure rebuild has completed successfully, the coupling facility structure and associated log
streams are available, and system logger requests will be accepted. Bits IXGENFLogStreamsAvailable
and IXGENFStrRebuildComplete are on in the event 48 parameter list mapped by macro IXGENF.

• The structure rebuild was unsuccessful and connection to the structure is not possible because the
structure is in a failed state. Log data still resides in staging data sets if they are used to duplex the
log data for the log stream. If staging data sets were not used, the data persists in the local storage
buffers on each system. All system logger service requests against the log streams will be rejected. Bits
IXGENFLogStreamsNotAvailable, IXGENFStrRebuildFailed, and IXGENFRebuildFailStrFail are on in the
event 48 parameter list mapped by macro IXGENF.

452 z/OS: z/OS MVS Assembler Services Guide

In this case, applications connected to the affected log streams must wait for the structure to be rebuilt
successfully and the system to issue an ENF 48 event to indicate that the log streams are available.

Loss of connectivity to the coupling facility structure
If a system loses connectivity to the coupling facility structure due to a hardware link failure, all the
systems connected to the log streams associated with the coupling facility detect the failure.

Then, based on the rebuild threshold specified, if any, in the structure definition in the CFRM policy, the
system that lost connectivity may initiate a rebuild for the structure.

If a rebuild is initiated, the event 48 parameter list mapped by macro IXGENF has bits
IXGENFLogStreamsNotAvailable, and IXGENFStrRebuildStart, on, and field IXGENFStrName contains the
name of the coupling facility structure affected. System logger rejects logger service requests issued
during the rebuild process.

If XES cannot allocate a new coupling facility that all the systems affected can connect to, system logger
does one of the following, depending on whether the system or systems that cannot connect to the new
coupling facility structure were using staging data sets:

• If the system was using staging data sets, the rebuild process continues and the coupling facility log
data for the system is recovered from the staging data sets.

• If the system was not using staging data sets, the rebuild process is stopped. The systems go back to
using the source structure.

The systems that do not have connectivity to the old coupling facility structure issue an ENF 48 event
indicating that they do not have connectivity to the log stream.

The systems that can connect to the source structure issue an ENF 48 event indicating that the log
stream is available to that system and can resume use of the log stream.

The installation should either update the CFRM to make the new coupling facility structure available to
all the systems or else fix the hardware link problem and then have the operator initiate a rebuild for the
structure so that all the original systems will have connectivity.

Applications must listen for another ENF event 48 to learn the status of the log stream after rebuild
processing is complete. The status will be one of the following:

• The structure rebuild has completed successfully, the coupling facility structure and associated log
streams are available, and system logger requests will be accepted. Bits IXGENFLogStreamsAvailable
and IXGENFStrRebuildComplete are on in the event 48 parameter list mapped by macro IXGENF.

• The structure rebuild was unsuccessful. Connections to the structure are not available because the
system receiving the ENF event code has lost connectivity to the structure.

All system logger service requests against the log streams will be rejected. Bits
IXGENFLogStreamsNotAvailable, IXGENFStrRebuildFailed, and IXGENFRebuildFailLossConn are on in
the event 48 parameter list mapped by macro IXGENF.

A coupling facility becomes volatile
If a coupling facility changes to the volatile state, the system logger on each system using the coupling
facility structure is notified. A dynamic rebuild of the structure is initiated so that the log data can be
moved to a non-volatile coupling facility. During rebuild processing, system logger rejects any logger
service requests.

If there is not a structure available in a non-volatile coupling facility, system logger will still rebuild the
data on a new volatile coupling facility. System logger may then change the way it duplexes coupling
facility data since the volatile coupling facility constitutes a single point of failure:

• For log streams defined with STG_DUPLEX=YES, system logger will begin duplexing data to staging data
sets, if they were not already in use.

• For log streams defined with STG_DUPLEX=NO, system logger will keep on duplexing data to local
storage buffers on each system.

Chapter 27. Using system logger services 453

When the coupling facility space for a log stream becomes full
This information applies to coupling facility log streams only.

Ordinarily, system logger offloads coupling facility resident log stream data to DASD log data sets before
the coupling facility storage allocated to the log stream is fully utilized. Occasionally however, the coupling
facility storage allocated to a log stream reaches 100% utilization, for reasons such as a sudden burst of
logging activity or because your coupling facility is sized too small for the volume of log data.

Applications are notified of a filled log stream by system logger service return code of X'08' and
a reason code of IXGRsnCodeCFLogStreamStorFull (X'0860'). System logger will not accept write
requests until offload processing can be completed and applications receive an ENF signal with bit
IXGENFStructureNotFull on.

When a staging data set becomes full
This information applies to both coupling facility and DASD-only log streams.

The staging data sets for each system should not fill up. If they do, you probably have them sized too
small for your volume of log data and should enlarge them.

When a DASD staging data set becomes full, IXGWRITE requests from the system with a staging data set
full condition will be rejected with a return code of X'08'and a reason code of IXGRsnCodeStagingDsFull
(X'0865').

System logger will immediately begin offloading log data to DASD log data sets. If your staging data set is
too small, you may find that offloading occurs very frequently.

System logger will not accept write requests from the system associated with the staging data set until
offload processing can be completed and applications receive an ENF signal indicating that the staging
data set full condition has ended.

When a log stream is damaged
This information applies to both coupling facility and DASD-only log streams. damaged when it cannot
recover log data from either DASD staging data sets or the local storage buffers after a system, sysplex, or
coupling facility failure. Applications are notified of the damage by the following means:

• When they issue IXGCONN, they receive return code, X'04', reason code,
IXGRsnCodePossibleLossOfData

• When they issue IXGBRWSE, they receive return code, X'04', reason code, IXGRsnCodeWarningGap
• Their listen exit detects ENF event 48.

Applications should do the following to respond to a damaged log stream condition, depending on how
critical a data loss is to the application:

• Applications that absolutely cannot tolerate any data loss whatsoever, some short term transaction logs
for example, should stop issuing system logger services to the affected log stream, disconnect from the
log stream, perform recovery for the application, and then reconnect to a new log stream.

• Applications that can tolerate some data loss, such as archive logs that do not read a great deal of data
from the log stream, may be able to continue using the log stream. See “How system logger handles
gaps in the log stream” on page 415 for a summary of the results of reading a damaged log stream.

When DASD log data set space fills
This step applies to both coupling facility and DASD-only log streams.

The number of DASD log data sets available for log streams in a sysplex depends on whether you use the
default (168 per log stream) or have provided additional directory extents in the LOGR couple data set.

System logger monitors usage of the available log stream directory space, notifying you as follows if you
start to run out of space:

454 z/OS: z/OS MVS Assembler Services Guide

• If you are using the DSEXTENT parameter in the LOGR couple data set system logger issues messages
IXG261E and IXG262A indicating that usage of directory extents is over 85% and 95% respectively.

• If you are using the default number of log data sets allowed for a log stream (168), system logger issues
message IXG257I indicating that the data set directory for the log stream is over 90% full.

If you have run out of log stream directory space, offloads may fail. When this occurs, system logger
issues message IXG301I. Offload processing for the log stream cannot complete until more log stream
directory space or directory extents are made available. If the last disconnect to a log stream occurs and
the offload cannot complete successfully, the log stream is in a failed state. In this case, the log stream is
considered 'in use' and there may be a failed-persistent connection to a structure associated with the log
stream.

You can make more directory space available for a log stream in one of the following ways. Use the
IXCMIAPU utility to run a report of the log stream definitions in the LOGR couple data set to help you
with this step. The LIST LOGSTREAM NAME(*) DETAIL(YES) statement outputs information showing which
log streams might be using large numbers of data sets and directory extents. See LOGR keywords and
parameters for the administrative data utility in z/OS MVS Setting Up a Sysplex for more information about
IXCMIAPU.

• Format another set of LOGR couple data sets with a higher DSEXTENT value and bringing them into the
sysplex as the active primary and alternate LOGR couple data sets. You must have a LOGR couple data
set to use the DSEXTENT parameter. See Administrative data utility in z/OS MVS Setting Up a Sysplex for
the IXCL1DSU utility and the DSEXTENT parameter.

• Free directory extents currently in use in one of the following ways:

– Use a program that issues the IXGDELET service to delete enough data from the log stream to free up
space in the log stream data set directory.

Some products provide a program to delete log stream data. See Deleting log data and log data sets
in z/OS MVS Setting Up a Sysplex for information on deletion programs provided for IBM products. See
the documentation for the product to see if it provides a deletion program.

– Delete log stream definitions from the LOGR couple data set.

Identify and delete the definitions for unused or unnecessary log streams. This will free the directory
space associated with the log streams, which may free up directory extents for use by other log
streams.

Note: Deleting DASD log data sets using a non-system logger method will not work because system
logger will still count the data sets toward the data set directory entry limit. You cannot, for example:

– Use a TSO/E DELETE command to delete a log data set.
– Use DFHSM to migrate log stream data sets to tape.

When unrecoverable DASD I/O errors occur
This information applies to both coupling facility and DASD-only log streams, with differences noted.

DASD I/O errors may occur against either log data sets or staging data sets. System logger tries to recover
from the error, but if it cannot, the error is characterized as an unrecoverable I/O error. See the following:

• “When unrecoverable DASD I/O errors occur during offload” on page 455
• “When staging data set unrecoverable DASD I/O errors occur” on page 456

When unrecoverable DASD I/O errors occur during offload
DASD I/O errors may occur during offload processing, while log data is being written to DASD log data
sets. When this happens, system logger tries to recover by closing the current log data set and allocating a
new one. If this process fails, the I/O error is characterized as an unrecoverable I/O error.

In the case of unrecoverable I/O errors, system logger will accept subsequent IXGWRITE requests as
follows:

Chapter 27. Using system logger services 455

• For a coupling facility log stream, system logger will accept IXGWRITE requests if the log stream is
connected to a coupling facility where there is still room for log data. If the coupling facility is full or no
coupling facility exists, system logger rejects IXGWRITE requests.

• For a DASD-only log stream, system logger will accept IXGWRITE requests until the staging data set for
the system writing to the log stream is filled.

IXGBRWSE and IXGDELET requests may continue to work. I/O errors encountered in the process of
completing these requests are reported to the application in return and reason codes.

To correct an unrecoverable I/O problem, delete the log stream definition in the LOGR policy and redefine
it with different log data set attributes, such as LS_DATACLAS, in order to get the log stream data set
allocated in a usable location.

When staging data set unrecoverable DASD I/O errors occur
DASD I/O errors may occur when log data is being duplexed to DASD staging data sets. When this occurs,
system logger tries to recover by doing the following:

1. Offload current log data to DASD log data sets.
2. Delete and unallocate the staging data set.
3. Re-allocate a new instance of the staging data set.

In the meantime, system logger continues to accept write and other requests against the log stream.

If system logger cannot re-allocate a new staging data set, the I/O error is characterized as
unrecoverable. In the case of an unrecoverable staging data set I/O error, system logger does the
following:

• For a coupling facility based log stream, system logger switches the duplexing mode to duplex log
data to local storage buffers. The system issues message IXG255I indicating that the duplexing mode
has changed. Normal system logger processing continues. The log stream may be more vulnerable to
data loss due to system, sysplex, or coupling facility failure.

• For a DASD-only log stream, system logger disconnects connectors from the log stream. The system
issues message IXG216I to indicate that connectors are being disconnected because a staging data set
could not be allocated.

456 z/OS: z/OS MVS Assembler Services Guide

Chapter 28. Unicode instruction services: CSRUNIC

The CSRUNIC macro provides support for processing hardware instructions related to unicode data.
Unicode data uses the binary codes of the Unicode Worldwide Character Standard; these codes support
the characters of most of the world's written languages.

See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN or z/OS MVS
Programming: Assembler Services Reference ABE-HSP for more information about the CSRUNIC macro.

© Copyright IBM Corp. 1988, 2022 457

458 z/OS: z/OS MVS Assembler Services Guide

Chapter 29. Transactional execution

The transactional execution facility is a hardware-based facility that supports the notion of "transactions"
through the use of such instructions as TBEGIN, TBEGINC, TABORT, and TEND (all of which are described
in z/Architecture Principles of Operation). A transaction either completes successfully or it aborts. When
a transaction aborts, with the exception of a new instruction classified as a "non-transactional store",
storage is unchanged from the time of the transaction begin from the program's perspective (except for a
diagnostic block that can be provided).

• Only when bit CVTTX is on (in the CVT data area) or bit PSATX is on (in the PSA data area) does z/OS
support the use of the TBEGIN instruction. You can check either bit; you do not have to check both.

• Only when bit CVTTXC is on (in the CVT data area) or bit PSATXC is on (in the PSA data area) does z/OS
support the use of the TBEGINC instruction. You can check either bit; you do not have to check both.

The transactional execution facility applies special rules to instructions that are executed within
transactional execution mode. Some of these rules are described here. For a complete description,
read the section entitled "Restricted Instructions" in chapter 5 of z/Architecture Principles of Operation.
Specifically, you can think of instructions executed within a transaction as block concurrent (as observed
by other CPUs and the channel subsystem), with the transactional execution facility providing the
serialization that you might otherwise implement yourself to accomplish block concurrency (whether
that be an instruction such as CS, or an ENQ, latch, or system lock). The details of the block concurrency
are important to understand and are part of z/Architecture Principles of Operation. For example, two
transactions conflict with each other if both need access to a particular cache line and at least one of
them needs to write to that cache line. When such a conflict is detected, the transaction cannot complete
successfully, but it might complete successfully upon being retried. The benefit of transactions is that,
when no conflict exists, one processor might be able to complete its operation in a simple way, without
having to obtain software-managed serialization or utilize serializing instructions to protect itself.

There are two kinds of transactions: nonconstrained and constrained. Constrained transactions have
additional restrictions. Many instructions are restricted from being used within a transaction.

Nonconstrained transactions
A nonconstrained transaction begins with a TBEGIN instruction, ends normally with a TEND instruction,
can be aborted (ended abnormally) with a TABORT instruction and may abort for many system-defined
reasons.

The TBEGIN instruction may provide a "transaction diagnostics block" (TDB, mapped by macro IHATDB).

The instruction after the TBEGIN instruction usually is a conditional relative branch (BRC instruction) that
can handle the condition codes with which a TBEGIN instruction may complete:

• CC=0 (transaction initiation successful) should "fall through".
• CC=1 (abort due to an indeterminate condition) should branch somewhere to deal with this situation.
• CC=2 (abort due to a transient condition) should branch somewhere to deal with this situation (dealing

with this might retry, but should eventually "time out" and go to the fall-back path). While there is
no "right number" for the question "how many times should I retry", a small number, such as 5, is
considered within reason in general.

• CC=3 (abort due to a persistent condition) should branch somewhere to deal with this situation,
eventually winding up in a "fall-back" path because for some reason, the system believes that the
transaction is unlikely ever to succeed.

Note: This applies to the current circumstances. For example, a list search on a hash table might not
succeed for the current hash, but for most other hashes might succeed.

• This needs a fall-back path.

Upon transaction abort, control flows to the instruction after the TBEGIN instruction.

© Copyright IBM Corp. 1988, 2022 459

Constrained transactions
A constrained transaction begins with a TBEGINC instructions and, as with a nonconstrained transaction,
ends normally with a TEND instruction and may abort for many system-defined reasons.

The key difference is that, in the absence of repeated interruptions or other constraint violations, a
constrained transaction is assured of eventual completion. Thus, it does not need a fall-back path.

The TBEGINC instruction always completes with CC=0 so it does not need a conditional branch following
it.

The following restrictions apply to constrained transactions only:

• The transaction executes no more than 32 instructions.
• All instructions within the transaction must be within 256 contiguous bytes of storage.
• The only branches you may use are relative branches that branch forward (so there can be no loops).
• All SS and SSE-format instructions may not be used.
• Additional general instructions may not be used.
• The transaction's storage operands may not access more than four octowords.
• The transaction may not access storage operands in any 4 K-byte blocks that contain the 256 bytes of

storage beginning with the TBEGINC instruction.
• Operand references must be within a single doubleword, except for some of the "multiple" instructions

for which the limitation is a single octoword.

Because there is no condition code other than 0 and no need for a conditional branch after the TBEGINC,
a constrained transaction has no fall-back path. Therefore, you must be prepared for running in an
environment that does not support constrained transactions (bit CVTTXC not on).

Upon abort, control flows to the TBEGINC instruction.

Planning to use transactional execution
The HLASM element of z/OS provides a print exit named ASMAXTXP, which you can use in your assembly.
It flags as errors things that violate a transactional execution restriction, to the extent it can determine
those violations.

The user of transactions has control over such things as:

• The general register pairs that are to be saved at the initiation of a transaction (TBEGIN or TBEGINC
instruction) and restored upon a transaction abort.

• Whether access register modification is allowed within the transaction.

Note: Upon transaction abort, access register values are never restored.
• Whether floating point operations are allowed within the nonconstrained transaction.

Note: Upon transaction abort, floating point register values are never restored.
• Program interrupt filtering for a nonconstrained transaction. For example, the application may ask that

certain classes of program interrupts be presented to the application as an abort, rather than processed
by the system as a program interrupt.

Consider the following simple transaction:

LA 2,Source_Data_Word
LA 3,Target_Data_Word
TBEGIN theTDB,X'8000' <<The "80" indicates to restore GRs 0-1 upon abort, each
 bit in that byte corresponds to a double register pair.>>
BRC 7,Transaction_aborted
L 1,0(,2)
ST 1,0(,3)
TEND
<<When you get here, register 1 will have been changed by the "L", and the target
 word will have been set.>>
...

460 z/OS: z/OS MVS Assembler Services Guide

Transaction_aborted DS 0H
<<When you get here, all the registers will have the value they had before the
TBEGIN instruction, the target word will be unchanged, and the TDB, identified on
the TBEGIN instruction, will contain information about the transaction abort.>>

You can think of stores within a transaction as being "rolled back" upon transaction abort. Similarly, you
can think of the registers as being saved at the transaction begin and then (optionally) rolled back to their
pre-transaction begin values.

When using nonconstrained transactions, the transaction must be serialized against the fall-back path.
For example, if one processor is within a transaction and another within the fall-back path, each needs
to know enough to protect itself against the other. Also, typically, a fall-back path needs to be serialized
against other concurrent execution of that fall-back path. You can think of the fall-back path as needing
"real" serialization (hardware or software-provided) and the transaction needing to be able to tell that the
fall-back path is running. One way of accomplishing this is for the fall-back path to set a footprint when
it has obtained "real" serialization and for the transaction to query that footprint. For example, consider a
group of updates that need to be done atomically:

Fall-Back Path

 ENQ
 Set bit I_Have_ENQ
 the group of updates
 Reset bit I_Have_ENQ
 DEQ

Transaction

 TBEGIN
 BRC xx,Transaction_Aborted
 If I_Have_ENQ is on then TABORT
 the group of updates
 TEND

Even this simple example is incomplete. To avoid cases where a spin would result (when the ENQ holder
does not get a chance to reset the bit), the transaction path needs to limit the number of times that the
transaction is started over. This can be done using a counter in a register that is not restored upon the
abort or a non-transactional store. Thus, at "Transaction_Aborted", there might be a test to see if flow
should proceed to the fall-back path or back to the TBEGIN.

Note: With this sort of approach, multiple transactional users do not conflict with each other with respect
to the I_Have_ENQ bit (as, to them, it is just being read), but of course they do conflict with each other
with respect to the stores in the update group. A fall-back path does conflict with the transaction such
that its setting of I_Have_ENQ will cause an in-process transaction to be aborted.

Transactional execution debugging
You can use the non-transactional store instruction (NTSTG) to save data (such as a count of passes
through the transaction) that does not get rolled back when the transaction aborts. Somewhat similarly,
you can place information in general registers that are designated not to be restored, or in access
registers or floating point registers if you need it to persist even if the transaction aborts.

Transactional execution diagnostics
A program interrupt within a transaction is identified by bit 6 of the 16-bit interrupt code's being on. Thus,
for example, a protection exception within transactional execution mode would be interrupt code X'0204'.

If the transaction gets a program interrupt that is not filtered (TBEGIN can identify some filtering of
program interrupts), normal z/OS program interrupt processing occurs (and the transaction is aborted).
Information about the PSW and registers at the time of the program interrupt are captured by the system
and made available to your recovery routines, and certain diagnostic "rules" are applied.

ESPIE exit routines will get both the time of error registers/PSW and the transaction-begin registers/PSW.

• Bit EPIEPITX: The program interrupt occurred while within transactional execution.

Chapter 29. Transactional execution 461

• Existing fields EPIEGPR, EPIEG64S contain the time of error register information. When bit EPIEPITX is
off, these are the registers current when the program interrupt occurred. When bit EPIEPITX is on, these
are the registers that resulted from the transaction abort due to the program interrupt. Resume is done
using these fields whether or not bit EPIEPITX is on.

• Existing fields EPIEPSW, EPIEPSW16 contain the time of error PSW information. When bit EPIEPITX
is off, this is the PSW current when the program interrupt occurred. When bit EPIEPITX is on, this is
the PSW that resulted from the transaction abort due to the program interrupt (for a nonconstrained
transaction, the address will be of the instruction following the TBEGIN; for a constrained transaction,
the address will be of the TBEGINC instruction). Resume is done using these fields whether or not bit
EPIEPITX is on.

• When bit EPIEPITX is on, new field EPIETXG64 contains the registers current when the program
interrupt occurred.

• When bit EPIEPITX is on, new field EPIETXPSW16 contains the PSW current when the program
interrupt occurred.

Note: A SPIE exit routine will not get control for a program interrupt during transactional execution.

For a recovery routine (whether FRR-type or ESTAE-type), there will be additional information in the
SDWA:

• Bits SDWAPTX1 (within byte SDWAIC1H in field SDWAAEC1) and SDWAPTX2 (within byte SDWAIC2H in
field SDWAAEC2): The program interrupt occurred while within transactional execution and therefore bit
SDWAPTX1 is valid only when bit SDWAPCHK is on.

• Existing fields SDWAG64, SDWAG64H, and SDWAGRSV contain the time of error register information.
These are the registers current when the program interrupt occurred.

• Existing field SDWAPSW16 contains the time of error register information. This is the PSW current when
the program interrupt occurred.

• When bits SDWAPCHK and SDWAPTX2 are on, new field SDWATXG64 contains the registers that
resulted from the transaction abort due to the program interrupt.

• When bits SDWAPCHK and SDWAPTX2 are on, new field SDWATXPSW16 contains the PSW that resulted
from the transaction abort due to the program interrupt.

The IEATXDC service is provided to help you test your applications. A nonconstrained transaction has
both a transactional path and a fallback (non-transactional) path. With the IEATXDC service, you can
request random aborts of transactions for your work unit so that, upon repeated runnings, you are likely to
exercise both the non-abort and abort paths.

Debugging of problems that might occur within transactional execution mode can be much more difficult
than others since any stores done within the transaction have been rolled back by the time that the
system gets to examine the time of error data. SLIP provides some help in this area:

• A new ERRTYP option, TXPROG, is supported. When specified, the SLIP trap will match only if the event
was a program interrupt error event that occurred within transactional execution mode.

• The SLIP DISPLAY of an active trap will display, when non-0, the number of times that the SLIP trap was
examined, but did not match because of the DATA keyword (in a transactional execution case, this could
be normal, because the stores were rolled back when the error or PER program interrupt occurred). This
is referred to as the transactional execution DATA filter mismatch count.

Note: If the value is 255, the count of events could have exceeded 255.
• SLIP provides a new keyword TXIGD, Transactional eXecution IGnore Data, which indicates that a SLIP

trap is to ignore the DATA keyword filter that is also present in this trap if the event (whether error or
PER) occurred while within transactional execution. This keyword may be specified on SLIP SET, and
also may be used on SLIP MOD. You might use TXIGD in the following case:

– Your SLIP trap with a DATA filter did not match, but the event still occurred.
– The display of the SLIP trap showed a non-0 transactional execution count.
– You think that roll back of stores when the transaction aborted might have led to the DATA filter's not

matching.

462 z/OS: z/OS MVS Assembler Services Guide

– By ignoring the DATA keyword, the trap might match and even though it will not have a DATA filter
applied as a result, it might match the right event.

The NOTXIGD keyword may also be specified.

The SLIP GTF record, at offset (decimal) 135, has a 1-byte count that is the transactional execution DATA
filter mismatch count.

Chapter 29. Transactional execution 463

464 z/OS: z/OS MVS Assembler Services Guide

Chapter 30. The hardware runtime environment
The following topics describe the hardware environments in which z/OS can run and how programs can
determine the hardware environment in which they are running.

Hardware environments that z/OS supports
IBM z/OS can run in a logical partition (LPAR) on IBM Z® hardware, in a virtual machine (VM) environment
hosted by a hypervisor, or in an environment that emulates IBM Z hardware.

• A hypervisor is a hosting control program. The operating system (OS) that the hypervisor is hosting in a
virtual machine is known as a guest operating system (or simply guest). The virtual machine simulates
the functionality of a real hardware environment. The real hardware resources that the hypervisor
presents to its guests can be dedicated to a single virtual machine or shared among multiple virtual
machines.

Examples of hypervisors are the tier-1 hypervisor, Processor Resource/System Manager (PR/SM), that is
built into the IBM Z hardware and creates and manages logical partition (LPAR) virtual machines, and
the tier-2 hypervisor, IBM z/VM®, which can host many virtual machines. Like many IBM Z operating
systems, z/VM itself runs in an LPAR.

• An emulator allows an operating system that is designed to run on one machine architecture to run on
another. The IBM System z® Personal Development Tool (zPDT®) is an emulator that provides a means to
run an IBM Z operating system on a machine with x86 architecture.

Programs that run on z/OS might need to know about the hardware environment on which they are
running for a variety of reasons, such as:

• Performance will likely be degraded when not running in an LPAR environment, causing longer delays
for resources. Thus, longer response times might be expected.

• Some software might not be licensed to run in certain environments.
• Some environments might provide enhanced or limited functionality that can only be determined

from the host's documentation. For instance, z/VM provides enhanced functionality for the DIAGNOSE
instruction.

z/OS supports the following hardware environments:

• LPAR under PR/SM
• Virtual machine under IBM z/VM
• An alternate virtual machine environment, such as:

– Virtual server instance (VSI) under IBM Z Hypervisor as a Service (zHYPaaS)
– IBM Virtual Dev and Test for z/OS (ZVDT)

• An emulated hardware environment, such as:

– IBM zPDT emulator
– IBM Z Development and Test (ZD&T) environment (which is based on zPDT)

How to determine the hardware environment
z/OS provides the following programming interfaces to determine the hardware environment in which a
program is running:

• The following Communication Vector Table (CVT data area) fields indicate the various hardware
environments:

© Copyright IBM Corp. 1988, 2022 465

CVTVMEnv
The CVTVMEnv bit within the CVTFLGBT byte indicates running in a virtual machine environment
hosted by a tier-2 hypervisor (such as z/VM or zHYPaaS), which is further identified by the CVT fields
that follow. This bit applies to any tier-2 hypervisor environment. This bit is available starting with
z/OS 2.4 and 2.5, with appropriate service.

CVTUNDzVM
The CVTUNDzVM bit within the CVTFLGBT byte indicates running in a virtual machine hosted by
z/VM. This bit is available starting with z/OS 2.4 and 2.5, with appropriate service. An alternate
name for this bit, CVTUNDVM, is available on all releases.

CVTUNDAltVM
The CVTUNDAltVM bit within the CVTFLGBT byte indicates running in a virtual machine hosted
by an alternate tier-2 hypervisor (that is, other than z/VM), such as zHYPaaS or IBM ZVDT.
You can determine the specific hypervisor by examining the control program identifier in the
SI22V3DBCPIdentifier field, which is returned by the CSRSI service and mapped by CSRSIIDF.
The actual host program identifier is provided by the hypervisor documentation. This bit is available
starting with z/OS 2.4 and 2.5, with appropriate service.

CVTzPDT
The CVTzPDT bit indicates an environment based on the zPDT emulator, such as an IBM zPDT or
ZD&T environment. This bit is available starting with z/OS 2.5. Prior to z/OS 2.5, you can check for a
machine type value of 1090 in the SI11V1CPCType field returned by the CSRSI service.

Table 43 on page 466 summarizes the CVT bit settings for each of the supported hardware runtime
environments listed in “Hardware environments that z/OS supports” on page 465.

Table 43. Summary of supported hardware runtime environments and CVT bit settings

Hardware environment CVTVMENV1
CVTUNDzVM1

CVTUNDVM CVTUNDAltVM1 CVTzPDT2

LPAR off off off off

IBM z/VM virtual machine on on off off

Virtual server instance (VSI) under zHYPaaS
on off on off

IBM ZVDT

IBM zPDT emulator
off off off on

IBM ZD&T

Notes:

1. The CVTVMENV, CVTUNDzVM, and CVTUNDAltVM bits are available starting with z/OS 2.4 and 2.5, with appropriate service.
2. The CVTzPDT bit is available starting with z/OS 2.5. Prior to z/OS 2.5, see the description of the CVTzPDT bit stated earlier.

• The CSRSI (Return System Information) service allows unauthorized programs to obtain STSI (Store
System Information machine instruction) information, such as the CPU ID (SI00PCCACPID). If z/OS
is a guest of a control program, the CSRSI service also returns information about the virtual machine
environment, if provided by the control program, such as:

– Control program identifier (SI22V3DBCPIdentifier)
– Virtual machine name (SI22V3DBVMName or SI22V3ExtVMName)
– Universally-unique identification (UUID) of the virtual machine (SI22V3DBUUID)

• The PCCACPID field in the Physical Configuration Communication Area (PCCA), mapped by the
IHAPCCA macro, contains the first 6 bytes of the STIDP (Store CPU ID machine instruction) information
translated to EBCDIC. Referencing this field should only be done when running authorized and disabled
for external and I/O interrupts; instead, you can use the SI00PCCACPID value provided by the CSRSI
service.

Note: Starting with z/OS 2.5 with appropriate service, you should not need to reference this field, as
the preferred method to determine the hardware environment is to examine the CVT fields that z/OS

466 z/OS: z/OS MVS Assembler Services Guide

provides, as previously described. However, for completeness, the following guidance is provided about
the STIDP information.

The Environment field (bits 0 - 7) of the STIDP information can contain the following values:
X'FF'

Indicates a z/VM environment and will never indicate any other type of virtual machine environment.
Refer to the CVTUNDzVM field described earlier.

X'FD'
Indicates an alternate virtual machine environment other than z/VM. Refer to the CVTUNDAltVM
field described earlier to determine which one is the host.

X'C1'
X'D3'

Indicates running in a zPDT environment. Refer to the CVTzPDT field described earlier.
X'00'

Indicates running in an LPAR under PR/SM.

Note: You can also obtain information about the hardware environment by issuing various z/OS system
commands, such as DISPLAY IPLINFO and DISPLAY M=CPU. For more information, see DISPLAY IPLINFO
and DISPLAY M in z/OS MVS System Commands.

Chapter 30. The hardware runtime environment 467

468 z/OS: z/OS MVS Assembler Services Guide

Appendix A. Using the unit verification service

The information in this appendix describes using the unit verification service to obtain information from
the eligible device table. IBM recommends that you use the EDTINFO macro instead; EDTINFO provides
more services and is easier to use than the unit verification service.

EDTINFO must be used to obtain information on units that are defined as:

• Dynamic,
• Have 4-digit device addresses, or
• Are described by unit control blocks (UCBs) that reside above the 16-megabyte line.

The IEFEB4UV routine interface maybe used, only, to obtain information on units that are static, have
3-digit device addresses and are described as UCBs residing below the 16-megabyte line.

Functions of unit verification
The unit verification service (IEFEB4UV routine) enables you to obtain information from the eligible device
table (EDT) and to check your device specification against the information in the EDT. See z/OS HCD
Planning for information on the EDT.

The unit verification service performs the following functions:

• Check groups
• Check units
• Return unit name
• Return unit control block (UCB) addresses
• Return group ID
• Indicate that unit name is a look-up value
• Return look-up value
• Convert device type to look up value
• Return attributes
• Specify subpool for returned storage
• Return unit names for a device class

Check groups - Function code 0
This function determines whether the input device numbers make a valid allocation group. To be valid,
the device grouping must include either all the device numbers being verified, or none of them. If not, the
allocation group is split, and the input device numbers do not make up a valid allocation group.

Check units - Function code 1
This function determines whether the input device numbers correspond to the unit name in the EDT. In
addition to a return code in register 15, it sets to one the high-order flag bit of any device numbers in the
parameter list that are not valid.

Return unit name - Function code 2
This function returns the unit name associated with a look-up value provided as input. The unit name is
the EBCDIC representation of the IBM generic device type (for example, 3390) or the esoteric group name
(for example, TAPE) from the EDT.

© Copyright IBM Corp. 1988, 2022 469

A look-up value is an internal representation of the unit name, which is used as an index into the EDT.
Because teleprocessing devices do not have generic device names, you cannot use this function to
request information about teleprocessing devices.

Note: Do not use this function to determine whether a returned unit name is a generic CTC device or an
esoteric group name that contains CTC devices. Instead, use the return attributes function (function code
8) for this purpose.

Return unit control block (UCB) addresses - Function code 3
This function returns the UCB pointer list that is associated with the unit name provided as input.

Return group ID - Function code 4
This function returns the allocation group ID corresponding to each UCB address specified in the input
list.

Indicate unit name is a look-up value - Function code 5
The input to the check units and return UCB addresses functions can be specified as a 4-byte internal
representation of the unit name rather than as the unit name itself.

Return look-up value - Function code 6
This function returns the 4-byte internal representation of the unit name that serves as an index into the
EDT. It is the converse of the return unit name function.

Convert device type to look up value - Function code 7
This function converts a 4-byte UCB device type to an internal representation of the unit name to serve as
an index into the EDT. The convert device type to look up value function allows programs that have only a
4-byte UCB device type to query the EDT. It can be used whenever a look-up value is required as input to
the unit verification service.

Return attributes - Function code 8
This function returns general information about the specified unit name.

Specify subpool for returned storage - Function code 10
This function is used with the return UCB addresses function or with the return unit names for a device
class function. You are able to specify for a particular subpool to return the requested information.

Return unit names for a device class - Function code 11
This function returns a list of IBM generic device types (for example, 3390) and / or esoteric group names
(for example, TAPE) associated with the input device class.

Callers of IEFEB4UV
The unit verification routine, IEFEB4UV, is for both problem program callers and for authorized callers. It
runs in task mode in the caller's key.

To use IEFEB4UV, the calling program must do the following:

• Create the input data structures and parameter list
• Place the address of an 18-word save area in register 13
• Provide a recovery environment
• Pass control to IEFEB4UV using the LINK and LINKX macro.

470 z/OS: z/OS MVS Assembler Services Guide

On return, IEFEB4UV restores all registers except register 15, which contains a return code.

Input to and output from unit verification service routines
You must supply a two-word parameter list when you invoke the unit verification routine (IEFEB4UV).

The first word contains the address of a unit table. The contents vary according to one or more functions
requested.

The second word contains the address of a 2-byte field (FLAGS), in which you specify one or more
functions requested.

The bits in the FLAGS parameter field have the following meanings:

 Bit Function Requested

 0 Check groups.

 1 Check units.

 2 Return unit name.

 3 Return UCB addresses.

 4 Return group ID.

 5 Indicate that unit name is a look-up value.

 6 Return look-up value.

 7 Convert device name to a look-up value.

 8 Return attributes.

 10 Specify subpool for returned storage.

 11 Return unit names for a device class.

 12 -15 Reserved for IBM use.

Input parameter list
Figure 119 on page 471 shows the input parameter list that is needed to invoke the unit verification
service routine.

Figure 119. Input Parameter List

Input and output data structures
The diagrams on the following pages show the input data structures and parameters needed to invoke the
unit verification service routine. The output data structure that is returned by the routine is also shown.

You must declare the structures exactly as shown to get the response indicated by one or more functions
you request in FLAGS.

Appendix A. Using the unit verification service 471

Because many of the input and output data structures are the same, you can request many of the
functions in combinations with other functions. The following table lists the valid single functions and
combinations of functions that you can request in a single invocation of the unit verification service.

• Code
• 0
• 0, 1
• 0, 1, 5
• 1
• 1, 5
• 2
• 2, 7
• 2, 8
• 2, 7, 8
• 3
• 3, 5
• 3, 8
• 3, 10
• 3, 5, 7
• 3, 5, 10
• 3, 8, 10
• 3, 5, 7, 10
• 4
• 6
• 6, 8
• 7
• 8
• 10, 11
• 11

Register 15 if request fails
On return, register 15 contains a return code. If the invocation fails, it can be for one of the following
reasons:

1. If you request a function that is not valid or a combination of functions that are not valid, register 15
contains a return code of 28 and the request fails.

2. If the JES control table (JESCT) does not contain valid pointers, the environment is incorrect. Register
15 contains a return code of 24. The request fails.

3. If an empty UCB list is being returned to the caller, register 15 contains a return code of 36.

Requesting function code 0 (check groups)

Input
Set bit 0 in FLAGS to 1.

The input unit table structure is shown in the following figure.

472 z/OS: z/OS MVS Assembler Services Guide

Figure 120. Requesting function code 0 (check groups)

Output
None.

Register 15 contains one of the following return codes:

 Code Meaning

 0 The specified input is correct.

 12 The device groupings are not valid.

 24 The JESCT does not contain valid pointers.

 28 The required input is not specified or is not valid.

 36 An empty UCB list is being returned.

Requesting function code 1 (check units)

Input
Set bit 1 in FLAGS to 1.

The input unit table structure is shown in Figure 121 on page 473.

Figure 121. Requesting function code 1 (check units)

Output
If a device number is not valid, bit 0 of the FLAG byte is set to 1.

Appendix A. Using the unit verification service 473

Register 15 contains one of the following return codes:

 Code Meaning

 0 The specified input is correct.

 4 The specified unit name is not valid.

 8 Unit name has incorrect units assigned.

 20 One or more device numbers are not valid.

 24 The JESCT does not contain valid pointers.

 28 The required input is not specified or is not valid.

 36 An empty UCB list is being returned.

Requesting function code 2 (return unit name)

Input
Set bit 2 in FLAGS to 1.

The input unit table structure is shown in Figure 122 on page 474.

Figure 122. Requesting function code 2 (return unit name)

Output
The unit table contains the unit name as shown in the following figure.

Figure 123. Output from Function Code 2 (Return Unit Name)

Register 15 contains one of the following return codes:

 Code Meaning

 0 The unit table contains the EBCDIC unit name.

 4 The look-up value could not be found in the EDT.

 24 The JESCT does not contain valid pointers.

 28 The required input is not specified or is not valid.

 36 An empty UCB list is being returned.

474 z/OS: z/OS MVS Assembler Services Guide

Requesting function code 3 (return UCB addresses)

Input
Set bit 3 in FLAGS to 1.

The input unit table structure is shown in Figure 124 on page 475.

Figure 124. Requesting function code 3 (return UCB addresses)

Output
The unit table contains a pointer to the UCB Pointer List as shown in the following figure.

Figure 125. Output from Function Code 3 (Return UCB Addresses)

For unauthorized callers, the subpool default is 0. See function code 10 for a description of how to change
the default subpool. The caller must free the number of bytes in the length field from the subpool before
exiting.

Register 15 contains one of the following return codes:

 Code Meaning

 0 The unit table contains the pointer to the UCB pointer list.

 4 The unit name could not be found in the EDT.

 16 Storage was not available for the UCB pointer list.

 24 The JESCT does not contain valid pointers.

 28 The required input is not specified or is not valid.

 36 An empty UCB list is being returned.

Requesting function code 4 (return group ID)

Input
Set bit 4 in FLAGS to 1.

Appendix A. Using the unit verification service 475

The input unit table structure is shown in Figure 126 on page 476.

Figure 126. Requesting function code 4 (return group ID)

Note: One fullword is provided in the group id list for each UCB in the UCB list. Initialize all entries to zero.

Output
The group id list contains the group id corresponding to each UCB in the input UCB list.

Figure 127. Output from Function Code 4 (Return Group ID)

Note: If the UCB is not in the EDT, the group id for that particular entry remains zero.

Register 15 contains one of the following return codes:

 Code Meaning

 0 Processing is successful.

 24 The JESCT does not contain valid pointers.

 28 The required input is not specified or is not valid.

 36 An empty UCB list is being returned.

Requesting function code 5 (indicate unit name is a look-up value)

Input
Set bit 5 in FLAGS to 1.

The input unit table structure is shown in Figure 128 on page 477.

This function is not valid by itself. It must be used in combination with other functions that require a unit
name as input. If you know the look-up value corresponding to the unit name, you can substitute it for the

476 z/OS: z/OS MVS Assembler Services Guide

unit name in the input unit table. The following figure represents the first two fullwords of the unit table
when function code 5 is requested.

Figure 128. Requesting function code 5 (indicate unit name is a look-up value)

Output
None specifically associated with this function.

Register 15 contains one of the following return codes:
Code

Meaning
0

Processing is successful.
4

The input look-up value could not be found in the EDT.
24

The JESCT does not contain valid pointers.
28

The required input is not specified or is not valid.
36

An empty UCB list is being returned.

Requesting function code 6 (return look-up value)

Input
Set bit 6 in FLAGS to 1.

The input unit table structure is shown in Figure 129 on page 477.

This function is the opposite of the return unit name function (Code 2). The following figure represents the
unit table structure when you request function code 6.

Figure 129. Requesting function code 6 (return look-up value)

Output
The unit table contains the look-up value.

Appendix A. Using the unit verification service 477

Figure 130. Output from Function Code 6 (Return Look-up Value)

Register 15 contains one of the following return codes:
Code

Meaning
0

Processing is successful.
4

The unit name could not be found; no look-up value is returned.
24

The JESCT does not contain valid pointers.
28

The required input is not specified or is not valid.
36

An empty UCB list is being returned.

Requesting function code 7 (convert device type to look-up value)

Input
Set bit 7 in FLAGS to 1.

The input unit table structure is shown in Figure 131 on page 478.

Figure 131. Requesting function code 7 (convert device type to look-up value)

Note: The device type is in the format of the UCBTYP field of the UCB.

Output
The unit table contains the look-up value.

478 z/OS: z/OS MVS Assembler Services Guide

Figure 132. Output from Function Code 7 (Convert Device Type to Look-up Value)

The conversion of the device type to a look-up value is done in place. There is no error checking of the
device type.

Register 15 contains one of the following return codes:
Code

Meaning
0

Processing is successful.
4

The input device type is not valid; no look-up value is returned.
24

The JESCT does not contain valid pointers.
28

The required input is not specified or is not valid.
36

An empty UCB list is being returned.

Requesting function code 8 (return attributes)

Input
Set bit 8 in FLAGS to 1.

The input unit table structure is shown in Figure 133 on page 479.

Figure 133. Requesting function code 8 (return attributes)

Output
The attribute area contains the following:
Byte

Contents

Appendix A. Using the unit verification service 479

0
Length of the attribute area (X'0A') This must be filled in prior to calling the unit verification service.

1-2
Flags describing the unit name:

• Bit 0 on — unit name is an esoteric group name
• Bit 1 on — unit name is VIO-eligible
• Bit 2 on — unit name contains 3330V units
• Bit 3 on — unit name contains TP class devices
• Bits 4-7 are not used.

3
Number of device classes in the unit name

4-7
Number of generic device types in the unit name

8-9
Reserved

Register 15 contains one of the following return codes:
Code

Meaning
0

The unit name was found; the attributes are returned.
4

The unit name was not found; no attributes are returned.
24

The JESCT does not contain valid pointers.
28

The required input is not specified or is not valid.
36

An empty UCB list is being returned.

Requesting function code 10 (specify subpool for returned storage)

Input
Set bit 10 in FLAGS to 1. This function is not valid alone and must be used with either the return UCB
addresses function (code 3) or the return unit name function for a device class (code 11). The input unit
table structure is shown in Figure 134 on page 480.

Figure 134. Requesting function code 10 (specify subpool for returned storage)

Output
See the output from the function that this is invoked in combination with.

480 z/OS: z/OS MVS Assembler Services Guide

The subpool field of the returned list contains the input subpool, and the returned list resides in that
subpool. No error checking of the subpool is performed. If the subpool is not valid, the unit verification
routine fails.

Requesting function code 11 (return unit names for a device class)

Input
Set bit 11 in FLAGS to 1.

The following figure shows the input unit table structure.

Figure 135. Requesting Function Code 11 (Return Unit Names for a Device Class)

Output
The unit table contains the pointer to the names list as shown in the following figure.

Figure 136. Output from Function Code 11 (Return Unit Names for a Device Class)

For unauthorized callers, the default subpool is 0. To change this default, see the description for function
code 10 (specify subpool for returned storage). The caller must free the number of bytes in the length
field from the subpool before exiting.

Register 15 contains one of the following return codes:
Code

Meaning
0

The pointer to the names list is stored in the unit table.
16

Storage was not available for the names list.
24

The JESCT does not contain valid pointers.
28

The required input is not specified or is not valid.

Appendix A. Using the unit verification service 481

36
An empty UCB list is being returned.

Requesting multiple functions - Examples
The following examples show the input to and output from multiple functions.

Example 1 shows the multiple functions of codes 0 and 1.

Example 2 shows the multiple functions of codes 3 and 10.

Example 3 shows the multiple functions of codes 1 and 5.

Example 1 - Function codes 0 and 1

Input

Figure 137. Input for Function Codes 0 and 1

Output

Figure 138. Output from Function Codes 0 and 1

Note: All input device numbers make up a single allocation group and are associated with the esoteric
unit name DASD.

482 z/OS: z/OS MVS Assembler Services Guide

Example 2 - Function codes 3 and 10

Input

Figure 139. Input for Function Codes 3 and 10

Output

Figure 140. Output from Function Codes 3 and 10

The caller must free the UCB pointer list before exiting.

Example 3 - Function codes 1 and 5

Input

Figure 141. Input for Function Codes 1 and 5

Appendix A. Using the unit verification service 483

Output

Figure 142. Output from Function Codes 1 and 5

Note: Device 00E did not belong to the unit name that was associated with the input look-up value.

484 z/OS: z/OS MVS Assembler Services Guide

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to
the Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

© Copyright IBM Corp. 1988, 2022 485

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

486 z/OS: z/OS MVS Assembler Services Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in
only the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1988, 2022 487

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or

488 z/OS: z/OS MVS Assembler Services Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com®/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 489

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This information is intended to help the customer to code macros that are available to all assembler
language programs. This information documents intended programming interfaces that allow the
customer to write programs to obtain services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other countries.

490 z/OS: z/OS MVS Assembler Services Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Index

Special Characters
/*DEL statement 389
/*EOF statement 389
/*PURGE statement 389
/*SCAN statement 389
//JOBLIB DD statement 41
//STEPLIB DD statement 41

Numerics
24-bit addressing mode

description 29
SPIE routine consideration 121

31-bit addressing mode
description 29
SPIE consideration 121

46D system completion code 121
64-bit address space

description 199
using assembler instructions

binary operations 202
64-bit addressing mode (AMODE)

modal instructions
AMODE 24 204
AMODE 31 204
AMODE 64 204

non-modal instructions 204
64-bit instructions

pitfalls to avoid 205
64–bit virtual addressing support

system logger services
example 411

A
ABDUMP symptom area 175
ABEND dump

requesting 172
ABEND macro

choosing to issue 128
invoking RTM 164
STEP parameter 149

abnormal condition
detect 121
percolation 124
process 121

abnormal termination
ways to avoid with ENQ/DEQ 113
when deleting a SPIE/ESPIE environment 121
when issuing CLOSE 197

access list
adding an entry 255
adding entry for data space 255
adding entry for hiperspace 283
definition 249
type 250

access list entry
adding 255
deleting 255

access register
use 249, 264
using 249

access to a data object
permanent object 297
temporary object 298

accessibility
contact IBM 485

add an entry to an access list
description 255
example 255

address
AMODE indicator 31

address space control mode
definition 249
switching 249

address space priority 25
addressing mode

affect on BAL and BALR instruction 30
bit in the PSW 30
changing 30, 31, 53, 121
considerations when passing control 31
indicator 30, 31, 53, 121
of alias entry point 53
of SPIE routine 121
specifying 30, 31, 53, 121

ALESERV macro
ADD request

example 255, 283
use 255, 283

DELETE request
example 255

example 274
ALET

ALET qualified address 5
purpose 5
when ALET qualification is required 5

ALET (access list entry token)
definition 249
example of loading a zero into an AR 254
loading into an AR 254
use 249

ALET (address list entry token)
for primary address space 253
with a value of zero 253

ALET-qualified address
used in macro parameter list 256

algorithm
run length encoding 367
used by data compression service 367
used by data expansion service 367

alias
addressing mode 53
establishing 53

Index 491

AMODE 64
issuing macros 206
linkage conventions

register 15 contents 205
AMODE program attribute

changing 29, 30
indicator 29, 30
purpose 29
specifying 29, 30
value 30

anchor 215
answer area

system logger
size 417

APF-authorization
when needed by problem state program 41

application resource
releasing through recovery 127

AR (access register)
example of loading an ALET of zero into 254
rules for coding 253
use 249, 264
using 249

AR information
formatting and displaying 257

AR instruction
for manipulating contents of ARs 253

AR mode
coding instructions 253
description 249
example 252
importance of comma 253
importance of the contents of ARs 254
issuing macros 256
rules for coding 253
use 249
writing programs 252

AR mode program
call a primary mode program 22
call an AR mode program 22
defined 5
linkage procedure 20
pass parameters 23
receive control from a caller 20, 21
return control to a caller 21

ARCHECK subcommand
formatting and displaying AR information 257

architecture level 179
ARR (associated recovery routine)

choosing 131
using 150

ASC mode
AR mode program defined 5
definition 249
primary mode program, defined 5
switching 249
switching mode 5
when control is received 5

assembler example
window service 307

assembler instruction
examples of use in AR mode 254
use in AR mode 252–254

assistive technologies 485

ATTACH and ATTACHX macros
ASYNCH parameter 149
defining a recovery routine 130
ECB parameter 164
ESTAI parameter 130, 140
ETXR parameter 164
PURGE parameter 148
STAI parameter 130
TERM parameter 149

ATTACH macro
addressing mode consideration 41
creating subpools 193
DPMOD parameter 26
ECB parameter, use 27
ETXR parameter, use 27
example of sharing DU-ALs 274
GSPL parameter 193
GSPV parameter 193
LPMOD parameter 26
requesting subpool ownership 193
sharing a DU-AL with subtask 274
SHSPL parameter 193
SHSPV parameter 193
specify subpools 193
SZERO parameter 193
TASKLIB parameter 41, 42
use 25, 34, 41

authorization requirements
IXGCONN service 426
system logger 410
system logger application program 410
system logger couple data set 410
system logger, IXCMIAPU utility 410

availability
increasing through recovery 127

B
BAL instruction 30
BALR instruction 30
BAS (branch and save) instruction 30
BAS instruction 30
base register

establishing 18
BASR (branch and save instruction register form) 30
BASR instruction 30
BASSM (branch and save and set mode) 30
BASSM instruction 30, 49
BLDL macro 44, 48, 49
BLDMPB macro 363
blocks of an object

definition 293
identifying blocks to be viewed 302
size 293
updating blocks in a temporary object 304
updating blocks on DASD 305

BLOCKS parameter on DSPSERV 265, 271, 281, 285
branch instruction

BAL (branch and link) 30
BALR (branch and link register) 30
BAS instruction 30
BASR instruction 30
BASSM instruction 30
BSM instruction 30

492 z/OS: z/OS MVS Assembler Services Guide

branch instruction (continued)
use 49
use with XCTL, danger 51

branching table
use in analyzing return codes 38

bring a load module into virtual storage 41
BSM (branch and set mode) 30
BSM instruction 30
build a symptom record 181

C
CALL macro

use 37, 38, 47, 49
callable cell pool service

advantages of using 215
compared to the CPOOL macro 215
data space 272
data space example 272

calling program
definition 5

calling sequence identifier 53
cell

allocating 219
deallocating 219

cell pool
activating 218
anchor 215
contracting 218
creating 218
deactivating 218
disconnecting 218
expanding 218
extent 215
obtaining 191
obtaining status about 219
size 216
storage 216

cell pool service
CSRC4ACT service 218
CSRC4BLD service 218
CSRC4CON service 218
CSRC4DAC service 218
CSRC4DIS service 218
CSRC4EXP service 218
CSRC4FR1 service 219
CSRC4FR2 service 219
CSRC4FRE service 219
CSRC4GET service 219
CSRC4GT1 service 219
CSRC4GT2 service 219
CSRC4RF1 service 219
CSRC4RFR service 219
CSRC4RG1 service 219
CSRC4RGT service 219
CSRPACT service 218
CSRPBLD service 218
CSRPCON service 218
CSRPDAC service 218
CSRPDIS service 218
CSRPEXP service 218
CSRPFR1 service 219
CSRPFR2 service 219
CSRPFRE service 219

cell pool service (continued)
CSRPGET service 219
CSRPGT1 service 219
CSRPGT2 service 219
CSRPRFR service 219
CSRPRFR1 service 219
CSRPRGT service 219
CSRPRGT1 service 219
query 219
return code 219
type of service

control 218
cell storage 216
central storage

sharing through IARVSERV macro 331
changing

example 31, 32
using BSM or BASSM 30

CHAP macro
use 26

characters printed on an MCS console 342
check groups function of unit verification service 469
check units function of unit verification service 469
checkpoint 315
checkpoint/restart

manage storage 277, 291
CHKPT macro 315
CHNGDUMP command 172
choose the name of a data space 266
CnzConv macro

retrieving console information 347
code

descriptor 344
message routing 343

code instructions in AR mode 253
comma

careful use of in AR mode 253
communication

in a recovery environment 139
in a sysplex environment 346
provided by recovery 127

compiler
message

invoking 357
compress data

steps required 368
using the data compression service 367

compression
of data

description 371
symbols 369

concatenated data sets 42
concurrent request for resource

limiting 111
connect

allocating coupling facility space 426
to a log stream 424

console
CnzConv macro 347
CONVCON macro 347
determining status 349
determining the name or ID 348
parameter list

initializing field 348

Index 493

console (continued)
retrieving information 347
validating a name or ID 349

constrained transactions 460
contact

z/OS 485
control

in a dynamic structure 50
in a simple structure 39
return 39, 40, 50

control virtual storage 191
CONVCON macro

parameter list 348
retrieving console information 347

convention
for passing control 34

convert device type to look-up value function of unit
verification service 470
converting central to virtual address 338
CONVTOD macro

using 339
coupling facility

structure storage limit reached 433
system logger

damage 452
failure 452, 454
full condition 454
loss of connectivity to 453

system logger data on 405
coupling facility structure

system logger
storage limit reached 433

coupling facility version number
IXGQUERY service 443

CPOOL macro
use 191

CPUTIMER macro
using 340

CPYA instruction
description 254
example 254

create
hiperspace 278
subpool 193
task 25

create data space
example 255, 268, 276
rules for 265

create hiperspace
example 281

CSRCESRV macro 368
CSRCMPSC macro 368, 371
CSREVW window service

defining a view of an object 301
CSRIDAC window service

obtaining access to a data object 299
terminating access to an object 307

CSRL16J service
passing control with all registers intact 32

CSRREFR window service
refreshing changed data 305

CSRSAVE window service
updating a permanent object on DASD 305

CSRSCOT window service

CSRSCOT window service (continued)
saving interim changes in a scroll area 304
updating a temporary object 304

CSRVIEW window service
defining a view of an object 301
terminating a view of an object 306

CSVINFO macro
Comparison with CSVQUERY 53
MIPR 53

CSVQUERY macro
Comparison with CSVINFO 53

current size of data space 266

D
DAE (dump analysis and elimination)

dump not suppressed 177
dump suppression 172
providing information through recovery 136

DASD (direct access storage device)
data transfer from by window services 294
updating a permanent object on DASD 305

DASD log data set
space 454

DASD-only
log stream 421

DASD-only log stream
system logger data on 406

data compression and expansion service
data which can exploit 367
recovery routine 367

data compression and expansion services
using 367

data compression service
steps required to compress data 368
using 367

data control block
deleting load modules that contain 197
SNAP dump 177

data expansion service
using 367

data object
access to a data object, procedure for 299
defining a view 300
defining multiple views 303
extending the size 303
identifying 299
mapping 293, 295, 296
multiple objects, example 296
multiple windows to an object, example 296
obtaining

access to a data object, overview 298–300
refreshing changed data 305
saving interim changes 304
scroll area 300
scroll area to DASD, example 295
specifying type of access 300
structure 293
temporary object, example 295
terminating access to an object 307
updating a temporary object 304
window to a scroll area, example 295
window to DASD, example 295

data privacy 207

494 z/OS: z/OS MVS Assembler Services Guide

data set
dump 177

data sharing with IARVSERV macro 331
data space

access data 264
choosing the name for 266
compared to address space 259
create 264
creating 265
default size 260
definition 259, 264
delete 264
deleting 272
dumping storage 277
establish addressability 268
example 255, 260
example of creating 276
example of deleting 276
example of moving data into and out 268
example of using 276
extending current size 270
identifying the origin 267
illustration 259
loading pages into central storage 271
managing storage 261
paging out of central storage 271
release storage 264
restoring 277
rules for using 264
saving 277
SCOPE=ALL 265
SCOPE=COMMON 265
SCOPE=SINGLE 265
shared between two programs 273, 274
sharing with IARVSERV macro 331
specify size 266
storage available for 260
use 259, 264
using efficiently 276

data space storage
managing 261
release 264
releasing 271
rules for releasing 271

data to be viewed 302
data-in-virtual

mapping a hiperspace object to an address space
window 289
mapping into hiperspace 287, 288

data-in-virtual object
definition 225, 293
mapped into data space storage 275

data-in-virtual window
requirements for 225

date and time of day
obtaining 339

DCB parameter 44
DD statements required for dumps 172
DE parameter 44
debugging aid for call sequence 53
define multiple views of an object 303
define the expected window reference pattern 302
define view of a data object 300
define window disposition 301

delete
access list entry

example 255
data space

example 255
hiperspace

description 285
example 291

delete data space
example 276

delete data spaces
rules 272

DELETE macro
lowering the responsibility count 196

delete message 342
delete messages already written 347
deleting

from a log stream
illustration 439

DEQ macro 116
descriptor code 344
DETACH macro

use 27
device

verification 469
device class

unit name 470
DFP requirement for window service 300
dictionary

compression 368
entries 372
expansion 368

directory entry
PDS (partitioned data set) 29

disconnecting
from a log stream 424

dispatching priority
assign 26

display AR information 257
DIV (data-in-virtual) service

restrictions
when using IARVSERV macro 337

DIV macro
example 290
example of mapping object into data space 275
mapping a data-in-virtual object to a

hiperspace
example 288

mapping a hiperspace as a data-in-virtual
object

example 290
mapping object to a data space 275
programming example 241
retain mode 235, 238, 239
rules for invoking 240
sharing data in a window among tasks 240
use

save 236
unaccess 240
unidentify 240
unmap 239

using data-in virtual 225
when to use data-in-virtual 225

DOM macro

Index 495

DOM macro (continued)
function 347

DPMOD parameter on ATTACH 26
DSPSERV macro

CREATE request
example 255, 268, 281, 286, 289, 290

DELETE request
example 255, 285, 289, 290
use 317

EXTEND request
example 270

LOAD service
use 271

OUT service
use 271

RELEASE request
use 285, 318

rules 271
DU-AL

add entry 264
compared with a PASN-AL
251
definition 250
illustration 251

dump
ABEND dump 171
data sets for 177
index in SNAP dump 177
not suppressed 177
requesting 171
requesting in recovery 136
select type 171
SNAP dump 171, 177
summary 177
suppression 172
symptom 172
SYSABEND dump 171
SYSMDUMP dump 171
SYSUDUMP dump 171
Transaction dump 171, 178
types a problem program can request 171

dump service 171
dump storage in a data space 277
duplicate

names in unique task libraries, 43
resource request 112

dynamic I/O configuration
change

detecting 383
dynamic load module structure

advantage 34
description 34

E
EAR instruction

description 254
ECB (event control block)

description 102
parameter of ATTACH 27, 28, 102

EDT (eligible device table)
description 385
obtaining information 385
unit verification service

EDT (eligible device table) (continued)
unit verification service (continued)

IEFEB4UV routine 469
EDTINFO macro 385
end-of-task exit routine 28
ENF event code 48

system logger application 419
ENQ macro

example 112
use 49

entry point
adding 53
address 37, 53
alias use 53
identifier 53
identify 37

EP parameter 43
EPIE (extended program interruption element) 123
EPLOC parameter 43
error

recovering from software 125
ESD (external symbol dictionary)

AMODE/RMODE indicator 29
ESO hiperspace

definition 280
ESPIE environment

deleting 121
establishing 121

ESPIE macro
option 121, 123
use 121
using 123

ESPIE percolation 124
establish addressability to a data space

definition 250
example 276

ESTAE and ESTAEX macros
0 parameter 130
ASYNCH parameter 149
CT parameter 130, 165
defining a recovery routine 130
OV parameter 165
PARAM parameter 140
PURGE parameter 148
TERM parameter 149

ESTAE and ESTAEX routine
definition 130

ESTAE-type recovery routine (extended specify task
abnormal exit)

providing 130
ESTAI routine

definition 130
ETR (External Time Reference hardware facility)

checking for TOD-clock synchronization 339
ETXR parameter of ATTACH

use 27
event

signal completion 102
EVENTS macro

use 102
exabyte

description 199
example

data object mapped to a window 294

496 z/OS: z/OS MVS Assembler Services Guide

example (continued)
mapping

permanent object that has no scroll area 295, 296
multiple objects 296
object to multiple windows 296
permanent object that has a scroll area 295
structure of a data object 294
system logger services

64–bit virtual addressing support 411
temporary object 295
window services coding example 307

exclusive resource control 111
EXCP macro 88
EXCPVR macro 89
exit routine

altering old PSW 124
end-of-task 28
functions performed by 124
register contents on entry 123
specifying 121

expand data
steps required 368

expanded data
using the data expansion service 367

expansion
of data

description 372
explicit requests for virtual storage 187
extend current size of data space

example 270
procedure 270

extend current size of hiperspace
procedure for 285

EXTEND parameter on DSPSERV 270, 285
extend the size of an object 303
extent 215

F
feedback xxv
find

load module 42
form

execute 195
list 195
standard 195

format AR information 257
frame

assigning 317
repossessing 317

FREEMAIN macro
use 187, 190

functions
check groups 469, 472
check units 469, 473
convert device type to look-up value 470, 478
indicate unit name is a look-up value 470, 476
return attributes 470, 479
return group ID 470, 475
return look-up value 470, 477
return unit control block (UCB) address 470, 475
return unit name 469, 474
return unit names for a device class 470, 481
specify subpool for returned storage 470, 480

G
gap in reference pattern service

defining 323
definition 323

gap in reference pattern services
definition 323

GENNAME parameter on DSPSERV 265, 266, 281
GETMAIN macro

creating subpools 193
LOC parameter 188
requesting storage at an address 188
type 188
use 188

gigabyte 29
global resource 109
global resource serialization 116
GQSCAN macro

function 116
GRS effects scope 119
result 119
TOKEN parameter 117

GRS
affects scope on GQSCAN macro 119

guard area
changing its size 211

H
hiperspace

as data-in-virtual object 289
compared to address space 259
creating 278, 281
default size 260
definition 259, 278
deleting 285
extending current size 285
fast data transfer 283
illustration 259
managing storage 261
manipulating data

illustration 278
mapping data-in-virtual object into 287,
288
referencing data 281
releasing storage 285
restoring 291
saving 291
shared between two programs 283
specify size 266
storage available for 260
two types 279
window services use 294

hiperspace storage
managing 261
releasing 285
rules for releasing 285

HSPALET parameter on HSPSERV macro 283
HSPSERV macro

example 283
read operation 282, 283
SREAD and SWRITE operation

example 286
illustration 282

Index 497

HSPSERV macro (continued)
write operation 282

HSTYPE parameter on DSPSERV 281

I
I/O configuration change

detecting 383
I/O configuration token

detecting I/O configuration changes with
383

IARR2V macro
ASID parameter 338
converting a central storage address to virtual 338
IARVSERV sharing effectiveness 338
NUMVALID parameter 338
NUMVIEW parameter 338
RSA parameter 338
STOKEN parameter 338
VSA parameter 338
WORKREG parameter 338

IARV64 macro
using 206

IARVSERV macro
CHANGEACCESS parameter 334
copy-on-write

CVT mapping macro hardware check 336
data sharing 331
diagnostics 337
example of use 336
IARVRL mapping macro

required fields 335
parameters description 335
RANGLIST parameter 335
READONLY parameter 335
restrictions using DIV (data-in-virtual) service 337
restrictions using DIV (data-in-virtual) services
337
RETAIN parameter 336
SHARE parameter 334
SHAREDWRITE parameter 335
sharing effectiveness 338
SHRDATA IPCS subcommand 337
TARGET_VIEW parameter 335
types of views 333
UNIQUEWRITE parameter 335

identify a data object 299
identify a window 301
identify blocks to be viewed 302
identify the origin of the data space 267
IEAARR macros

defining a recovery routine 130
IEALSQRY macro

tracking entries in the linkage stack 161
IEANTCR callable service 311
IEANTDL callable service 311
IEANTRT callable service 311
IEFEB4UV routine

authorized caller 470
caller's function 470
key 470
mode 470
problem program caller 470

implicit requests for virtual storage 194

import connection
IXGCONN service

IMPORTCONNECT parameter 429
import log blocks

IXGIMPRT service 439, 440
INADDR parameter on the GETMAIN macro 188
INADDR parameter on the STORAGE macro 190
indicator

in a PDS entry 29
in an entry point address 31, 41

initial size of data space 266
initiate offload

IXGOFFLD service 444
inline parameter list

use 37
installation limit

amount of storage for data space and hiperspace 266
on amount of storage for data space and hiperspace 260
on size of data space and hiperspace 260
size of data space 266

interlock
avoiding 115
illustration 115

internal reader facility
allocating the data set 387
closing the data set 389
coding /*DEL 389
coding /*EOF 389
coding /*PURGE 389
definition 387
example 390
opening the data set 388
sending records to the data set 388
setting up and using 387
tasks involved in using 387
through dynamic allocation 387
through JCL 387

interval timing, establish 340
INTRDR data set 387
IOCINFO macro 383
IPCS (interactive program control system)

formatting and displaying AR information 257
ISGENQ macro

compared to the ENQ macro 116
using for shared resources 116
using with the DEQ macro 116

issue macros in AMODE 64 206
issue macros in AR mode 256
IXGANSAA macro

answer area mapping 417
IXGBRWSE service

browse cursor 435
browse session 435
browse token 435
MULTIBLOCK parameter 437
read data from a log stream 435
REQUEST=READBLOCK 435
REQUEST=READCURSOR 435
REQUEST=RESET 435
REQUEST=START 435
searching for a log block by time stamp

illustration 437
with IXGDELET service 438
with IXGWRITE service 438

498 z/OS: z/OS MVS Assembler Services Guide

IXGCONN service
allocating coupling facility space at connection 426
authorization requirements 426
connect process and staging data sets 426
connecting to and disconnection from a log stream 424,
425
disconnect from a log stream 430
import connection 429
user data for a log stream

USERDATA parameter 429
write connection 429

IXGDELET service
delete data from a log stream

illustration 439
deleting data from a log stream 438

IXGIMPRT service
import log blocks 439, 440
manage a target log stream 444
safe import point 441

IXGINVNT service
DASDONLY parameter 421
managing the LOGR, LOGRY and LOGRZ policies 419
MODEL parameter

example 420
IXGOFFLD service

initiate offload 444
manage a target log stream 444

IXGQUERY service
coupling facility version number 443
log stream information 440
manage a target log stream 444
safe import point 441

IXGUPDAT service
modify log stream control information 445
time stamp 445

IXGWRITE service
BUFFALET parameter 432
log block buffer

BUFFKEY parameter 431
BUFFLEN parameter 432

sequence of log blocks 432
write to a log stream 431

J
JES (job entry subsystem)

and the internal reader 387–389
job library

reason for limiting size 44
use 41
when to define 44

job output
sending to the internal reader 388

job step task
create 25

JPA (job pack area) 42

K
keyboard

navigation 485
PF keys 485
shortcut keys 485

L
LAE instruction

description 254
example 254

LAM instruction
description 254
example 254, 255

language
checking availability 360

library
description 42
search 42

limit priority 26
linear data set

creating a 226
link library 41
LINK macro

addressing mode consideration 41
use 41, 47–49
when to use 197

linkage
consideration 30
editor 29

linkage conventions
advantages of using the linkage stack 7
AR mode program linkage procedure 20
AR mode program, defined 5
establish a base register 18
for branch instruction 5
in AMODE 64

register 15 contents 205
introduction 5
parameter convention 22
primary mode program linkage procedure 18
primary mode program, defined 5
register save area, provide 6
register, saving 5
using a caller-provided save area 8
using the linkage stack 7

linkage stack
advantages of using 7
at time of retry 161
considerations for ESTAE-type recovery routines 148
example of using the 7
how to use 7

LINKX macro
use 47

load
registers and pass control 35
virtual storage 319

load an ALET into an AR 254
load instruction in AR mode

example 253
load list 42
LOAD macro

indicating addressing mode 41
use 41, 46, 49
when to use 196

load module
alias 53
characteristic 34
execution 34
how to avoid getting an unusable copy 46

Index 499

load module (continued)
location 41
more than one version 43
name 53
search for 42
structure type 34
use count 48, 51
using an existing copy 46

load module execution 34
loaded module

information 53
LOC parameter on the GETMAIN macro 188
LOC parameter on the STORAGE macro

requesting storage at an address 190
local resource 109
location of a load module 41
log block buffer

BUFFALET parameter 432
BUFFKEY parameter 431
BUFFLEN parameter 432

log data
on DASD log data sets 405, 406

log data sets
allocation 406

log stream
connection to

IXGCONN service 424
DASD-only 421
definition 403
delete data from

illustration 439
deleting data from

IXGDELET service 438
different ways of connecting to 425
disconnection from

IXGCONN service 424
gaps in 415
illustration 403
JCL specification 447
model

example 420
read from

IXGBRWSE service 435
write to

IXGWRITE service 431
writing to

sequence of log blocks 432
log stream information

IXGQUERY service 440
log stream time stamp

IXGUPDAT service 445
LOGR subsystem

read log data in data set format
eligible applications 446

using 447
LOGR, LOGRY and LOGRZ policies

managing
IXGINVNT service 419

Logrec Data Set
description 179

look-up value for the EDT
defined 470
obtaining 470

LPA (link pack area) 42

LPMOD parameter on ATTACH 26
LQB (language query block) 361

M
macro

form 195
issuing in AMODE 64 206
issuing in AR mode 256
reenterable form 195
way of passing parameters 195

mainline routine
definition in a recovery environment 129

manage a target log stream 444
managing the LOGR, LOGRY and LOGRZ policies

IXGINVNT service 419
manipulate data in hiperspace 278
manipulate the contents of ARs 253
map data-in-virtual object into data

space
rules for problem state program 275

map data-in-virtual object into
hiperspace

example 288
rules for problem state program 287

map hiperspace as data-in-virtual
object

example 290
map object into data space

using DIV macro 275
map object to a data space

using DIV macro 275
maximum size of data space 266
MCS console

characters displayed 342
megabyte 29
member names

establish 53
MEMLIMIT

definition 200
memory object

attributes 201
creating

example of 208
deleting a 211
discard pages that back pages 210
example of creating with a guard area 212
example of creating, using and freeing a 213
example of deleting a 211
ownership 207
releasing physical resources that back pages of 211

memory objects
data privacy 207

message
deleting 342, 347
descriptor code 344
disposition 344
example of WTO 345
identifier 345
indicator in first character 344
MLWTO (multiple-line) 343
replying 345
routing 343
single-line 343

500 z/OS: z/OS MVS Assembler Services Guide

message (continued)
translating 351
writing 342

message compiler
invoking 357

message file
compiling 357

message skeleton
creating 353
format 354
validating 356

message text
format 355

messages
z/OS MVS Programming: Assembler Services Guide
xxvii, xxviii

MIPR
CSVINFO macro 53

MLWTO (multiple-line) message
considerations for using 343

MMS (MVS message service)
coding example 365
support for additional language 364

mode
primary 249

MODE parameter 413
MODE=ASNYCNORESPONSE parameter 414
modify log stream control information

IXGUPDAT service 445
module

obtaining a copy 46
pass control 49

move data between hiperspace and address space 281
MPB (message parameter block)

building
using BLDMPB and UPDTMPB 363

using for new message 363
multiple versions of load modules 43
MVS macro

issuing in AMODE 64 206
issuing in AR mode 256

N
name

resource 109
name a data space 266
NAME parameter on DSPSERV 265, 266, 281
name/token callable service

link-editing with your application 315
use of the service 311

name/token pair
creating 312
deciding which to use 313
definition 311
deleting 312
home 314
level

home address space 312
primary address space 312
system 312
task 312, 313

retrieving the token 312
navigation

navigation (continued)
keyboard 485

non-reenterable load module 196
non-shared standard hiperspace

creating 281
definition 280

nonconstrained transactions 459
NUMRANGE parameter on HSPSERV 282

O
obtain access to a data object 299
operator

consoles, characters displayed 342
messages, writing 342

option
RESET parameter 123
SET parameter 123
TEST parameter 123

origin of data space 267
originating task 25
OUTNAME parameter on DSPSERV 265, 266
overlay load module structure 34

P
page

faults, decreasing 321
movement 317
size 317

page out virtual storage 319
page-ahead function 319
paging I/O 317
paging service

input 320
list of services 317

parallel execution
when to choose 25

parameter convention 22
parameter list

description 35
example of passing 36
indicate end 37
inline, use 37
location 51

parameter list for AR mode program
illustration 23

PASN-AL
add entry 264
compared with a DU-AL
251
definition 251

pass control
between control sections 35
between programs with all registers intact 32
between programs with different AMODEs 31, 49
between programs with the same AMODE 31
in a dynamic structure 41, 47, 50, 52
in a simple structure 34–36, 40
preparation 35
prepare 36
using a branch instruction 37, 50
using CALL 38

Index 501

pass control (continued)
using LINK 47
using the CSRL16J service 32
with a parameter list 36
with return 36, 47
without control program assistance 34, 49
without return 35, 50

pass parameter
list 195
register 195

pass return address 35
PDS directory entry

AMODE indicator 29
RMODE indicator 29

percolate
definition in a recovery environment 131

percolation
ESPIE 124

permanent object
access to a permanent object, procedure for 299
accessing an existing object 300
creating a new object 300
data transfer 294
data-in-virtual object, relationship 293
defining a view 300
defining multiple views 303
definition 293
extending the size 303
functions supported for 297
identifying 299
mapping a scroll area to a permanent object, example
295
mapping with no scroll area, example 295
new object, creating 300
obtaining

access to a permanent object, overview 298–300
overview of supported function 297
refreshing changed data 305
refreshing, overview 299
requirements for new object 300
saving changes, overview 299
saving interim changes 304
scroll area 300
size, maximum 293
specifying new or old status 300
specifying type of access for an existing object 300
structure 293
terminating access to a permanent object 307
updating on DASD 305

PGLOAD macro
page-ahead function 319
use 317

PGOUT macro
use 317

PGRLSE macro
use 317

PGSER macro
input 321
page-ahead function 319
protecting a range of virtual storage pages 319
use 318

PICA (program interruption control area)
pointer 122
purpose 121

PICA (program interruption control area) (continued)
restore previous 122

PIE (program interruption element)
purpose 121

planned overlay load module structure 34
pointer-defined entry point address 31
post bit 102
POST macro

use 102
prepare to pass control

with return 36
without return 35

primary mode
description 249

primary mode program
call a program 20
defined 5
linkage procedure 18
pass parameters 22
receive control from a caller 18
return control to a caller 19

priority
address space 25
assign 26
change 26
control program's influence 25
dispatch 26
higher, when to assign 26
limit 26
subtask 26
task 26

privacy, memory object data 207
private library 41
processor storage management 317, 329
program availability

increasing through recovery 127
program design 34
program interruption

cause 121
determine cause 122

program management 29
program mask 122
program object

definition 41
protecting

via serialization 108
PSL (page service list) 321
PSW (program status word)

addressing mode bit 30, 31
PUT macro 388

Q
qname of a resource

purpose 109
QRYLANG macro 360
query service

using 367

R
range list entry 335
RANGLIST parameter on HSPSERV 282, 287

502 z/OS: z/OS MVS Assembler Services Guide

RB (request block)
considerations for ESTAE-type recovery routines 147
relationship to ESTAE-type recovery routines 130

read
from a log stream 435
log data in data set format

LOGR subsystem 445
LOGR subsystem

eligible applications 446
read from a standard hiperspace 283, 286
read operation

for standard hiperspace 282, 283
recovery

ABEND dump
requesting 136

ABEND macro
choosing to issue 128
invoking RTM 164
STEP parameter 149

activated
state of recovery routine 128

advanced topics 164
advantages of providing 127
AMODE

ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 159

ARR
choosing 131
using 150

ASC mode
ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 159

ATTACH and ATTACHX macros
ASYNCH parameter 149
ECB parameter 164
ESTAI parameter 130, 140
ETXR parameter 164
PURGE parameter 148
STAI parameter 130
TERM parameter 149

attached task 130
authorization

ESTAE-type recovery routine 157
retry from an ESTAE-type recovery routine 159

availability
increasing 127

communication
between processes 127
means available to recovery routines 139
parameter area 130, 139
registers 139
SDWA 133, 139
SETRP macro 133

concepts 126
condition of the linkage stack

ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 160

correcting errors 137
DAE

providing information 136
deactivated

state of recovery routine 128
deciding whether to provide 126
defined

recovery (continued)
defined (continued)

state of recovery routine 128
designing into your program 125
dispatchable unit mode

ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 159

DU-AL
ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 160

dump
ABEND dump 136
checking for previous 136
requesting 136

environment
ESTAE-type recovery routine 157
factors other than register contents 157
register contents 151
retry from an ESTAE-type recovery routine 159
STAE and STAI routines 167
summary for ESTAE-type recovery routine and its
retry routine 160
understanding 150

errors
examples 128

ESTAE and ESTAEX macros
0 parameter 130
ASYNCH parameter 149
CT parameter 130, 165
defining a recovery routine 130
OV parameter 165
PARAM parameter 140
PURGE parameter 148
TERM parameter 149

ESTAE and ESTAEX routine
activated 130
deactivated 130
defined 130
definition 130
no longer defined 130

ESTAE-type recovery routine
additional considerations 149
linkage stack considerations 148
outstanding I/Os 148
providing 130
RB considerations 147
RB relationship 130
return codes 153
special considerations 147

ESTAI routine
activated 130
deactivated 130
defined 130
definition 130
no longer defined 130
rules for retry RB 148

example
coded 162
mainline routine with one recovery routine 132
mainline routine with several recovery routines 133

footprints 136, 140
from software errors 125
general concepts 126
IEALSQRY macro 161

Index 503

recovery (continued)
in control

state of recovery routine 128
interrupt status

ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 160

mainline routine
definition 129

minimizing errors 137
multiple recovery routines 165
MVS-provided 126
no longer defined

state of recovery routine 129
no longer in control

state of recovery routine 128
not providing 127
outstanding I/O

restoring quiesced restorable I/O operations
149

outstanding I/Os
controlling 148

parameter area
accessing 139, 141
checking the contents 135
contents 140
footprints 136, 140
passing 130, 139, 140
setting up 139

percolate
compared with retry 137
definition 131

program availability
increasing 127

program mask
ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 160

quiesced restorable I/O
operation

restoring 149
recovery routine

choosing 130
definition 129
nested 165
objectives 134
options 131
order of control 132
percolating 139
providing 125
providing recovery for a recovery routine 165
retrying 137
states 128
summary of states 131
writing 133

recursion
avoiding 136
definition 136

register contents
entry to a recovery routine 151
entry to a retry routine 154
restoring 138
return from a recovery routine 153
STAE or STAI retry routines 169
STAE routine 167
summary of where to find information 151

recovery (continued)
retry

compared with percolate 137
definition 131

retry point
definition 129

retry routine
definition 129
description 138

routines in a recovery environment
definition 129
interaction 132
mainline routine 129
recovery routine 129
retry routine 129

RTM
invoking 164

SDWA
accessing 142
accessing the SDWARC1 DSECT 143
checking important fields 135
directly manipulating fields 136
freeing 138
IHASDWA mapping macro 142
summary of important fields 143
updating 133, 142
updating through SETRP macro 136
updating through VRADATA macro 136
using 142

SDWA storage key
ESTAE-type recovery routine 158
retry from an ESTAE-type recovery routine 159

serviceability data
providing 127
saving 136
updating the SDWA 136

SETRP macro
communicating recovery options to the system 142
COMPCOD parameter 142
DUMP parameter 136
FRESDWA parameter 138, 154
indicating percolation 139
indicating retry 137
RC parameter 137, 139
REASON parameter 142
RECPARM parameter 136
REMREC parameter 138
RETADDR parameter 137
RETREGS parameter 138, 154
supplying a retry address 137
updating the SDWA 133, 142

STAE macro
0 parameter 130
CT parameter 130
defining a recovery routine 130

STAE retry routine 168
STAE routine

return codes 168
using 166
work area 167

STAI retry routine 168
STAI routine

return codes 168
using 166

504 z/OS: z/OS MVS Assembler Services Guide

recovery (continued)
STAI routine (continued)

work area 167
state of recovery routine

activated 128
deactivated 128
defined 128
in control 128
no longer defined 129
no longer in control 128

system logger
application failure 451
coupling facility failure 452
coupling facility full 454
DASD log data set space fills 454
log stream damage 454
peer connector 451
staging data set full 454
system failure 451
system logger address space failure 452
unrecoverable I/O errors 455

task 130
validity checking of user parameters 127
VRADATA macro

updating the SDWA variable recording area 136
writing recovery routines

checking for the SDWA 134
checking important fields in the SDWA 135
checking the parameter area 135
comparison of retry and percolate 137
correcting or minimizing errors 137
determining if the recovery routine can retry 137
determining the first recovery routine to get control
135
determining why the routine was entered 135
establishing addressability to the parameter area
135
locating the parameter area 135
providing information for DAE 136
requesting a dump 136
saving serviceability data 136
saving the return address to the system 134

recursion
avoiding in recovery 136
definition in recovery 136

reenterable
load module 46, 49, 194
macro 195

reenterable code
use 188, 190, 195

reenterable load module
use 189, 194

reference pattern service 321, 329
reference unit in reference pattern service

choosing 323
definition 323

reference unit in reference pattern services
definition 323

REFPAT macro
example 328
use 321
using 324

refresh changed data in an object 305
refreshable module 196

REGION system parameter 187
register

provide a save area 6
save 6

register 1
pass parameters 35

register 14
use 36
when to restore 35

register 15
use 35

registers 2-12 37
release

data space and hiperspace storage 261
data space storage

rules 271
hiperspace storage

rules for 285
resource 113
virtual storage 317

RELEASE parameter on HSPSERV macro 283
release storage in data spaces

rules 271
remove

entry from access list 255
REPLACE option for a window 301
reply to WTOR message 345
request

dump 171
request for resource

limit concurrent 111
requesting

conditionally 113
exclusive control 111
pair 115
shared control 111
unconditionally 113

requirements for window service
DFP requirement 300
SMS requirement 300

RESERVE macro 116
resource

cleaning up 125
collecting information 116
control 101
duplicate request 112
global 109
local 109
name list 109
naming 109
process request 112
protecting 101, 109, 112, 113
release 113
releasing through recovery 127
requesting 101, 109, 112, 113
scope 117
serially reusable 101, 109, 112, 113
types that can be shared 109
using 108, 116

resource protection
via serialization 108

resource queue
extracting information 116

resource serialization

Index 505

resource serialization (continued)
avoiding an interlock 115
requesting exclusive control 111
requesting shared control 111

responsibility count for a loaded module 196
restore

data space 277
hiperspace 291
PICA (program interrupt control area) 122
registers upon return 39

RETAIN option for a window 301
retry

definition in recovery environment 131
retry point

definition 129
retry routine

definition 129
ensure correct level of the linkage stack 161

return address
pass 35

return attributes function of unit verification service 470
return code

analyzing 38
establish 39
for cell pool service 219
using 38

return group ID function of unit verification service 470
return look-up value function of unit verification service 470
RETURN macro

use 39, 40
return UCB addresses function of unit verification service
470
return unit name function of unit verification service 469
returned storage

specify subpool 470
reusability attributes of a load module 49
reusable module 46
reuse of a save area 37
RIB (resource information block)

used with GQSCAN macro 117
RMODE program attribute

indicator in PDS entry 29
purpose 29
specifying 29, 41
use 41
value 29

route
code 343
message 343

route message 343
route the message 343
RTM (recovery termination manager)

MVS component that handles recovery 125
run length encoding 367
run-time message file

updating 360

S
SAC instruction

example 255
use 249

safe import point
IXGIMPRT service 441

safe import point (continued)
IXGQUERY service 441

SAR instruction
description 254
example 254

save
data space 277
hiperspace 291

save area
example of using a 7, 9, 11, 12, 17
how to tell if used 40
pass address 35
reuse 37
using a caller-provided save area 8
who must provide 6

save interim changes to a permanent object 304
SAVE macro

example of using 9
use 53

scope
ALL parameter value on GQSCAN macro 119
on GQSCAN macro

as affected by GRS 119
STEP parameter value on GQSCAN macro 117, 119
SYSTEM parameter value on GQSCAN macro 117, 119
SYSTEMS parameter value on GQSCAN macro 117, 119

scope of a resource
changing 109
STEP, when to use 109
SYSPLEX, when to use 111
SYSTEMS, when to use 111

SCOPE parameter on DSPSERV 265
scroll area

data transfer 294
definition 294
mapping a scroll area to DASD, example 295
mapping a window to a scroll area, example 295
obtaining a scroll area 300
refreshing a scroll area 305
saving changes in, overview 299
saving interim changes in a 304
storage used for 294
updating a permanent object from a scroll area 305
updating DASD from, overview 299
use 294

SCROLL hiperspace 279
SDB (structured data base) format

description 180
SDWA (system diagnostic work area)

providing symptom data for a dump 175
SDWAARER field 144
SDWAARSV field 146
SDWACID field 136, 146
SDWACLUP bit 137, 146
SDWACMPC field 135, 144
SDWACOMU field 146
SDWACRC field 135, 144
SDWAEAS bit 136, 146
SDWAEC1 field 144
SDWAEC2 field 145
SDWAG64 field 144, 147
SDWAGRSV field 144
SDWAINTF bit 145, 146
SDWALNTH field 146

506 z/OS: z/OS MVS Assembler Services Guide

SDWA (system diagnostic work area) (continued)
SDWALSLV field 147, 161
SDWAMLVL field 136, 147
SDWAPARM field 135, 144
SDWAPERC bit 135, 146
SDWARPIV bit 144
SDWARRL field 136, 147
SDWASC field 136, 146
SDWASPID field 146
SDWASR00 field 138
SDWASRSV field 145
SDWATEAR field 146
SDWATEAV bit 146
SDWATEIV bit 146
SDWATRAN field 146
SDWATXG64 field 147
SDWATXPSW16 field 147
SDWAXFLG field 145, 146

search for a load module
areas/libraries searched 43
limiting 42
order 42

sending to IBM
reader comments xxv

serially reusable
use 108

serviceability data
providing through recovery 127
saving in the SDWA 136

set up
addressability to a data space

example 255
system logger configuration 445

SETRP macro
COMPCOD parameter 142
DUMP parameter 136
FRESDWA parameter 138, 154
RC parameter 137, 139
REASON parameter 142
RECPARM parameter 136
REMREC parameter 138
RETADDR parameter 137
RETREGS parameter 138, 154
updating the SDWA 133

share subpools 192, 194
shared pages 331
shared resource control

through the ENQ macro 111
through the RESERVE macro 116

shared standard hiperspace
definition 280

shared storage
with IARVSERV macro 331

sharing data in virtual storage
summary 2

sharing data in virtual storage (IARVSERV macro) 331
sharing data spaces 274
shortcut keys 485
simple load module structure 34
SMS requirement for window service 300
SNAP data control block 177
SNAP dump

index 177
requesting 177

SNAP macro
use 177

SNAPX macro
use 177

software error
recovering 125

specify subpool for returned storage 470
specifying

in source code 29
using linkage editor control card 29

SPIE (specify program interruption exit) environment
addressing mode 121
adjusting 122
canceling 122
definition 121
reestablishing 122

SPIE macro
addressing mode restriction 121
use 121

STAE macro
0 parameter 130
CT parameter 130
defining a recovery routine 130

STAE routine
using 166

staging data sets
formatting 434
full condition 454
storage limit reached 433

STAI routine
using 166

STAM instruction
description 254

standard hiperspace
definition 279
example of creating 281
non-shared 280
read and write operation 283
shared 280
use 280

START parameter on DSPSERV 271, 285
STATUS macro 26
STCKCONV macro

using 339
STCKSYNC macro

using 339
step library

reason for limiting size 44
use 41

STIMER macro
using 340

STIMERM macro
using 340

STOKEN parameter on ALESERV 255
STOKEN parameter on DSPSERV 255, 265, 281
STOKEN parameter on HSPSERV 282
storage

freshly obtained 228
managing data space 272
subpool returned storage 470

storage available for data space and hiperspace 260
STORAGE macro

OBTAIN request
example 287

Index 507

STORAGE macro (continued)
use 187–190

storage request
explicit 187
implicit 187

storage subpool 191
structure of a data object 293
subpool

characteristic 193
creating 193
handling 191
in task communication 194
ownership 193
sharing 192, 194
storage key for 193
transferring ownership 194

subpool release
definition 191

substitution token 354
subtask

communication with tasks 27
control 25
create 25
priority 26
starting 26
stopping 26
terminating 27, 102

summary dump 177
summary of changes xxvii
suppression

of dumps 172
symbol substitution

summary 3
symptom

provided by a recovery routine 175
required for dump suppression 143

symptom dump 172
symptom record

description 179
SYMRBLD macro

building a symptom record 179, 181
SYMREC macro

symptom recording 179
SYSABEND ABEND dump 171
SYSMDUMP ABEND dump 171
sysplex environment

communication 346
SYSSTATE AMODE64= macro

example 206
use 206

SYSSTATE macro
example 256
use 46, 177, 256

system convention for parameter list 35
SYSTEM inclusion resource name list 109
system log

writing 346
system logger

ANSAREA parameter 417
answer area

size 417
answer area mapping

IXGANSAA macro 417
authorization requirements 410

system logger (continued)
component 408
configuration

illustration 407, 408
connecting to and disconnection from a log stream 425
DASD-only log stream 406
definition 403
delete data from a log stream

illustration 439
IXGDELET service 438

disconnect service 430
IXGBRWSE service

MULTIBLOCK parameter 437
REQUEST=READBLOCK 435
REQUEST=READCURSOR 435
REQUEST=RESET 435
REQUEST=START 435
searching for a log block by time stamp 436
with IXGDELET service 438
with IXGWRITE service 438

log data sets
allocation 406

log stream
illustration 403

LOGR subsystem
eligible applications 446
using 447

managing the LOGR, LOGRY and LOGRZ policies
IXGINVNT service 419

model log stream
example 420

peer connector
in recovery 451

read
log data in data set format 445, 446

read from a log stream
browse cursor 435
browse session 435
browse token 435
IXGBRWSE service 435

recovery
application failure 451
coupling facility failure 452
coupling facility full 454
DASD log data set space fills 454
log stream damage 454
staging data set full 454
system failure 451
system logger address space failure 452
unrecoverable I/O errors 455

searching for a log block by time stamp
illustration 437

services
overview 409

staging data sets
formatting 434
storage limit reached 433

status changes
ENF event code 48 419

summary 3
user data for a log stream 429
writing to a log stream

IXGWRITE service 431
system logger application

508 z/OS: z/OS MVS Assembler Services Guide

system logger application (continued)
ENF event code 48 419
example 403

system logger configuration
set up 445

system logger services
64–bit virtual addressing support

example 411
authorization requirements 410
gaps in the log stream 415
IXGBRWSE service

browse cursor 435
browse session 435
browse token 435
MULTIBLOCK parameter 437
REQUEST=READBLOCK 435
REQUEST=READCURSOR 435
REQUEST=RESET 435
REQUEST=START 435
searching for a log block by time stamp 436
with IXGDELET service 438
with IXGWRITE service 438

IXGCONN service
allocating coupling facility space at connection 426
authorization requirements 426
connect process and staging data sets 426
disconnect from a log stream 430
import connection 429
user data for a log stream 429
write connection 429

IXGDELET service
illustration 439

IXGWRITE service
BUFFALET parameter 432
BUFFKEY parameter 431
BUFFLEN parameter 432
committing data 433
coupling facility structure storage limit reached 433
log block buffer 431
sequence of log blocks 432
staging data set is formatting 434
staging data set storage limit reached 433

mode parameter 413
MODE=ASYNCNORESPONSE parameter 414
MODE=SYNC parameter 414
MODE=SYNCECB parameter 414
overview 409
searching for a log block by time stamp

illustration 437
synchronous and asynchronous processing 413
system logger applications 403

system resource
releasing through recovery 127

system-generated PICA 123
SYSUDUMP ABEND dump 171

T
target program

definition 5
task

advantage of creating additional 25
communication with subtasks 27
create 25

task (continued)
library, establishing 41
priority, affect on processing 26
synchronization 102

TASKLIB parameter of ATTACH 41, 42
tasks in a job step

illustration 27
TCB (task control block)

address 25
remove 27

temporary object
access to a temporary object, procedure for 300
accessing a temporary object 299
creating a temporary object 299
data transfer 294
defining a view 300
defining multiple views 303
definition 293
extending the size 303
functions supported for 298
initialized value 294
mapping a window, example 295
obtaining

access to a temporary object, overview 298, 300
overview of supported function 298
refreshing changed data 305
refreshing, overview 299
saving changes, overview 299
scroll area 300
size of, maximum 293
specifying the object size 300
storage used for 294
structure 293
terminating access to a temporary object 307
updating a temporary object 304

terminate access to an object 307
terminate view of an object 306
test return codes 38
time interval

example of using 340
TIME macro

using 339
time of day and date

obtaining 339
timer synchronization

checking 339
TIMEUSED macro

using 341
TOD (time-of-day) clock

checking for synchronization with ETR 339
converting value 339
obtaining content 339

token
used with GQSCAN macro 118

TRANMSG macro 361
Transaction dump 171
transactional execution 459
transactional execution debugging 461
transactional execution diagnostics 461
transfer data between hiperspace and address space 281
translate message 351
TTIMER macro

using 340

Index 509

U
UCB (unit control block)

obtaining device information 385
scanning 384

UCBINFO macro 385
UCBSCAN macro 384
unit name

device class 470
is a look-up value function of unit verification service
470

unit verification service
description 469
examples 482
FLAGS parameter field 471
functions 469–471, 482
IEFEB4UV routine 470
input and output

data structure 471
parameter list required 471
purpose 469
requesting multiple functions 482

update a permanent object on DASD 305
update a temporary object 304
UPDTMPB macro 363
use an entry to an access list

example 255
use count 48
use count for a loaded module 51
use data spaces efficiently 276
use of data space and hiperspace 260
user interface

ISPF 485
TSO/E 485

user list
use

access 230
identify 229
map 232
reset 238
savelist 237

using a memory object
use the storage 208

using transactional executiong 460

V
V-type address constant

use to pass control 37
V=R (virtual=central) storage

allocation 317
VERBEXIT DAEDATA subcommand

indicating why dump was not suppressed 177
verification

device 469
version record

format 353
virtual storage

controlling 191
explicit requests for 187
freeing 196
implicit requests for 194
loading 317, 319
obtaining via CPOOL 191

virtual storage (continued)
page-ahead function 319
paging out 319
releasing 317, 318
sharing with IARVSERV macro 331
specifying the amount allocated to a task 187
subpool 191
using efficiently 187
why use above the bar 200

virtual storage window 225, 228
VRADATA macro

to customize dump suppression 175
using in a recovery environment 136

VSL (virtual subarea list) 320
VSM (virtual storage management) 187, 197

W
wait

bit 102
condition 102
long 102

WAIT macro
use 102

ways that window services can map an object 294
window

affect of terminating access to an object 307
blocks to be viewed, identifying 302
changing a view in a window 306
changing the view, overview 299
data to be viewed, identifying 302
defining

window, overview 299, 301–304
definition 293
identifying a window 301
identifying blocks to be viewed 302
mappping

to a window, example 295, 296
multiple objects, example 296
multiple windows 303
refreshing a window 305
REPLACE option 301
RETAIN option 301
size 301
storage for 301
terminating a view in a window 306
to multiple windows, example 296
updating a permanent object from a window 305
use 293
window disposition 301
window reference pattern 302
windows with overlapping view 303, 304

window service
introduction 293
overview 293
use 298

window services
functions provided 294
overview 293
services provided 294
using window services 298
ways to map an object 294

WLM goal mode
dispatching priority 25

510 z/OS: z/OS MVS Assembler Services Guide

work area
used by data compression service 367
used by data expansion service 367

write
to the operator with reply 342
to the operator without reply 345
to the programmer 346
to the system log 346

write connection
IXGCONN service

IMPORTCONNECT parameter 429
WRITE macro 388
write message 342
write operation

for standard hiperspace 282
write programs in AR mode 252
write to a standard hiperspace 283, 286
writing

to a log stream 431
WTL macro

writing to the system log 346
WTO macro

descriptor code for 344
example 345
MLWTO (multiple-line) form 343
single-line form 343
use 342

WTOR macro
example 345
use 342

X
X-macro

definition 256
rules for using 256

XCTL macro
addressing mode consideration 41
lowering the responsibility count 196
use 41, 50
use with branch instructions, danger 51

XCTLX macro
use 50

Z
z/Architecture

setting and checking the addressing mode 205
z/Architecture instructions

using the 64-bit GPR 203
z/Architecture processes S/390 instructions,

how
examples 202

z/OS MVS Programming: Assembler Services
Guide

messages xxvii, xxviii

Index 511

512 z/OS: z/OS MVS Assembler Services Guide

IBM®

Product Number: 5650-ZOS

SA23-1368-50

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS MVS Programming: Assembler Services Guide for Version 2 Release 5 (V2R5)
	Summary of changes for z/OS MVS Programming: Assembler Services Guide for z/OS Version 2 Release 4
	Summary of changes for z/OS MVS Programming: Assembler Services Guide for z/OS Version 2 Release 3

	Chapter 1. Introduction
	Chapter 2. Linkage conventions
	Saving the calling program's registers
	Caller-provided save area
	Linkage convention for floating point registers
	Linkage convention for the floating point control register
	System-provided linkage stack

	Using the linkage stack
	Example of using the linkage stack

	Using a caller-provided save area
	If not changing ARs or bits 0–31 of the 64–bit GPRs
	Example

	If changing the contents of bits 0-31 of the 64-bit GPRs but not changing ARs
	Example of F5SA
	Example of F8SA

	If starting in AMODE 64
	Example

	If changing ARs without using the linkage stack
	Example

	Establishing a base register
	Linkage procedures for primary mode programs
	Primary mode programs receiving control
	Primary mode programs returning control
	Primary mode programs calling another program

	Linkage procedures for AR mode programs
	AR mode programs receiving control and using the linkage stack
	AR mode programs returning control and using the linkage stack
	AR mode programs receiving control and not using the linkage stack
	AR mode programs returning control and not using the linkage stack
	AR mode programs calling another program

	Conventions for passing information through a parameter list
	Program in primary ASC mode
	Programs in AR mode

	Chapter 3. Subtask creation and control
	Creating the task
	Priorities
	Address space priority
	Task priority
	Subtask priority
	Assigning and changing priority

	Stopping and restarting a subtask (STATUS macro)
	Task and subtask communications

	Chapter 4. Program management
	Residency and addressing mode of programs
	Residency mode definitions
	Addressing mode definitions

	Linkage considerations
	Floating point considerations
	Passing control between programs with the same AMODE
	Passing control between programs with different AMODEs
	Passing control between programs with all registers intact
	Defining the entry characteristics of the target routine
	Freeing dynamic storage associated with the caller

	Load module structure types
	Simple structure
	Dynamic structure

	Load module execution
	Passing control in a simple structure
	Passing control without return
	Preparing to pass control
	Passing control

	Passing control with return
	Preparing to pass control
	Passing control
	Analyzing the return
	How control is returned
	Return to the control program

	Passing control in a dynamic structure
	Bringing the load module into virtual storage
	Location of the load module
	The search for the load module
	Using an existing copy
	Using the LOAD macro

	Passing control with return
	Using the LINK or LINKX macro
	Using CALL, BALR, BASR, or BASSM
	How control is returned

	Passing control without return
	Passing control using a branch instruction
	Using the XCTL or XCTLX macro

	APF-authorized programs and libraries
	Additional Entry Points
	Entry Point and Calling Sequence Identifiers as Debugging Aids
	Retrieving Information About Loaded Modules
	Using the CSVINFO macro
	Serialization

	Coding a MIPR for the CSVINFO macro
	Installing the MIPR
	MIPR environment
	Recovery for MIPR provided by CSVINFO
	Entry specifications
	Registers at entry
	Return specifications
	Registers at exit
	CSVINFO service coding example

	Chapter 5. Understanding 31-bit addressing
	Virtual storage
	Addressing mode and residency mode
	Requirements for execution in 31-bit addressing mode
	Rules and conventions for 31-bit addressing
	Mode sensitive instructions
	BAL and BALR
	LA
	LRA

	Branching instructions
	Use of 31-bit addressing

	Planning for 31-bit addressing
	Converting existing programs
	Writing new programs that use 31-bit addressing
	New programs below 16 megabytes
	New programs above 16 megabytes

	Writing programs for MVS/370 and MVS systems with 31-bit addressing
	SPLEVEL macro
	Dual programs

	Addressing mode and residency mode
	Addressing mode - AMODE
	Residency mode - RMODE
	AMODE and RMODE combinations
	AMODE and RMODE combinations at execution time
	Determining the AMODE and RMODE of a load module
	Assembler support of AMODE and RMODE
	AMODE and RMODE in the object module
	AMODE and RMODE assembler instructions

	Linkage editor and binder support of AMODE and RMODE
	Linkage editor RMODE processing

	Loader support for AMODE and RMODE
	System support of AMODE and RMODE
	How to change addressing mode

	Establishing linkage
	Using the BASSM and BSM instructions
	Calling and returning with BASSM and BSM

	Using pointer-defined linkage
	Using an ADCON to obtain a pointer-defined value
	Using the LOAD macro to obtain a pointer-defined value

	Using supervisor-assisted linkage
	Linkage assist routines
	Example of using a linkage assist routine

	Using capping - linkage using a prologue and epilogue

	Performing I/O in 31-bit addressing mode
	Using the EXCP macro
	Using EXCPVR
	Example of performing I/O while residing above 16 megabytes

	Understanding the use of central storage
	Central storage considerations for user programs
	Load real address (LRA) instruction
	GETMAIN macro
	DAT-off routines

	Chapter 6. Resource control
	Synchronizing tasks (WAIT, POST, and EVENTS macros)
	Synchronizing tasks (Pause, Release, and Transfer)
	Pause elements and pause element tokens
	Using the services

	Serializing access to resources (ISGENQ macro)
	Naming the resource
	Defining the scope of a resource
	Local and global resources
	Determining the resulting scope

	Requesting exclusive or shared control
	Limiting concurrent requests for resources
	Processing the requests
	Duplicate requests for a resource
	Releasing the resource
	ENQ and DEQ conditional and unconditional requests
	ISGENQ conditional and unconditional requests
	Avoiding interlock

	Serializing access to resources through the ISGENQ macro

	Collecting information about resources and their requestors (ISGQUERY and GQSCAN macros)
	How ISGQUERY returns resource information
	How GQSCAN returns resource information
	How area size determines the information GQSCAN returns
	How scope and token values determine the information GQSCAN returns

	How GRS determines the scope of an ENQ or RESERVE request

	Chapter 7. Program interruption services
	Specifying user exit routines
	Using the SPIE macro
	Program interruption control area
	Program interruption element

	Using the ESPIE macro
	The extended program interruption element (EPIE)

	Environment upon entry to user's exit routine
	Functions performed in user exit routines
	Requesting percolation from an ESPIE exit

	Chapter 8. Providing recovery
	Understanding general recovery concepts
	Deciding whether to provide recovery
	Understanding errors in MVS
	Understanding recovery routine states
	Understanding the various routines in a recovery environment
	Mainline routine
	Recovery routine
	Retry routine

	Choosing the appropriate recovery routine
	Floating point implications
	Summary of recovery routine states

	Understanding recovery routine options
	Understanding how routines in a recovery environment interact

	Writing recovery routines
	Understanding what recovery routines do
	Saving the return address to the system
	Checking for the SDWA
	Establishing addressability to the parameter area
	Checking important fields in the SDWA
	Checking the contents of the parameter area
	Saving serviceability data
	Requesting a dump
	Correcting or minimizing the error
	Deciding to retry or percolate
	Recovery routines that retry
	What the retry routine does
	Recovery routines that percolate

	Understanding the means of communication
	Setting up, passing, and accessing the parameter area
	Deciding what to include in the parameter area
	Passing the parameter area
	Accessing the parameter area

	Using the SDWA
	Updating the SDWA
	Using the SETRP macro to update the SDWA
	Symptom data required in the SDWA for dump suppression
	Important fields in the SDWA

	Special considerations for ESTAE-type recovery routines
	RB considerations
	Linkage stack considerations
	Recovery routine
	Retry routine
	Deactivating an ESTAE-type recovery routine

	Outstanding I/Os at the time of failure
	Additional considerations specific to ESTAE-type recovery routines
	Using ARRs

	Understanding the recovery environment
	Register contents
	Register contents on entry to a recovery routine
	Register contents on return from a recovery routine
	Register contents

	Other environmental factors in recovery
	Environment on entry to an ESTAE-type recovery routine
	Authorization
	SDWA storage key
	Dispatchable unit mode
	AMODE
	ASC mode
	Interrupt status
	DU-AL
	Program mask
	Condition of the linkage stack
	Restricted environments

	Environment on entry to a retry routine from an ESTAE-type recovery routine
	Authorization
	SDWA storage key
	Dispatchable unit mode
	AMODE
	ASC mode
	Interrupt status
	DU-AL
	Program mask
	Condition of the linkage stack

	Summary of environment on entry to an ESTAE-type recovery routine and its retry routine
	Linkage stack at time of retry

	Understanding recovery through a coded example
	Understanding advanced recovery topics
	Invoking RTM (ABEND macro)
	Providing multiple recovery routines
	Providing recovery for recovery routines
	Providing recovery for multitasking programs

	Using STAE/STAI routines

	Chapter 9. Dumping virtual storage (ABEND, SNAPX, SNAP, and IEATDUMP macros)
	ABEND dumps
	Obtaining a symptom dump
	Suppressing dumps that duplicate previous dumps
	Symptoms provided by a recovery routine
	When a dump is not suppressed

	SNAP dumps
	Finding information in a SNAP dump
	Obtaining a summary dump for an ABEND or SNAP dump

	Transaction dumps

	Chapter 10. Reporting symptom records (SYMRBLD and SYMREC macros)
	Writing symptom records to Logrec data set
	The format of the symptom record
	Symptom strings — SDB format

	Building a symptom record using the SYMRBLD macro
	Building a symptom record using the ADSR and SYMREC macros
	Programming notes for section 1
	Programming notes for section 2
	Programming notes for section 2.1
	Programming notes for section 3
	Programming notes for section 4
	Programming notes for section 5

	Chapter 11. Virtual storage management
	Explicit requests for virtual storage
	Obtaining storage through the GETMAIN macro
	Obtaining storage through the STORAGE macro
	Releasing storage through the FREEMAIN and STORAGE macros

	Using the CPOOL macro
	Subpool handling

	Implicit requests for virtual storage
	Reenterable load modules
	Reenterable macros
	Non-reenterable load modules
	Freeing of virtual storage

	Chapter 12. Using the 64-bit address space
	What is the 64-bit address space?
	Why would you use virtual storage above the bar?
	Memory objects
	Using large pages

	Using assembler instructions in the 64-bit address space
	64-bit binary operations
	How z/Architecture processes S/390 instructions
	z/Architecture instructions that use the 64-bit GPR

	64-bit addressing mode (AMODE)
	Non-modal instructions
	Modal instructions
	Setting and checking the addressing mode
	Linkage conventions
	Register 15 contents on entry

	Pitfalls to avoid

	Issuing MVS macros in AMODE 64
	Example of using SYSSTATE AMODE64=

	IARV64 services
	Protecting storage above the bar
	Preventing execution of code from the memory object
	Relationship between the memory object and its owner
	Tagging 64-bit memory objects for data privacy
	Creating memory objects
	Example of creating a memory object

	Using a memory object

	Discarding data in a memory object
	Releasing the physical resources that back pages of memory objects
	Freeing a memory object
	Example of freeing a memory object

	Creating a guard area and changing its size
	Example of creating a memory object with a guard area

	An example of creating, using, and freeing a memory object

	Chapter 13. Callable cell pool services
	Comparison of callable cell pool services and the CPOOL macro
	Storage considerations
	Link-editing callable cell pool services
	Using callable cell pool services
	Handling return codes
	Callable cell pool services coding examples

	Chapter 14. Data-in-virtual
	When to use data-in-virtual
	Factors affecting performance
	Creating a linear data set

	Using the services of data-in-virtual
	Identify
	Access
	Map
	Save, savelist, and reset
	Unmap
	Unaccess
	Unidentify

	The IDENTIFY service
	The ACCESS service
	The MAP service
	The SAVE service
	The SAVELIST service
	The RESET service
	Effect of RETAIN mode on RESET

	The UNMAP service
	The UNACCESS and UNIDENTIFY services
	Sharing data in an object
	Miscellaneous restrictions for using data-in-virtual
	DIV macro programming examples
	General program description
	Data-in-virtual sample program code
	Data-in-virtual sample program code (continued)
	Data-in-virtual sample program code (continued)
	Data-in-virtual sample program code (continued)
	Data-in-virtual sample program code (continued)

	Executing the program

	Chapter 15. Using access registers
	Access lists
	Types of access lists

	Writing programs in AR mode
	Coding instructions in AR mode
	Manipulating the contents of ARs
	Loading an ALET into an AR
	Loading the value of zero into an AR

	The ALESERV macro
	Adding an entry to an access list
	Deleting an entry from an access list

	Issuing MVS macros in AR mode
	Example of using SYSSTATE
	Using X-macros

	Formatting and displaying AR information

	Chapter 16. Data spaces and hiperspaces
	What are data spaces and hiperspaces?
	What can a program do with a data space or a hiperspace?
	How does a program obtain a data space and a hiperspace?
	How does a program move data into a data space or hiperspace?
	Who owns a data space or hiperspace?
	Can an installation limit the use of data spaces and hiperspaces?
	How does a program manage the storage in a data space or hiperspace?

	Differences between data spaces and hiperspaces
	Comparing data space and hiperspace use of physical storage

	Which one should your program use?
	An example of using a data space
	An example of using a hiperspace

	Creating and using data spaces
	Manipulating data in a data space
	Rules for creating, deleting, and managing data spaces
	Creating a data space
	Choosing the name of a data space
	Specifying the size of a data space
	Identifying the origin of a data space
	Example of creating a data space

	Establishing addressability to a data space
	Examples of moving data into and out of a data space
	Extending the current size of a data space
	Releasing data space storage
	Paging data space storage areas into and out of central storage
	Deleting a data space
	Using callable cell pool services to manage data space areas
	Sharing data spaces among problem-state programs with PSW key 8-F
	Sharing data spaces through the PASN-AL
	Example of mapping a data-in-virtual object to a data space
	Mapping a data-in-virtual object to a data space

	Using data spaces efficiently
	Example of creating, using, and deleting a data space
	Dumping storage in a data space
	Using checkpoint/restart

	Creating and using hiperspaces
	Standard hiperspaces
	Shared and non-shared standard hiperspaces

	Creating a hiperspace
	Example of creating a standard hiperspace

	Transferring data to and from hiperspaces
	Read and write operations for standard hiperspaces
	Obtaining additional HSPSERV performance

	Extending the current size of a hiperspace
	Releasing hiperspace storage
	Deleting a hiperspace
	Example of creating a standard hiperspace and using it
	Using data-in-virtual with hiperspaces
	Mapping a data-in-virtual object to a hiperspace
	An example of mapping a data-in-virtual object to a hiperspace

	Using a hiperspace as a data-in-virtual object
	An example of a hiperspace as a data-in-virtual object

	Using checkpoint/restart

	Chapter 17. Window services
	Data objects
	Permanent
	Temporary data objects
	Structure of a data object
	What does window services provide?
	The ways that window services can map an object
	Example 1 — Mapping a permanent object that has no scroll area
	Example 2 — Mapping a permanent object that has a scroll area
	Example 3 — Mapping a temporary object
	Example 4 — Mapping multiple windows to an object
	Example 5 — Mapping multiple objects

	Access to permanent data objects
	Access to temporary data objects

	Using window services
	Obtaining access to a data object
	Identifying the object
	Specifying the object's size
	Specifying the type of access
	Obtaining a scroll area

	Defining a view of a data object
	Identifying the data object
	Identifying a window
	Defining the disposition of a window's contents
	Replace option
	Retain option

	Defining the expected reference pattern
	Identifying the blocks you want to view
	Extending the size of a data object

	Defining multiple views of an object
	Non-overlapping views
	Overlapping views

	Saving interim changes to a permanent data object
	Updating a temporary data object
	Refreshing changed data
	Updating a permanent object on DASD
	When there is a scroll area
	When there is no scroll area

	Changing a view in a window
	Terminating access to a data object
	Link-editing callable window services

	Window services coding example

	Chapter 18. Sharing application data (name/token callable services)
	Understanding name/token pairs and levels
	Name/token pairs
	Levels for name/token pairs
	Determining what your program can do with name/token pairs

	Deciding what name/token level you need
	Task-level name/token pair
	Home-level name/token pair

	Owning and deleting name/token pairs
	Using checkpoint/restart with name/token pairs
	Link-editing name/token services

	Chapter 19. Processor storage management
	Freeing virtual storage
	Releasing storage
	Protecting a range of virtual storage pages
	Loading/paging out virtual storage areas
	Virtual subarea list
	Page service list (PSL)
	Defining the reference pattern (REFPAT)
	How does the system handle the data in an array?
	What pages does the system bring in when a gap exists?

	Using the REFPAT macro
	Identifying the data area and direction of reference
	Defining the reference pattern
	Choosing the number of bytes on a page fault

	Examples of using REFPAT to define a reference pattern
	Removing the definition of the reference pattern

	Chapter 20. Sharing data in virtual storage (IARVSERV macro)
	Understanding the concepts of sharing data with IARVSERV
	Storage you can use with IARVSERV
	Obtaining storage for the source and target
	Defining storage for sharing data and access
	Changing storage access
	How to share and unshare data
	Accessing data in a sharing group
	Example of sharing storage with IARVSERV
	Use with data-in-virtual (DIV macro)
	Diagnosing problems with shared data
	Converting a central to virtual storage address (IARR2V macro)

	Chapter 21. Timing and communication
	Checking for timer synchronization
	Obtaining time of day and date
	Converting between time of day and date and TOD clock formats
	Interval timing
	Obtaining accumulated processor time
	Writing and deleting messages (WTO, WTOR, DOM, and WTL)
	Routing the message
	Altering message text

	Writing a multiple-line message
	Embedding label lines in a multiple-line message

	Communicating in a sysplex environment
	Writing to the programmer
	Writing to the system log
	Deleting messages already written

	Retrieving console information (CONVCON and CnzConv macros)
	Using console names instead of console IDs
	Determining the name or ID of a console
	Validating a console name or ID and obtaining the active system name

	Chapter 22. Translating messages
	Allocating data sets for an application
	Creating install message files
	Creating a version record
	Creating message skeletons
	Message skeleton format
	Message text in a skeleton

	Validating message skeletons
	Allocating storage for validation run-time message files
	Compiling message files
	Invoking the message compiler

	Checking the message compiler return codes

	Updating the system run-time message files
	Using MMS translation services in an application
	Determining which languages are available (QRYLANG macro)
	Retrieving translated messages (TRANMSG macro)
	Example of displaying messages

	Using message parameter blocks for new messages (BLDMPB and UPDTMPB macros)
	Support for additional languages
	Example of an application that uses MMS translation services

	Chapter 23. Data compression and expansion services
	Services provided by CSRCESRV
	Using these services

	Services provided by CSRCMPSC
	Compression and expansion dictionaries
	Building the CSRYCMPS area
	Determining if the CSRCMPSC macro can be issued on a system
	Compression processing
	Expansion processing
	Dictionary entries
	Compression dictionary entries
	Character entry generic form (DSECT CMPSCDICT_CE)
	Character entry CCT=0 (DSECT CMPSCDICT_CE)
	Character entry CCT=1 (DSECT CMPSCDICT_CE)
	Character entry CCT>1 (DSECT CMPSCDICT_CE)
	Alphabet entries (DSECT CMPSCDICT_CE)
	Format 1 sibling descriptor (DSECT CMPSCDICT_SD)
	Expansion dictionary entries
	Unpreceded entry (DSECT CMPSCDICT_UE)
	Preceded entry (DSECT CMPSCDICT_PE)
	Sibling descriptor extension entry (DSECT CMPSCDICT_SDE)
	Dictionary restrictions
	Other considerations
	Compression dictionary examples
	Example 1
	Example 2 for more than 5 children
	Example 3 for children with the same value
	Expansion dictionary example

	Chapter 24. Accessing unit control blocks (UCBs)
	Detecting I/O configuration changes
	Scanning UCBs
	Obtaining UCB information for a specified device
	Obtaining eligible device table information
	Using the EDTINFO macro

	Chapter 25. Setting up and using an internal reader
	Allocating the internal reader data set
	Opening the internal reader data set
	Sending job output to the internal reader
	Obtaining a job identifier

	Closing the internal reader data set

	Chapter 26. Using the symbol substitution service
	What are symbols?
	Types of symbols
	Examples of user symbols

	Calling the ASASYMBM or ASASYMBF service
	Setting up the ASASYMBP mapping macro
	Providing a symbol table to ASASYMBM / ASASYMBF
	Setting up the symbol table
	Rules for entering symbols in the symbol table

	Using symbols in programs
	Example 1
	Operation

	Example 2
	Operation

	Example 3
	Operation

	Example 4
	Operation

	Chapter 27. Using system logger services
	What is system logger?
	The log stream
	Coupling facility log stream
	DASD-only log stream

	The system logger configuration
	The system logger component

	Overview of system logger services
	Summary of system logger services
	Define authorization to system logger resources
	Authorization for system logger application programs

	64 bit virtual addressing support for system logger services
	Synchronous and asynchronous processing
	How system logger handles gaps in the log stream
	Dumping on data loss (804–type) conditions
	Define a log stream to allow additional dumping
	Define a log stream to allow additional dumping using LIKE
	Update a log stream to allow additional dumping
	Connect to a log stream and request additional dumping
	Browsing a log stream and request additional dumping
	Deleting log data from a log stream and request additional dumping

	Using the system logger answer area (ANSAREA parameter)
	Using ENF event code 48 in system logger applications

	IXGINVNT: Managing the LOGR, LOGRY and LOGRZ policies
	Defining a model log stream in the LOGR couple data set
	Defining a log stream as DASD-only
	Upgrading an existing log stream configuration
	Upgrading a log stream from DASD-only to coupling facility
	Updating an existing structure-based log stream to another structure
	Sample procedures to update an existing structure-based log stream to another structure
	Steps for a non-destructive update of an existing structure-based log stream
	Steps for a destructive update of an existing structure-based log stream

	Renaming a log stream dynamically
	Updating a log stream's attributes

	IXGCONN: Connecting to and disconnecting from a log stream
	Examples of ways to connect to the log stream
	Additional considerations for connecting to a DASD-only log stream

	How system logger allocates structure space for a new log stream at connection time
	Connect process and staging data sets
	Requesting authorization to the log stream for an application
	Requesting a write or import connection - IMPORTCONNECT parameter
	Specifying user data for a log stream
	System logger processing at disconnection and expired stream token
	Disconnection for an application
	Last disconnection for log stream on a system
	Last disconnection for a system in the sysplex
	Expired log stream token

	IXGWRITE: Writing to a log stream
	The log block buffer
	Ensuring chronological sequence of log blocks
	Write triggers
	When is data committed to the log stream?
	When the log stream coupling facility storage limit is reached
	When the staging data set storage limit is reached
	When the staging data set is formatting
	Limiting asynchronous IXGWRITE requests

	IXGBRWSE: Browsing/reading a log stream
	IXGBRWSE terminology
	IXGBRWSE requests
	Browsing both active and inactive data
	Browsing for a log block by time stamp
	Browsing multiple log blocks
	Return and reason code considerations
	Using IXGBRWSE and IXGWRITE
	Using IXGBRWSE and IXGDELET requests together

	IXGDELET: Deleting log blocks from a log stream
	Using the BLOCKS parameter

	IXGIMPRT: Import log blocks
	Making sure log blocks are imported in sequence - Understanding log block identifiers
	How do I know what the length of the control information is?
	Example: How log block identifiers are generated

	Making sure log data is safe to import

	IXGQUERY: Get information about a log stream or system logger
	The safe import point: Using IXGQUERY and IXGIMPRT together
	Coupling facility log streams and the safe import point
	DASD-only log streams and the safe import point

	The coupling facility list structure version number
	Using the coupling facility version number

	IXGOFFLD: Initiate offload to DASD log data sets
	Managing a target log stream: Using IXGIMPRT, IXGOFFLD, and IXGQUERY together

	IXGUPDAT: Modify log stream control information
	Rebuilds and IXGUPDAT processing

	Setting up the system logger configuration
	Reading data from log streams in data set format
	Is my application eligible for the LOGR subsystem?
	Preparing to use the LOGR subsystem

	Using the LOGR subsystem
	JCL for the LOGR Subsystem
	LOGR SUBSYS dynamic allocation considerations

	When things go wrong — Recovery scenarios for system logger
	When a system logger application fails
	When an MVS system or sysplex fails
	Recovery performed for DASD-only log streams
	When the system logger address space fails
	When the coupling facility structure fails
	Damage to or failure of the coupling facility structure
	Loss of connectivity to the coupling facility structure
	A coupling facility becomes volatile

	When the coupling facility space for a log stream becomes full
	When a staging data set becomes full
	When a log stream is damaged
	When DASD log data set space fills
	When unrecoverable DASD I/O errors occur
	When unrecoverable DASD I/O errors occur during offload
	When staging data set unrecoverable DASD I/O errors occur

	Chapter 28. Unicode instruction services: CSRUNIC
	Chapter 29. Transactional execution
	Nonconstrained transactions
	Constrained transactions
	Planning to use transactional execution
	Transactional execution debugging
	Transactional execution diagnostics

	Chapter 30. The hardware runtime environment
	Hardware environments that z/OS supports
	How to determine the hardware environment

	Appendix A. Using the unit verification service
	Functions of unit verification
	Check groups - Function code 0
	Check units - Function code 1
	Return unit name - Function code 2
	Return unit control block (UCB) addresses - Function code 3
	Return group ID - Function code 4
	Indicate unit name is a look-up value - Function code 5
	Return look-up value - Function code 6
	Convert device type to look up value - Function code 7
	Return attributes - Function code 8
	Specify subpool for returned storage - Function code 10
	Return unit names for a device class - Function code 11
	Callers of IEFEB4UV
	Input to and output from unit verification service routines
	Input parameter list
	Input and output data structures
	Register 15 if request fails
	Requesting function code 0 (check groups)
	Input
	Output

	Requesting function code 1 (check units)
	Input
	Output

	Requesting function code 2 (return unit name)
	Input
	Output

	Requesting function code 3 (return UCB addresses)
	Input
	Output

	Requesting function code 4 (return group ID)
	Input
	Output

	Requesting function code 5 (indicate unit name is a look-up value)
	Input
	Output

	Requesting function code 6 (return look-up value)
	Input
	Output

	Requesting function code 7 (convert device type to look-up value)
	Input
	Output

	Requesting function code 8 (return attributes)
	Input
	Output

	Requesting function code 10 (specify subpool for returned storage)
	Input
	Output

	Requesting function code 11 (return unit names for a device class)
	Input
	Output

	Requesting multiple functions - Examples
	Example 1 - Function codes 0 and 1
	Input
	Output

	Example 2 - Function codes 3 and 10
	Input
	Output

	Example 3 - Function codes 1 and 5
	Input
	Output

	Appendix B. Accessibility
	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

